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Abstract

Modern deep neural networks have achieved im-
pressive performance on tasks from image clas-
sification to natural language processing. Sur-
prisingly, these complex systems with massive
amounts of parameters exhibit the same structural
properties in their last-layer features and classi-
fiers across canonical datasets when training until
convergence. In particular, it has been observed
that the last-layer features collapse to their class-
means, and those class-means are the vertices of
a simplex Equiangular Tight Frame (ETF). This
phenomenon is known as Neural Collapse (N C).
Recent papers have theoretically shown that N'C
emerges in the global minimizers of training prob-
lems with the simplified “unconstrained feature
model”. In this context, we take a step further
and prove the N'C occurrences in deep linear net-
works for the popular mean squared error (MSE)
and cross entropy (CE) losses, showing that global
solutions exhibit A/C properties across the linear
layers. Furthermore, we extend our study to im-
balanced data for MSE loss and present the first
geometric analysis of A'C under bias-free setting.
Our results demonstrate the convergence of the
last-layer features and classifiers to a geometry
consisting of orthogonal vectors, whose lengths
depend on the amount of data in their correspond-
ing classes. Finally, we empirically validate our
theoretical analyses on synthetic and practical net-
work architectures with both balanced and imbal-
anced scenarios.

1. Introduction

Despite the impressive performance of deep neural networks
(DNNSs) across areas of machine learning and artificial in-
telligence (Krizhevsky et al., 2012; Simonyan & Zisserman,
2014; Goodfellow et al., 2016; He et al., 2015; Huang et al.,
2017; Brown et al., 2020), the highly non-convex nature
of these systems, as well as their massive number of pa-
rameters, ranging from hundreds of millions to hundreds of
billions, impose a significant barrier to having a concrete
theoretical understanding of how they work. Additionally, a

variety of optimization algorithms have been developed for
training DNNs, which makes it more challenging to analyze
the resulting trained networks and learned features (Ruder,
2016). In particular, the modern practice of training DNNs
includes training the models far beyond zero error to achieve
zero loss in the terminal phase of training (TPT) (Ma et al.,
2017; Belkin et al., 2018; 2019). A mathematical under-
standing of this training paradigm is important for studying
the generalization and expressivity properties of DNNs (Pa-
pyan et al., 2020; Han et al., 2021).

Recently, (Papyan et al., 2020) has empirically discovered
an intriguing phenomenon, named Neural Collapse (N C),
which reveals a common pattern of the learned deep rep-
resentations across canonical datasets and architectures in
image classification tasks. (Papyan et al., 2020) defined
Neural Collapse as the existence of the following four prop-
erties:

(NC1) Variability collapse: features of the same class
converge to a unique vector, as training progresses.

(NMC2) Convergence to simplex ETF: the optimal class-
means have the same length and are equally and maximally
pairwise seperated, i.e., they form a simplex Equiangular
Tight Frame (ETF).

(NC3) Convergence to self-duality: up to rescaling, the
class-means and classifiers converge on each other.

(NC4) Simplification to nearest class-center: given a
feature, the classifier converges to choosing whichever class
has the nearest class-mean to it.

Theoretically, it has been proven that A'C emerges in the
last layer of DNNs during TPT when the models belong to
the class of “unconstrained features model” (UFM) (Mixon
et al., 2020) and trained with cross-entropy (CE) loss or
mean squared error (MSE) loss. With regard to classifica-
tion tasks, CE is undoubtedly the most popular loss function
to train neural networks. However, MSE has recently been
shown to be effective for classification tasks, with compara-
ble or even better generalization performance than CE loss
(Hui & Belkin, 2020; Demirkaya et al., 2020; Zhou et al.,
2022b).

Contributions: We provide a thorough analysis of the
global solutions to the training deep linear network problem



Neural Collapse in Deep Linear Networks: From Balanced to Imbalanced Data

with MSE and CE losses under the unconstrained features
model defined in Section 2.1. Moreover, we study the geo-
metric structure of the learned features and classifiers under
a more practical setting where the dataset is imbalanced
among classes. Our contributions are three-fold:

1. UFM + MSE + balanced + deep linear network: We
provide the first mathematical analysis of the global solu-
tions for deep linear networks with arbitrary depths and
widths under UFM setting, showing that the global solutions
exhibit A'C properties and how adding the bias term can
affect the collapsed structure, when training the model with
the MSE loss and balanced data.

2. UFM + MSE + imbalanced + plain/deep linear net-
work: We provide the first geometric analysis for the plain
UFM, which includes only one layer of weight after the un-
constrained features, when training the model with the MSE
loss and imbalanced data. Additionally, we also generalize
this setting to the deep linear network one.

3. UFM + CE + balanced + deep linear network: We
study deep linear networks trained with CE loss and demon-
strate the existence of N'C for any global minimizes in this
setting.

Related works: In recent years, there has been a rapid
increase in interest in AV/C, resulting in a decent amount of
works in a short period of time. Under UFM, these works
studied different training problems, proving ETF and N'C
properties are exhibited by any global solutions of the loss
functions. In particular, a line of works use UFM with CE
training to analyze theoretical abstractions of N'C (Zhu et al.,
2021; Fang et al., 2021; Lu & Steinerberger, 2020). Other
works study UFM with MSE loss (Tirer & Bruna, 2022;
Zhou et al., 2022a; Ergen & Pilanci, 2020; Rangamani &
Banburski-Fahey, 2022). For MSE loss, recent extensions to
account for additional layers with non-linearity are studied
in (Tirer & Bruna, 2022; Rangamani & Banburski-Fahey,
2022), or with batch normalization (Ergen & Pilanci, 2020).
Furthermore, (Zhu et al., 2021; Zhou et al., 2022a;b) have
shown the benign optimization landscape for several loss
functions under the plain UFM setting, demonstrating that
critical points can only be global minima or strict saddle
points. Another line of work exploits the ETF structure to
improve the network design by initially fixing the last-layer
linear classifier as a simplex ETF and not performing any
subsequent learning (Zhu et al., 2021; Yang et al., 2022).

Most recent papers study N'C in a balanced setting, i.e., the
number of training samples in every class is identical. This
setting is vital for the existence of the ETF structure. To the
best of our knowledge, N'C with imbalanced data is studied
in (Fang et al., 2021; Thrampoulidis et al., 2022; Yang et al.,
2022; Xie et al., 2022). In particular, (Fang et al., 2021)
is the first to observe that for imbalanced setting, the col-

lapse of features within the same class is preserved, but the
geometry skew away from the ETF. (Thrampoulidis et al.,
2022) theoretically studies the SVM problem, whose global
minima follows a more general geometry than the simplex
ETF, called “SELI”. However, this work also makes clear
that the unregularized version of CE loss only converges to
KKT points of the SVM problem, which are not necessarily
global minima. Due to space considerations, we defer a
full discussion of related works to Appendix B. A compari-
son of our results with some existing works regarding the
study of global optimality conditions is shown in Table 1 in
Appendix B.

Notation: For a weight matrix W, we use w; to denote
its j-th row vector. ||.||r denotes the Frobenius norm of a
matrix and ||.||2 denotes Ly-norm of a vector. ® denotes the
Kronecker product. The symbol “oc” denotes proportional,
i.e, equal up to a positive scalar. Moreover, we denote the
best rank-k approximation of a matrix A as Py (A). We
also use some common matrix notations: 1,, is the all-ones
vector, diag{ay, ..., ax} is a square diagonal matrix size
K x K with diagonal entries aq, ..., axk.

2. Problem Setup

We consider the classification task with K classes. Let ny,
denote the number of training samples of class k, V k € [K]
and N := Zszl nk. A typical deep neural network () :
RP — RX can be expressed as follows:

(x) = Wo(x) + b,

where ¢(-) : RP — R9 is the feature mapping, and
W € RE*4 and b € R are the last-layer linear classifiers
and bias, respectively. Formally, the feature mapping ¢(.)
consists of a multilayer nonlinear compositional mapping,
which can be written as:

¢9(X) = U(WL . ..O’(W1X + bl) + bL),

where W; and b;, [ = 1,..., L, are the weight matrix
and bias at layer [, respectively. Here, o(-) is a nonlinear
activation function. Let § := {W;,b;}X | be the set of
parameters in the feature mapping and © := {W, b, 0} be
the set of all network’s parameters. We solve the following
optimization problem to find the optimal values for ©:

K ng

) A
ménZZEW(Xk,i),Yk)+§H@H%a ey

k=11i=1

where x;; € RP is the i-th training sample in the k-th
class, and y;, € R¥ denotes its corresponding label, which
is a one-hot vector whose k-th entry is 1 and other entries
are 0. Also, A > 0 is the regularization hyperparameter
that control the impact of the weight decay penalty, and
L(Y(x1,i),yr) is the loss function that measures the differ-
ence between the output ¢ (xy, ;) and the target yy.
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Figure 2. Visualization of geometries of Frobenius-normalized
classifiers and features with K = 3 classes. For imbalanced
example, the number of samples for each class is 30, 10, and 5.

2.1. Formulation under Unconstrained Features Model

Following recent studies of the A’C phenomenon, we adopt
the unconstrained features model (UFM) in our setting.
UFM treats the last-layer features h = ¢(x) € RY as free
optimization variables. This relaxation can be justified by
the well-known result that an overparameterized deep neural
network can approximate any continuous function (Hornik
et al., 1989; Hornik, 1991; Zhou, 2018; Yarotsky, 2018).
Using the UFM, we consider the following slight variant of
(1):

K ng
. 1
V‘T,T’lgfbf(W,Hab) =oN ’;Z;'C(th,i +b,yk)
Aw AH b
+= IWIE + - IHIE + b3, e

where hy, ; is the feature of the i-th training sample in the k-
thclass. Welet H :=[hy1,...,h 5, ho 1, ... hix,, ] €
RN be the matrix of unconstrained features. The
feature class-means and global-mean are computed as
hy = n,' Y% hy, for k = 1,...,K and hg :=
N1 Zszl > % hy i, respectively. In this paper, we also
denote H by H; and use these notations interchangeably.

Extending UFM to the setting with )/ linear layers: N'C
phenomenon has been studied extensively for different loss
functions under UFM but with only 1 to 2 layers of weights.
In this work, we study A/'C under UFM in its significantly
more general form with M > 2 linear layers by generalizing
(2) to deep linear networks with arbitrary depths and widths
(see Fig. 1 for an illustration). We consider the following
generalization of (2) in the M -linear-layer setting:

K ng

. 1
w,min oN Z Z LOWyWa1... Wih; +b,yg)
H,,b k=11i=1
A AWass
+ 2P Wl + =5 Warallf+
Awy AH, Ap
+ 5 W% + 5 IH |7 + 3||b||§7 A3)

where M > 2, Aw,,, ..., Awy, Al , Ay > 0 are regular-
ization hyperparameters, and W, € RE>dv W, | €
RdMXdM_l, ..., Wy € R%xd1 ith dyrydar—1,...,dy
are arbitrary positive integers. In our setting, we do not
consider the biases of intermediate hidden layers.

Imbalanced data: Without loss of generality, we assume
ny > ne > ... > ng. This setting is more general than
those in previous works, where only two different class
sizes are considered, i.e., the majority classes of n 4 train-
ing samples and the minority classes of np samples with
the imbalance ratio R := na/np > 1 (Fang et al., 2021;
Thrampoulidis et al., 2022).

We now define the “General Orthogonal Frame” (GOF),
which is the convergence geometry of the class-means and
classifiers in imbalanced MSE training problem with no bias
(see Section 4).

Definition 2.1 (General Orthogonal Frame). A standard
general orthogonal frame (GOF) is a collection of points in
RX specified by the columns of:

1
[ K
Dkt a%

We also consider the general version of GOF as a collection
of points in R? (d > K) specified by the columns of PN
where P € R4*K is an orthonormal matrix, i.e. PTP =
Ix. In the special case where a1 = as = ... = ax, we
have N follows OF structure in (Tirer & Bruna, 2022), i.e.,
NN o Ig. Fig. 2 shows a visualization for GOF versus
OF and ETF in (Papyan et al., 2020).

N = diag(ay,az,...,akx), a; >0 Vi € [K].

3. Neural Collapse in Deep Linear Networks
under the UFM Setting with Balanced Data

In this section, we present our study on the global optimality
conditions for the M-layer deep linear networks (M > 2),



Neural Collapse in Deep Linear Networks: From Balanced to Imbalanced Data

trained with the MSE loss under the balanced setting, i.e.,
n1 = ng = ... = ng = n, extending the prior results that
consider only one or two hidden layers. We consider the
following optimization problem for training the model:

1
i — IWy Wy q...W;H; + bl — Y|
WNT%T}W12N|| MW 1Hy +bl, %
Hl,b
Aw A iy
+ = IWarllf 4+ W + =5 [HllE

“

where Y = Ix®1,] € RE*N js the one-hot vectors matrix.
Note that (4) is a special case of (3) when \;,, = 0.

We further consider two different settings from (4): (i) bias-
free, i.e., excluding b, and (ii) last-layer unregularized bias,
i.e., including b. We now state the characteristics of the
global solutions to these problems.

Theorem 3.1. Let R := min(K,dp,dpr—1, .-
and (W?\/[,W}‘wfl,...,
global minimizer of (4). Denoting a =
K X/KnAwy,Awy,_, - Aw, Ay, then  the  follow-
ing results hold for both (i) bias-free setting with b*
excluded and (ii) last-layer unregularized bias setting with
b* included:

. 7d21 dl)
T,H’{,b*) be any

M-1
(a) If a < W, we have:

(NC1)H: =H ©1,, whereH = [h},... h%] €
RYXK gnd b* = %IK.

(NC2)¥j=1,...,M:
Wi, Wil o H H o Wi, W5, ... .H
x (Wi Wi .. . WHWh, Wi, .. Wi)T
and align to:

(i) OF structure if (4) is bias-free:

ifR>K

Ix
Prlk) fR<K’

(ii) ETF structure if (4) has last-layer bias b:

Ix — £1g1j fR>K —1
Pr(Ix — 21x1f) fR<K-—1°
(NC3)Vj=1,...,M:

* * * adl
WiWE, L Wi H

MWy Wi o (Wi_ ... WiH) .

M1
(b) If a > % (4) only has trivial global
minima (W3, W3,_,,..., Wi Hj b*) =

(0,0,...,0,0, 1)

M1
(¢) If a = M=D T (4) has trivial global solution
(Wi...,Wi,Hi,b*) = (0,..,0,0, 1) and

nontrivial global solutions that have the same (NC1)
and (N'C3) properties as case (a).

For (NC2) property, for j = 1,..., M, we have:
Wi, Wi «H H « W,Wi,_, .. H
(Wi Wiy WH(Wi Wiy W)T
and align to:

Pr (Ik) if (4) is bias-free
P (IK — %IK IIT() if (4) has last-layer bias’

with r is the number of positive singular value of H .

Our proofs (in Appendix D) first characterize critical points
of the loss function, showing that the weight matrices of the
network have the same set of singular values, up to a factor
depending on the weight decay. Then, we use the singular
value decomposition on these weight matrices to transform
the loss function into a function of singular values of W
and singular vectors of W ;. Due to the separation of the
singular values/vectors in the expression of the loss function,
we can optimize each one individually. This method shares
some similarities with the proof for bias-free case in (Tirer
& Bruna, 2022) where they transform a lower bound of the
loss function into a function of singular values. Furthermore,
the threshold (M — 1)*5 /M? of the constant a is derived
from the minimizer of the function g(x) = 1/(z™ +1)+bx
for 2 > 0. For instance, if b > (M — 1)™5 /M, g(z) is
minimized at z = 0 and the optimal singular values will be
0’s, leading to the stated solution.

The main difficulties and novelties of our proofs for deep
linear networks are: i) we observe that the product of many
matrices can be simplified by using SVD with identical
orthonormal bases between consecutive weight matrices
(see Lemma D.4) and, thus, only the singular values of Wy
and left singular vectors of W j; remain in the loss function,
ii) optimal singular values are related to the minimizer of
the function g(z) = 1/(2™ +1)+ bx (see Appendix D.2.1),
and iii) we study the properties of optimal singular vectors
to derive the geometries of the global solutions.

Theorem 3.1 implies the following interesting results:

* Features collapse: For each k € [K], with class-means
matrix H = [h,..., h%] € R>K we have H} =
H ® 1.}, implying the collapse of features within the
same class to their class-mean.
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* Convergence to OF/Simplex ETF: The class-means
matrix, the last-layer linear classifiers, or the product of
consecutive weight matrices converge to OF in the case of
bias-free and simplex ETF in the case of having last-layer
bias. This result is consistent with the two and three-layer
cases in (Tirer & Bruna, 2022; Zhou et al., 2022a).

* Convergence to self-duality: If we separate the product
Wi, .. .Wfﬁ* (once) into any two components, they
will be perfectly aligned to each other up to rescaling.
This generalizes from the previous results which demon-
strate that the last-layer linear classifiers are perfectly
matched with the class-means after rescaling.

Remark 3.2. The convergence of the class-means matrix
to OF/Simplex ETF happens when d,,, > K (or K — 1)
V'm € [M], which often holds in practice (Krizhevsky et al.,
2012; He et al., 2015). Otherwise, they converge to the best
rank- R approximation of Ic or I v — % 1x1k ", where the
class-means neither have the equinorm nor the maximally
pairwise separation properties. This result is consistent with
the two-layer case observed in (Zhou et al., 2022a).

Remark 3.3. From the proofs, we can show that under the
condition d,,, > K, Vm € [M], the optimal value of the
loss function is strictly smaller than when this condition
does not hold. Our result is aligned with (Zhu et al., 2018),
where they empirically observe that a larger network (i.e.,
larger width) tends to exhibit severe A/'C and have smaller
training errors.

Remark 3.4. We study deep linear networks under UFM and
balanced data for CE loss in Appendix A. The result demon-
strates N/C properties of every global solutions, whose the
matrices product Wy X Wp,_1 X ... X Wy and H; con-
verge to the ETF structure when training progresses.

4. Neural Collapse in Deep Linear Networks
under the UFM Setting with MSE Loss and
Imbalanced Data

The majority of theoretical results for NC only consider
the balanced data setting, i.e., the same number of training
samples for each class. This assumption plays a vital role in
the existence of the well-structured ETF geometry. In this
section, we instead consider the imbalanced data setting and
derive the first geometry analysis under this setting for MSE
loss. Furthermore, we extend our study from the plain UFM
setting, which includes only one layer of weight after the
unconstrained features, to the deep linear network one.

4.1. Plain UFM Setting with No Bias
The bias-free plain UFM with MSE loss is given by:

. 1 Aw Ay
min o [WH = Y5 + S-[WIE + S IHIE, ©)

where W € REXd H ¢ RN and Y € REXV i the
one-hot vectors matrix consisting nj one-hot vectors for
each class k, V k € [K]. We now state the N'C properties
of the global solutions of (5) under the imbalanced data
setting when the feature dimension d is at least the number
of classes K.

Theorem 4.1. Let d > K and (W*,H*) be any global
minimizer of problem (5). Then, we have:

(NC1) H
where H = [h%,...,

=HY & hj, =h;Vk e [K],i € [ng],
hi] € ROXK,
(NC2) Let a := N?\w Ay, we have:
* * . K
WW*T = diag {s7 },_, ,
T 52 K
H H =di Y S—
8 { (2 + Nhg)? }k_l ’

82 K
W H* = diag { -—5— Y
e { s% A } 1

+ Ny
T
mlm 0
0 s T
S%JrN/\H nK
where:

. i < 4 < < <1
’I’l - N2 — - -

/ )
""H Ny Vke|K

'Ifthereexmtsaje s.t.n—'l_n%g...g
a<1< _...<L:
”J+1
Sp = Ny Vk<j
Vk>j

clfl<t<e< <o

(51,827 cee

and (W* , H*) = (0, 0) in this case.

For any k such that s, = 0, we have:

(NC3) wj=,/™2h; VE e [K].
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The detailed proofs are provided in the Appendix E. We use
the same approach as the proofs of Theorem 3.1 to prove
this result, with challenge arises in the process of lower
bounding the loss function w.r.t. the singular vectors of
‘W. Interestingly, the left singular matrix of W* consists
multiple orthogonal blocks on its diagonal, with each block
corresponds with a group of classes having the same number
of training samples. This property creates the orthogonality
of (NC2) geometries.

Theorem 4.1 implies the following interesting results:

* Features collapse: The features in the same class also
converge to their class-mean, similar as balanced case.

¢ Convergence to GOF: When the condition
NQ)\W)\H/nK < 1 is hold, the class-means ma-
trix and the last-layer classifiers converge to GOF (see
Definition 2.1). This geometry includes orthogonal
vectors, but their length depends on the number of
training samples in the class. The above condition
implies that the imbalance and the regularization level
should not be too heavy to avoid trivial solutions that
may harm the model performances. We will discuss
more about this phenomenon in Section 4.2.

* Alignment between linear classifiers and last-layer
features: The last-layer linear classifier is aligned with
the class-mean of the same class, but with a different ratio
across classes. These ratios are proportional to the square
root of the number of training samples, and thus different
compared to the balanced case where W*/|W*| p =

A
H /IH e

Remark 4.2. We study the case d < K in Theorem E.2.
In this case, while (AMC1) and (N C3) are exactly similar
as the case d > K, the (N C2) geometries are different if
a/ng < 1and ng = ng41, where a square block on the
diagonal is replaced by its low-rank approximation. This
square block corresponds to classes with the number of
training samples equal n4. Also, we have w; = h;, = 0 for
any class k with the amount of data is less than ng.

4.2. GOF Structure with Different Imbalance Levels
and Minority Collapse

Given the exact closed forms of the singular values of W*
stated in Theorem 4.1, we derive the norm ratios between the
classifiers and between features across classes as follows:
Lemma 4.3. Suppose (W*,H*) is a global minimizer of
problem (5) such that d > K and N2)\W)\H/nK <1, so
that all the sy ’s are positive. The following results hold:

Iwell2 S T N 2wy S N

w2 [rida —N)\H’ [
w

Ifni > nj, we have |wi|| > w5l and ||| < [hj].

nAg ’
it Ny

It has been empirically observed that the classifiers of the
majority classes have greater norms (Kang et al., 2019).
Our result is in agreement with this observation. More-
over, it has been shown that class imbalance impairs the
model’s accuracy on minority classes (Kang et al., 2019;
Cao et al.,, 2019). Recently, (Fang et al., 2021) discover
the “Minority Collapse” phenomenon. In particular, they
show that there exists a finite threshold for imbalance level
beyond which all the minority classifiers collapse to a single
vector, resulting in the model’s poor performance on these
classes. Theorem 4.1 is not only aligned with the “Minority
Collapse” phenomenon, but also provides the imbalance
threshold for the collapse of minority classes to vector 0,
ie., NQAw)\H/TLK > 1.

4.3. Bias-free Deep Linear Network under the UFM
setting

We now generalize (5) to bias-free deep linear networks
with M > 2 and arbitrary widths. We study the following
optimization problem with imbalanced data:

1
i — [WayWpy_i.. W H; —Y|?
WMyWMI{li?n-,WhHl 2N|| MY M—1 141 ||F
A A\ N
2 W+ S W+ S

6)

where the target matrix Y is the one-hot vectors matrix
defined in (5). We now state the N'C properties of the global
solutions of (6) when the dimensions of the hidden layers
are at least the number of classes K.

Theorem 4.4. Let d,, > K, Vm € [M], and
(Wi, Wa ..., Wi HY) be any global minimizer of
problem (6). We have the following results:

(NC1) Hif =H'Y & hi, =hiVk e [K],i€ [n],
where H = [h%,... h%] € Rh*K,

)\Mfl

(NC2) Let ¢ := 1, a =

,
AW AWy g AWy

N Y/NAwy Awy_y -+ Aw, A, and Yk € [K], x}; is the
largest positive solution of the equation n% — % =0,

we have the following:

* * )\Wl . K
Wi, Wi = h\ diag {Si}kzl ’
M

* * * * . % K
(Wi . WH(Wih, ... W) T =diag {esi™ } |,

2M K
—k | =% CS
H H =diag { k } ,
(es?™ + Nig, )2 J .,

et "

* * * *

Wi _ .. WH =¢ —+7F"F—— Y
M M-—1 1++1 CS%JM +N)\H1 - )



Neural Collapse in Deep Linear Networks: From Balanced to Imbalanced Data

(NC3) We have, ¥V k € [K]:

(WhyWi g Wi = (esi™ + NAg,)
where:
M-1
cfL<a< < <%,wehave:

) N * M
sk = M\/% Ve [K].

. / ) — a a
If there exlstfwalj € [K —1] st << <
a < (M_l) M < a

- 2
n; M

a_ <. < 2 we have:
nj+1 nK

2M [ Ny, aiM
Sk = c
0

For any k such that s;, = 0, we have:

Yk<j
VEk>j

(Wir)k = hi = 0.
.IfM<nilgn%g_.,§n— we have:

(51,82, ..

and (Wi, ..., Wi, H}) = (0,...,0,0) in this case.

The detailed proofs of Theorem 4.4 and the remaining case

(M-1) "5

where there are some —*-’s equal to T are provided

in Appendix F.
Remark 4.5. The equation that solves for the optimal sin-
gular value, & — % = O has exactly two positive

solutions when a < (M — 1) (see Section D.2.1).
Solving this equation leads to cumbersome solutions of a
high-degree polynomial. Even without the exact closed-
form formula for the solution, the (AVC2) geometries can
still be easily computed by numerical methods.

Remark 4.6. We study the case R =
min(dy,...,d1,K) < K in Theorem F2. In this
case, while (M'C1) and (NC3) are exactly similar as the
case R = K in Theorem 4.4, the (NC2) geometries
are different if a/ng < 1 and ngp = ng41, where a
square block on the diagonal is replaced by its low-rank
approximation. This square block corresponds to classes
with the number of training samples equal nr. Also, we
have (W)} = h} = 0 for any class k& with the amount of
data is less than ng.

2
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Figure 3. lllustration of N'C with 6-layer MLP backbone on CI-
FAR10 for MSE loss, balanced data and bias-free setting.
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Figure 4. Same setup as Fig. 3 but having last-layer bias.

5. Experimental Results

In this section, we empirically verify our theoretical results
in multiple settings for both balanced and imbalanced data
settings. In particular, we observe the evolution of NC prop-
erties in the training of deep linear networks with a prior
backbone feature extractor to create the “unconstrained”
features (see Fig. 1 for a sample visualization). The ex-
periments are performed on CIFAR10 (Krizhevsky, 2009)
dataset for the image classification task. Moreover, we also
perform direct optimization experiments, which follows the
setting in (3) to guarantee our theoretical analysis.

The hyperparameters of the optimizers are tuned to reach
the global optimizer in all experiments. The definitions of
the N'C metrics, hyperparameters details, and additional
numerical results can be found in Appendix C.

5.1. Balanced Data

Under the balanced data setting, we alternatively substitute
between multilayer perceptron (MLP), ResNet18 (He et al.,
2016) and VGG16 (Simonyan & Zisserman, 2014) in place
of the backbone feature extractor. For all experiments with
MLP backbone model, we perform the regularization on
the “unconstrained” features H; and on subsequent weight
layers to replicate the UFM setting in (3). For deep learn-
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Figure 6. lllustration of A/'C with 6-layer MLP backbone on an
imbalanced subset of CIFAR10 for MSE loss and bias-free setting.

ing experiments with ResNet18 and VGG16 backbone, we
enforce the weight decay on all parameters of the network,
which aligns to the typical training protocol.

Multilayer perceptron experiment: We use a 6-layer MLP
model with ReLU activation as the backbone feature extrac-
tor in this experiment. For deep linear layers, we cover
all depth-width combinations with depth € {1, 3,6,9} and
width € {512,1024, 2048}. We run both bias-free and last-
layer bias cases to demonstrate the convergence to OF and
ETF geometry, with the models trained by Adam optimizer
(Kingma & Ba, 2014) for 200 epochs. For a concrete il-
lustration, the results of width-1024 MLP backbone and
linear layers for MSE loss are shown in Fig. 3 and Fig. 4.
We consistently observe the convergence of N'C metrics to
small values as training progresses for various depths of the
linear networks. Additional results with MLP backbone for
other widths and for CE loss can be found in Appendix C.1.

Deep learning experiment: We use ResNet18 and VGG16
as the deep learning backbone for extracting H; in this
experiment. The depths of the deep linear network are
selected from the set {1, 3,6, 9} and the widths are chosen
to equal the last-layer dimension of the backbone model (i.e.,
512). The models are trained with the MSE loss without
data augmentation for 200 epochs using stochastic gradient
descent (SGD). As shown in Fig. 5 above and Fig.7 in the
Appendix C.1.2, N'C properties are obtained for widely used
architectures in deep learning contexts. Furthermore, the
results empirically confirm the occurrences of N'C across
deep linear classifiers described in Theorem 3.1.

Direct optimization experiment: To exactly replicate the
problem (3), Wy, ..., W, and H; are initialized with
standard normal distribution scaled by 0.1 and optimized

with gradient descent with step-size 0.1 for MSE loss. In
this experiment, we set K = 4,n = 100,dy; = dpr—1 =

= d; = 64 and all \’s are set to be 5 x 1074, We
cover multiple depth settings with M chosen from the set
{1,3,6,9}. Fig. 8 and Fig. 9 in Appendix C.1.2 shows the
convergence to 0 of A'C metrics for bias-free and last-layer
bias settings, respectively. The convergence errors are less
than 1le-3 at the final iteration, which corroborates Theorem
3.1.

5.2. Imbalanced Data

For imbalanced data setting, we perform two experiments:
CIFAR10 image classification with an MLP backbone and
direct optimization with a similar setup as in Section 5.1.

Multilayer perceptron experiment: In this experiment,
we use a 6-layer MLP network with ReL U activation as the
backbone model with removed batch normalization. We
choose a random subset of CIFARI10 dataset with num-
ber of training samples of each class chosen from the
list {500, 500, 400, 400, 300, 300, 200, 200, 100, 100}. The
network is trained with batch gradient descent for 12000
epochs. Both the feature extraction model and deep linear
model share the hidden width d = 2048. This experiment
is performed with multiple linear model depths M =1, 3,6
and the results are shown in Fig. 6. The converge of N'C met-
rics to 0 (errors are at most Se-2 at the final epoch) strongly
validates Theorem 4.1 and 4.4 with the convergence to GOF
structure of learned classifiers and features.

Direct optimization experiment: In this experiment, ex-
cept for the imbalanced data of K = 4 and n; = 200, ng =
100, n3 = n4 = 50, the settings are identical to the direct
optimization experiment in balanced case for MSE loss. Fig.
12 in Appendix C.2.2 corroborates Theorems 4.1 and 4.4
for various depths M =1, 3,6 and 9.

6. Concluding Remarks

In this work, we extend the global optimal analysis of
the deep linear networks trained with the mean squared
error (MSE) and cross entropy (CE) losses under the uncon-
strained features model. We prove that NC phenomenon is
exhibited by the global solutions across layers. Moreover,
we extend our theoretical analysis to the UFM imbalanced
data settings for the MSE loss, which are much less studied
in the current literature, and thoroughly analyze NC prop-
erties under this scenario. In our work, we do not include
biases in the training problem under imbalanced setting. We
leave the study of the collapsed structure with the presence
of biases as future work. As the next natural development
of our results, characterizing NC for deep networks with
non-linear activations under unconstrained features model
is a highly interesting direction for future research.
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Appendix for “Neural Collapse in Deep Linear Networks: From Balanced to
Imbalanced Data”

Firstly, we study A/C characteristics for cross-entropy loss function in deep linear networks in Appendix A. The delayed
related works discussion are provided in Appendix B. Next, we present additional numerical results and experiments, details
of training hyperparameters and describe N'C metrics used for experiments in Appendix C. Finally, detailed proofs for
Theorems 3.1, 4.1, 4.4 and A.1 are provided in Appendix D, E, F and G, respecively.

A. Neural Collapse in Deep Linear Networks under UFM Setting for CE with Balanced Data

In this section, we turn to cross-entropy loss and generalize A'C for deep linear networks with last-layer bias under balanced
setting, and a mild assumption that all the hidden layers dimension are at least K — 1 is required. We consider the training
problem (3) with CE loss as following:

K n
. 1 )\Wj\l 2 >‘H1 2 A 2
WMV..I.I}{%hthNZZEC’E(WM-~-W1hk,i+b7Yk)+ Warlle + ... + 5 ||H1|\F+5Hb\|2’ @)

‘ 2
k=1 1i=1

where:

Z
i=1 €7

ek
Lcop(z,yr) = —log <K> .

Theorem A.1. Assume dy, > K — 1Yk € [M], then any global minimizer (W, ..., W1, H}, b*) of problem (7) satisfies:

. (NC1) + (NC3):

M K-1 2

* 1 k=1 k * * * i

i Wi, Wi ... W), VkelK]ieln
P AW AW -+ Ay K- SiM( MW M-1 1) (K] [n]

=hj,=h; Vie [n], k € [K],

where {sk}kK:_ll are the singular values of H.
e (NC2) : Hf and Wi, W3,_, - - Wi will converge to a simplex ETF when training progresses:

K-1
)‘%1 Zk:l S%‘M <IK _ llK]_T)
(K — DAwy, Ay, - - Ay K &K

(W7\4W7v1—1 T WT)(W}L{WE/[—I o WT)T =

e We have b* = b*1 where either b* = 0 or A\, = 0.

The proof is delayed until Section G and some of the key techniques are extended from the proof for the plain UFM in (Zhu
et al., 2021). Comparing with the plain UFM with one layer of weight only, we have for deep linear case similar results as
the plain UFM case, with the (A'C2) and (N'C3) property now hold for the product W, Wy, _1 ... W instead of W,

B. Related Works

In recent years, there has been a rapid increase in interest in Neural Collapse, resulting in a decent amount of papers within a
short period of time. Under the unconstrained feature model, (Zhu et al., 2021; Tirer & Bruna, 2022; Zhou et al., 2022a;b;
Thrampoulidis et al., 2022; Fang et al., 2021; Lu & Steinerberger, 2020; Ergen & Pilanci, 2020; Yang et al., 2022) studied
different training problems, proving simplex ETF and A/C properties are exhibited by any global solutions of the loss
functions. In particular, (Zhu et al., 2021; Fang et al., 2021; Lu & Steinerberger, 2020) uses UFM with CE training to
analyze theoretical abstractions of Neural Collapse. Other works study UFM with MSE loss (Tirer & Bruna, 2022; Zhou
et al., 2022a; Ergen & Pilanci, 2020; Rangamani & Banburski-Fahey, 2022), and recent extensions to account for one
additional layer and nonlinearity (with an extra assumption) are studied in (Tirer & Bruna, 2022) or with batch normalization
(Ergen & Pilanci, 2020). The work (Rangamani & Banburski-Fahey, 2022) studies deep homogeneous networks with MSE



Neural Collapse in Deep Linear Networks: From Balanced to Imbalanced Data

. . Consider Extra NC2
Loss | Train model Setting d< K—12 ption a try
(Zhu et al., 2021) CE Plain UFM Balanced No N/a Simplex ETF
(Fang et al., 2021) CE Layer-peeled Balanced No N/a Simplex ETF
(Zhou et al., 2022a) MSE | Plain UFM Balanced Yes N/a Simplex ETF
MSE | Plain UFM, no bias Balanced No N/a OF
. ; MSE | Plain UFM, un-reg. bias Balanced No N/a Simplex ETF
(Tirer & Bruna, 2022) MSE | Extended UFM 2 linear layers, no bias Balanced No N/a OF
MSE | Extended UEM 2 layers with ReLU, no bias Balanced | No :;‘:C;i?; norm OF
(Rangamani & Banburski-Fahey, 2022) | MSE | Deep ReLU network, no bias Balanced | No lsnyl;“rl':‘(i;‘; nQE‘“S" Simplex ETF
(Thrampoulidis et al., 2022) CE UFM Support Vector Machine Imbalanced | No N/a SELI
MSE | Extended UFM M linear layers, no bias (Theorem 3.1) Balanced Yes N/a OF
MSE | Extended UFM M linear layers, un-reg. last bias (Theorem 3.1) | Balanced Yes N/a Simplex ETF
This work MSE | Plain UFM, no bias (Theorem 4.1) Imbalanced | Yes N/a GOF
MSE | Extended UFM M linear layers, no bias (Theorem 4.4) Imbalanced | Yes N/a GOF
CE Extended UFM M linear layers (Theorem A.1) Balanced No N/a Simplex ETF

Table 1. Selected comparision of theoretical results on global optimality conditions with A/'C occurrence.

loss and trained with stochastic gradient descent. Specifically, the critical points of gradient flow satisfying the so-called
symmetric quasi-interpolation assumption are proved to exhibit A'C properties, but the other solutions are not investigated.
(Zhou et al., 2022b) recently extended the global optimal characteristics to other loss functions, such as focal loss and label
smoothing. Moreover, (Zhu et al., 2021; Zhou et al., 2022a;b) provide the benign optimization landscape for different loss
functions under plain UFM, demonstrating that critical points can only be global minima or strict saddle points. Another
line of work, for example (Zhu et al., 2021; Yang et al., 2022), exploits the simplex ETF structure to improve the network
design, such as initially fixing the last-layer linear classifier as a simplex ETF and not performing any subsequent learning.

Most recent papers study Neural Collapse under a balanced setting, i.e., the number of training samples in every class is the
same. This setting is vital for the existence of the simplex ETF structure. To the best of our knowledge, Neural Collapse with
imbalanced data is studied in (Fang et al., 2021; Thrampoulidis et al., 2022; Yang et al., 2022; Xie et al., 2022). In particular,
(Fang et al., 2021) is the first to observe that for imbalanced setting, the collapse of features within the same class N'C1 is
preserved, but the geometry skew away from ETF. They also present a phenomenon called “Minority Collapse”: for large
levels of imbalance, the minorities’ classifiers collapse to the same vector. (Thrampoulidis et al., 2022) theoretically studies
the SVM problem, whose global minima follows a more general geometry than the ETF, called “SELI”. However, this work
also makes clear that the unregularized and bias-free (i.e., no bias) version of CE loss only converges to KKT points of
the SVM problem, which are not necessarily global minima, and thus the geometry of the global minima of CE loss is not
guaranteed to be the “SELI” geometry. (Yang et al., 2022) studies the imbalanced data setting but with fixed last-layer linear
classifiers initialized as a simplex ETF right at the beginning. (Xie et al., 2022) proposed a novel loss function for balancing
different components of the gradients for imbalanced learning. Therefore, A'C characterizations with imbalanced data for
commonly used loss functions in deep learning regimes such as CE, MSE, etc., still remain open. A comparison of our
results with some existing works regarding the study of global optimality conditions is shown in Table 1.

This work also relates to recent advances in studying the optimization landscape in deep neural network training. As pointed
out in (Zhu et al., 2021), the UFM takes a top-down approach to the analysis of deep neural networks, where last-layer
features are treated as free optimization variables, in contrast to the conventional bottom-up approach that studies the
problem starting from the input (Baldi & Hornik, 1989; Zhu et al., 2018; Kawaguchi, 2016; Yun et al., 2017; Laurent & von
Brecht, 2017; Safran & Shamir, 2017; Yun et al., 2018). These works studies the optimization landscape of two-layer linear
network (Baldi & Hornik, 1989; Zhu et al., 2018), deep linear network (Kawaguchi, 2016; Yun et al., 2017; Laurent & von
Brecht, 2017) and non-linear network (Safran & Shamir, 2017; Yun et al., 2018). (Zhu et al., 2021) provides an interesting
perspective about the differences between this top-down and bottom-up approach, with how results stemmed from UFM
can provide more insights to the network design and the generalization of deep learning while requiring fewer unrealistic
assumptions than the counterpart.

!(Tirer & Bruna, 2022) assumes the nuclear norm of Wi Hj and ReLU(W{H}) are equal for any global solution (W3, Wi, HY).
?(Rangamani & Banburski-Fahey, 2022) assumes having a classifer f : R® — R™ where [f(x1.:)]x = 1 — € and [f(xx.)]p =
e/(K — 1)V k' # k for all training samples
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C. Additional Experiments, Network Training and Metrics
C.1. Balanced Data
C.1.1. METRIC FOR MEASURING N C IN BALANCED SETTINGS

For balanced data, we use similar metrics to those presented in (Zhu et al., 2021) and (Tirer & Bruna, 2022), but also extend
them to the multilayer network setting:

Features collapse. Since the collapse of the features of the backbone extractors implies the collapse of the features in
subsequent linear layers, we only consider N'C1 metric for the output features of the backbone model. We recall the
definition of the class-means and global-mean of the features {hy, ; } as:

n K n
hy = iz_;hk hg == KinZZh,m.

k=1i=1

We also define the within-class, between-class covariance matrices, and A/C1 metric as following:

K n K
_ 1 T _ 1 T
Yw o= ~ ; ;(hk,i —hy;)(hy; —hy;) , Xp:= e ;(hk —hg)(hy —hg) ',

NC1 := %trace(EWEL).

where E}g denotes the pseudo inverse of X 5.

» Convergence to OF/Simplex ETF. To capture the AC behaviors across layers, we denote W™ :=
Wy Was1... Whs_pa as the product of last m weight matrices of the deep linear network. We define N CQQLF
and NC2ETF to measure the similarity of the learned classifiers W™ to OF (bias-free case) and ETF (last-layer bias

case) as:
wrwmT 1
NC2OF = HIK ,
" IWmWm T VE g
wrwmT 1 1
C2ETE .— - Ix — —1x15
S [ Y e R S B

¢ Convergence to selfiluality. We measure the alignment between the learned classifier W ;W ;1 ... Wy and the
learned class-means H via:

NC3OF = WMWM_l...Wlﬁ 7LIK
[WyuWayr . WiH|, VK |
WyuWa... W H 1 1
NC3ETE .— M ML Lk (IK—1K1}> ,
[WyWyoi.. . WiH|, VEK-1 K -
where H = [hy, ..., hg] is the class-means matrix.

C.1.2. ADDITIONAL NUMERICAL RESULTS FOR BALANCED DATA

This subsection expands upon the experiment results for balanced data in subsection 5.1 by the following points: i) For MLP
experiment, we provide A/C metrics measured at the last epoch for the remaining depth-widths combinations mentioned in
subsection 5.1 and ii) Empirically verify Theorem A.1 of the N'C existence for cross-entropy loss in deep linear network
setting.

Last-epoch \/C metrics for multilayer perceptron and deep learning experiments . We include the full set of last-epoch
NC metrics for mentioned MLP depth-width combinations in Table 2 and 3. In which, Table 2 corresponds to the bias-free
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Figure 7. Tlustration of A'C for VGG16 backbone with MSE loss, balanced data and last-layer bias setting.
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Figure 8. lustration of N'C for direct optimization experiment with MSE loss, balanced data and bias-free setting.
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Figure 9. Nustration of N'C for direct optimization experiment with MSE loss, balanced data and last-layer bias setting.

setting and Table 3 corresponds to the last-layer bias setting. Similarly, the full set of last-epoch N'C metrics for deep
learning experiments with ResNet18 and VGG19 models are also presented in Table 4.

Verification of Theorem A.1 for CE loss: We run two experiments to verify neural collapse for CE loss described in
Theorem A.1 in two settings: MLP backbone model and direct optimization. Our network training procedure is similar to
multilayer perceptron experiment and direct optimization experiment for last-layer bias setting described in subsection 5.1.
For MLP experiment, we only change the learning rate to 0.0002 and substitute cross entropy loss in place of MSE loss. We
run the experiment with all depth-width combinations with linear layer depth € {1, 3} and width € {512,1024,2048}. For
direct optimization experiment, we change learning rate to 0.02, width to 256 and keep other settings to be the same.
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No. layer  Hidden dim NC1 NC2PF NC29F NC29F NC29F NC29F NC29F NC29F Ne2ZF Ne2§F NC3OF
512 1.819 x 1073 5.856 x 1072 1.769 x 1072
1 1024 2437 x 107*  3.024 x 1072 1.528 x 1072
2048 1.259 x 10~*  1.467 x 1072 1.712 x 1072
512 8.992x 1073 5.09x 1072  1.057 x 107!  1.486 x 107! 2.958 x 1072
3 1024 2.843 x 107°  5.697 x 1072 1.009 x 10~'  1.731 x 10~ 2.368 x 1072
2048 5165 x 107 3.857 x 1072 5.799 x 1072  8.648 x 102 2.797 x 1072
512 8701 x 1073 7.833x 1072 1.009 x 107! 1.186 x 107! 1.340 x 10~*  1.511 x 10~! 1.824 x 10~* 3.478 x 1072
6 1024 2578 x 1073 8.356 x 1072 1.066 x 107!  1.283 x 107} 1.489 x 1071 1.725 x 107! 2.429 x 107! 1.928 x 1072
2048 8231 x 107" 7187 x 1072 9.224x 1072 1.078 x 107! 1.160 x 107! 1.214 x 10~'  1.386 x 10~* 3.430 x 1072
512 9.359 x 1072 1.149 x 1071 1.480 x 10™%  1.703 x 107! 1.824 x 107! 1.868 x 107! 1.855 x 107} 1.821 x 107} 1.823 x 107' 2.033 x 107!  3.074 x 1072
9 1024 2.615x 1073 1.165 x 107" 1.488 x 107! 1.745 x 107! 1.893 x 10~"  1.961 x 10~" 1975 x 107"  1.972x 107! 2013 x 107! 2492 x 107!  2.089 x 102

2048 7.694x 107%  1.070 x 107! 1.402 x 107! 1.701 x 107" 1.864 x 1071 1.929 x 107! 1.892 x 107! 1.763 x 107!  1.592 x 107} 1.371 x 107!  2.141 x 1072

Table 2. Full set of metrics N'C1, N'C2, and N'C3 described in multilayer perceptron experiment in section 5.1 with bias-free setting.

No. layer Hidden dim NC1 NC2ETE NC2FTF NC2FTF NC2ETE NC2ETE NC2ETE NC22ETE NC2FTE Ne25TE NC3ETE
512 2.058 x 1073 4.936 x 102 5.406 x 1073
1 1024 2.791 x 107%  2.540 x 102 3.862 x 1073
2048 1.434 x 107%  9.418 x 1073 1.750 x 1073
512 7.601 x 1073 5.147x 1072 1.124 x 107! 1.586 x 107! 1.972 x 1072
3 1024 2194 x 107°  5.967 x 1072 1.071 x 107" 1.949 x 10~! 1.155 x 1072
2048 6.397 x 107* 3447 x 1072 5.795 x 1072 9.811 x 102 5.311 x 1073
512 8.308 x 1073 2.006 x 1072 5110 x 1072  8.624 x 1072 1.221 x 10~'  1.587 x 10~'  1.997 x 10~* 1.757 x 1072
6 1024 2258 x 1073 2.818 x 1072 6.244 x 1071 9.861 x 1072 1.350 x 10~}  1.710 x 10~'  2.350 x 10~! 1.320 x 1072
2048 5.653 x 1071 1.848 x 1072 3.409 x 1072  5.134 x 1072  6.849 x 1072 8570 x 102 1.279 x 10! 4.522 x 1073
512 9.745 x 1072 1.608 x 1072 2.040 x 1072  3.916 x 1072  6.095 x 1072 8.494 x 1072 1.107 x 107} 1.383 x 107} 1.679 x 107' 2.102x 107! 1.772 x 1072
9 1024 2.587 x 107° 1.522 x 1072 2.462 x 1072 4.350 x 1072 6.525 x 1072 8910 x 1072  1.147x 107}  1.422x 107" 1711 x 107! 2370 x 107! 1.245 x 1072

2048 6.943 x 107%  1.217x 1072 2,043 x 1072 3.218 x 1072 4517 x 1072 5899 x 107!  7.350 x 1072 8.881 x 1072 1.042 x 10~1 1.414 x 10~! 7.937 x 1073

Table 3. Full set of metrics N'C1, NC2, and N'C3 in multilayer perceptron experiment in section 5.1 with last-layer bias setting.
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Figure 10. Ilustration of N'C with 6-layer MLP backbone on CIFAR10 for cross entropy loss, balanced data and last-layer bias setting.

Theorem A.1 indicates that all the features of the same class converge to a single vector, and the alignment between the
learned classifier W ;W ;1 ... W1 and the learned class-means H has ETF form. Therefore, we use the same AC1
and N C3 as in the balanced data, last-layer bias case. Theorem A.1 also indicates that W, Wy, ... Wy converges
to ETF form. Hence, the metric used for CE loss to measure the convergence of W, W, ... W is defined as
NC2ELF .= NC2FT'F, where NC25TF is defined in C.1.1. Fig. 10 and Fig. 11 demonstrate the convergence of N'C for
MLP and direct optimization experiments, respectively. The convergence to 0 of the A'C metrics verifies theorem A.1.

C.1.3. DETAILS OF NETWORK TRAINING AND HYPERPARAMETERS FOR BALANCED DATA EXPERIMENTS

Multilayer perceptron experiment: In this experiment, we use a 6-layer MLP model with ReLU activation as the backbone
feature extractor. Hidden width of the backbone model and the deep linear network are set to be equal. We cover all
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Model name  No.layer NCL NC2ETF NC2ETF NC2ETF NC2ETF NC2ETF NC22ETF NC2ETE NC2ETF NC2ETF NC3ETF

1 1.556 x 1073 4.376 x 1072 3.598 x 107

ResNetl8 3 4713 x 107" 2191 x 1072 4.714 x 1072 7.813 x 1072 2.131 x 1073
esive 6 1.824 x 107%  4.295 x 1073 4.868 x 107  7.651 x 107 1156 x 102 1.681 x 1072  2.459 x 102 1.817 x 1073

9 2.156 x 107 3.609 x 1073 6.459 x 107%  7.835 x 1073 8.056 x 1073 8.096 x 1073  8.362 x 107%  9.400 x 107% 1.212x 1072 1.683 x 1072 2.210 x 10~

1 2447 x 1072 6.689 x 1072 1.977 x 1073

VGG16 3 1.347 x 1072 3.120 x 1072 3.035 x 1072 4.606 x 1072 2.767 x 1073
6 5.959 x 107 1.645 x 1072 1.266 x 1072 1.703 x 1072 2.183 x 1072 2473 x 1072 3.015x 1072 2.483 x 1073

9 6.893 x 107 1438 x 1072 9.511 x 1073 1.198 x 1072 1.314 x 1072 1.619 x 1072 1.774 x 1072 2.030 x 1072 2218 x 1072 2445 x 1072 2434 x 1072

Table 4. Full set of metrics NC1, N'C2, and NC3 described in deep learning experiment in section 5.1 for ResNet18 and VGG16
backbones with last-layer bias setting.
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Figure 11. Tllustration of N'C for direct optmization experiment with cross-entropy loss, balanced data and last-layer bias setting.

depth-width combinations with depth € {1, 3, 6,9} and width € {512,1024, 2048} for two settings, bias-free and last-layer
bias. All models are trained with Adam optimizer with MSE loss for 200 epochs with batch size 128 and learning rate
0.0001 (divided by 10 every 50 epochs). Weight decay and feature decay are set to 1 x 1074,

Deep learning experiment: In deep learning experiment, we use ResNet18 and VGG16 as backbones feature extractors. We
train both models with SGD optimizer with batch size 128 for MSE loss. Data augmentation is not used in this experiment.
The learning rate decays 0.1 every 50 epochs for 200 epochs. Depth of the deep linear layers are selected from the set
{1, 3,6,9}. Width of the deep linear layers are set to 512 to be equal to the last-layer dimension of the backbone model.
Weight decay in both models is enforced on all network parameters to align with the typical training protocol. For ResNet18
backbone models, we use the learning rate of 0.05 and weight decay of 2 x 10~%. For VGG 16 backbone, the learning rate is
0.02. Except for VGG16-backbone with 1 linear layer using weight decay of 5 x 10~4, all other VGG16-backbone models
shares the weight decay of 3 x 1074,

Direct optimization experiment: In this experiment, we replicate the optimization problem (3). Wy, ..., W3 and H; are
initialized with standard normal distribution scaled by 0.1. We set K = 4,n = 100,dp; = ... = dy = 64 and all \’s are set
to be 5 x 10~%. Depth of the linear layers are selected from the set {1,3,6,9}. Wy, ..., W, and H; are optimized by
gradient descent for 30000 iterations with learning rate 0.1.

C.2. Imbalanced Data

C.2.1. METRIC FOR MEASURING N/ C IN IMBALANCED DATA

For imbalanced setting, N'C1 metric is identical to the balanced setting’s. While for NC2 and N C3, we measure the
closeness of learned classifiers and features to GOF structure as follows:

NC2GOF . H (WyWo1.. . W) (WyWag... Wy)T _ diag{esp™ } i,
[(WyWar1 o W)Wy Wayg o W) T || diag{es?™ }H Ilp
CSZNI K
NC3COF . WyWy1 ... W H dlag{ QM:N)‘Hl}kzl

W Wi WAl |

where H = [hy, ..., hg] is the class-means matrix, ¢ and {sk}i{:l are as defined in Theorem 4.4.
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Figure 12. Nustration of N'C for direct optimization experiment with MSE loss, imbalanced data and bias-free setting.

C.2.2. ADDITIONAL NUMERICAL RESULTS FOR IMBALANCED DATA

Continue from subsection 5.2, to empirically validate the Minority Collapse of the problems (5) and (6), we run two direct
optimization schemes similar as Section 5.2 with heavy imbalanced data of K = 4 and n; = 2000, n2 = ng = 495 and
ng = 10 for M =1 (d = 16) and M = 3 (d = 40). Both models are trained by gradient descent for 30000 iterations. The
final weight matrices of these models are as following (results are rounded to 2 decimal places):

0.76 —-0.31 0.32 —1.30 —0.42 0.09 2.22 -1.07 1.15 -0.58 —0.28 —0.88 —0.03 —0.40 —1.29 0.43

—-1.55 1.50 2.19 -1.36 —0.65 3.08 —-0.81 —1.76 —0.96 —0.48 —1.21 —1.06 1.01 1.72 0.30 —1.73
|
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

W1 — |:1.26 —0.56 —0.94 —1.24 0.11 —1.46 —0.51 —1.75 —0.69 0.11 1.09 —0.89 —0.56 0.57 0.48 0.27

for case M = 1. For case M = 3, we have:

0.65 —0.96 0.49 -0.15 0.50 -0.11 —0.14 0.40 ... 0.02 0.05 0.27 0.13 0.71 —0.29 0.14 —0.30

W = —0.25 0.13 —-0.40 —-0.33 0.14 0.11 -0.32 0.15 ... 0.40 —0.10 —0.86 0.34 0.20 0.54 0.66 0.18 (8)
3= 0.36 —0.15 —0.04 —0.23 —0.66 —0.04 —0.51 —0.33 ... —0.07 —0.52 0.15 —0.03 0.04 —0.36 0.35 0.02
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ... 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

As can be seen from both cases, the classifier of the fourth class converges to zero vector (with the convergence error are
less than 1e-8), due to the heavy imbalance level of the dataset, which align to Theorem 4.1 and Theorem 4.4.

C.2.3. DETAILS OF NETWORK TRAINING AND HYPERPARAMETERS FOR IMBALANCED DATA EXPERIMENTS

Multilayer perceptron experiment: In this experiment, we use a subset of CIFAR10 dataset with training samples of
each class in the list {500, 500, 400, 400, 300, 300, 200, 200, 100, 100}. We use a 6-layer MLP model with ReLU activation
with removed activation as the backbone feature extractor. Hidden width of both the backbone model and the deep linear
networks are set to be 2048. Depth of the linear layers are selected from the set {1, 3,6}. All models are trained with
Adam optimizer and MSE loss for 12000 epochs, no data augmentation, full batch gradient descent, learning rate 1 x 10~
(divided by 10 every 6000 epochs), feature decay and weight decay are set to be 1 x 107>,

Direct optimization experiment: In this experiment, we replicate the optimization problem (3) in imbalance data setting.
We set K = 4 and n; = 200,n2 = 100,n3 = ng = 50,dps = ... = dy = 64. Similar to the direct optimization
experiment in balance case, all \’s are set to be 5 x 107%. W, ..., Wy and H; are optimized by stochastic gradient
descent for 30000 iterations, with learning rate 0.1.

D. Proof of Theorem 3.1

First we state the proof for UFM bias-free with three layers of weights with same width across layers, as a warm-up for our
approach in the next proofs.

D.1. Warm-up Case: UFM with Three Layers of Weights

Consider the following bias-free optimization problem:

—|[W3W,y W ;H; — Y|? 2 W32 2 ||'Wo||2 LW, |2 LIH, ||
W % 2NH 3sWoW H; 7+ 5 W37 + 5 W27 + 2 Wiz + 5 Hillz )

where Ay, , \w,,, Aw, , A&, are regularization hyperparameters, and W3 € RE*4 W, € R¥*4 W, € R¥*4 H; € RN
and Y € REXN_ We assume d > K for this problem.
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Proof of Theorem 3.1 with 3 layers of weight and d > K. By definition, any critical point (W3, W5, W1, H;) of the loss
function (9) satisfies the following :

857‘7{73 _ %(W3W2W1H1 CY)H] W] W] + A, Wi =0, (10)
0%52 = %W;(\7\/'3\7\/*2\7\/*1H1 ~Y)H{ W/ + Ay, W, =0, (11
8%{71 = %W;WJ(Wg,WngHl -~ Y)H,| +\p, W; =0, (12)
;}JIZ = %WIWJWJ(W3W2W1H1 -Y)+ g, H; =0. (13)

Next, from W;'— 3%3 — 6%2 W;— = 0, we have:

M W3 Wi = Ay, Wo W, (14)

Similarly, we also have:
M, Wy Wo = Ay, Wi W (15)
A, W W, =\ \g HH/. (16)

Also, from equation (13), by solving for H;, we have:

H, = (W] W, W] W3WoW, + Ny, I) "W W, W, Y

) —1
= (/\Zz W (W, Wy)* W, + N)\HlI> Wi W, WY
3
-1

)\2
= (Wl(wal)?’ +NAH11) W W, WY, (17)
AWs AW,

where we use equations (14) and (15) for the derivation.

Now, let W; = Uy, Sy, VJVI be the SVD decomposition of W with Uy, , Vi, € R4*? are orthonormal matrix and

Sy, € R¥ s a diagonal matrix with decreasing non-negative singular values. We note that from equations (14)-(16), we
have rank(WJ W3) = rank(W3) = rank(Wy) = rank(W) = rank(H;) and is at most K. We denote the K singular
values (some of them can be 0’s) of W as {sk}le.

From equation (15), we have:

A A
T W T w 2 T 2 T
W2 W2 - )\ E WlWl - )\ t UWlswlle == UWlsszWI,
Wao Wa
where Sy, = :\\Zl Sw, € R4, This means that S%VQ contains the eigenvalues and the columns of Uyy, are the
2

eigenvectors of W2T ‘Ws. Hence, we can write the SVD decomposition of Wy as Wy = Uyy, SWQUJV1 with orthonormal
matrix Uy, € R4,

By making similar arguments for W, from equation (14):

A A A
Yw,w, = 22Uy, st Uy, = 48

W] W;3 = Uw,SH, U, = Uw, Sy, Sw:, Uy,
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vy

with Sy, = pym [dlag(sl,SQ,...,sK) OKx(de)] € RE*? we can write SVD decomposition of W3 as

W; = UW:,,SW3UITV2 with orthonormal matrix Uy, € R?*4,

Using these SVD in the RHS of equation (17) yields:
N2y -
H, = ((WTW1) + Ng, I) W/ W, WY
AWs AW,
N2y -
= (M Vy, SS. Vi, N I) WW, W]Y
AW AW, !
Ny, -
— T T T
= les VW1 + N>\H11 VW1 SV[/1 SWQSW3UW3Y
/\W?,)\W2

A2, -

=V, <)\W)\WS +N)\H11) Sw,Sw,Sw, U, Y
3 2

—1

)\2
~ Vi, < %, +N)\H11)

)\W3 >\W2 )\V[/3 )\W2 O(d—K)xK

. VesS Vs
= vy, 408 (cs‘HNlAHl e G Nam, )] Uy, Y
0
CeRde
= Vy,CUy,. Y,
2
with ¢ := —3:—. We further have:
W AWy
W3 W,W,H = Uy, Sw, Sw, Sw, Viy, Vi, CUy, Y
CS6 056
= Uy, di L K Uy, Y
W G138 (cs?—I—N)\Hl’ 7cs‘}(—l—]\f)\yl) Wa
= W3;W,W,H - Y = Uy, | dia cst sl I |ULY
3VW2 VW = UVUw; g CS?+N)\H17""CS§(+N)\H1 K Ws
, —NAy —NAy .
= Uy, d L L\ ULY
We 138 (cs?—!—N)\H1 cs%—FN)\Hl)
DERK XK
= Uy, DUy, Y

Next, we will calculate the Frobenius norm of WsWyW H — Y:

[W3sW,>WH; — Y7 = [|[Uw, DUy, Y||7 = trace(Uy, DUy, Y (Uy, DUy,
= trace(Uw, DUy, YY " Uy, DUy, ) = trace(D*Uy, YY " Uy,)

N, \°
= ntrace(D :nZ<CSk+N)\lH1) )

where we use the fact YY ' = nl and Uy, is orthonormal matrix.

Similarly, from the RHS of equation (18), we have:

22 : 3 3 3
Wy |:dlag(81,82,...,SK) UJVBY

Y)")

|H1||% = trace(Viw, CUy, YY 'Uy, CTVyy, ) = trace(C' CUy, YY ' Uy,)

2
TO) = CSk
= ntrace(C nZ(CSk+N)\H1) .

(13)

19)

(20)

21

(22)
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Now, we will plug equations (21), (22), and the SVD decomposition of Wy, W1, H into the function (9) and note that
orthonormal matrix does not change the Frobenius form:

An,

2
Ha [

1 A A A
F(Ws, W, Wi Hy) = o [WsWo Wi H = Tl + 50 Wl + 552 [[Wa [+ S5 [Wal 5+

1%( —NAm, )2+)‘W3 Awy 2+/\W2 = Awy 2 )\Wl Z +”>\H1 Z 052
2K = \esp + N, 2 2w, T T2 2, FTTYT 2 e+ N, )2

k=1
- TZ)\Hl i 1 3>‘W1 a 52
= = 2
2 st N, 2 —
K
1 1 /N &/cs?
= > (o, L S
=1\ Wy 1 Ve /N,
K
1 ( 1
S Ly bxk> 23)
3 ’
2 = \7p + 1
with zj == \/% and b = 3K Aw, o™ = 3K /N Xuw, Xows Aows At
Next, we consider the function:
1
g(z) = + bx withz > 0,b > 0. (24)

23+ 1

Clearly, g(0) = 1. As in equation (23), f(W3, W2, W1, H) is the sum of g(x) (with separable x;). Hence, if we can
minimize g(x), we will finish lower bounding (W3, W, W1, H). We consider the following cases for g(z):

o Ifb > ‘f : For z > 0, we always have g(z) > 31+1 + %x > 1 = ¢g(0). Indeed, the second inequality is equivalent
to:
1 Vi
I e
x3+1 + 3=
3
o Vs Vi
3 3
1

s z(z+-=)(z—-V2)?2>0.

z -
Therefore, in this case, g(z) is minimized at = 0 with minimal value of 1.

o Ifb= %: Similar as above, we have:

In this case, g(z) is minimized at z = 0 or z = /2.

o If b < ¥%=: We take the first and second derivatives of g(z):

3z
! = b _—
g (x) L
12z* — 6z

g"(z) = @18
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We have: ¢"(z) =0 < 2 =0o0rz = f/g Therefore, with > 0, ¢’(z) = 0 has at most two solutions. We also
have ¢’ ( Y %) =b— Z‘T% < 0 (since b < %). Thus, together with the fact that ¢’(0) = b > 0 and g(4o00) > 0,
¢'(x) = 0 has exactly two solutions, we call it 21 and x5 (1 < i/g < x3). Next, we note that ¢’(x2) = 0 and
g'(x) >0 Va > xy(since g’ (x) >0 Va > x5). In the meanwhile, ¢’ (V/2) = b — % < 0. Hence, we must have

£CQ>\3/§.

From the variation table, we can see that g(z2) < g(V/2) = £ +bV2 < § + 2 = 1 = g(0). Hence, the minimizer in
this case is the largest solution 2 > /2 of the equation ¢'(x) = 0.

z |0 1 \3/% /2 9 00
g’ |0 - 0 + + +
g |+ 0 - - 0 +
g |1 glz1) g ( y %) 3+0V2 g(za) oo

From the above result, we can summarize the original problem as follows:

 If b = 3K {’/ KnAw, Aw, Aw, Al > %: all the singular values of W7 are 0’s. Therefore, the singular values of

W3, Wi H* are also all 0s. In this case, f(W3, Wy, W1, H;) is minimized at (W3, W3, Wi HY) = (0,0,0,0).

o If b = 3K {/KnAw, Aw, Aw, A, < ?: In this case, W7 has K singular values, all of which are multiplier of the
largest positive solution of the equation b — % = 0, denoted as s. Hence, we have the compact SVD form (with a

bit of notation abuse) of W as Wi = sUyy, Vy, with semi-orthonormal matrices Uy, , Vi, € R¥*X. We also
have U%l -U—{/V1 = IK and V;/Ir/l \/vv[/1 = IK.

Similarly, since the singular matrices of W3, W are aligned to W’s, we also have:

A
W3 Y1 sUw, U,

with orthonormal matrices Uy, € REX*K  semi-orthonormal matrix Uy,, Uy,, Vi, € RE Let

H = %V‘MU&@ eRF*K wehave Hi=H Y=H ©1,.

We have the geometry of the global solutions as follows:
WiW,* oc Uy, Uy, Up, Uy, o I,
H H x Uy, Vi, Vi, Ufy, x I,
(Wi5W3)(W35W3) " o (Uw, Uly, Uw, Uy, ) (Uw, Uy, Uw, Ugy, ) T o Ik,
(WiH) " (WiH") < (Un, Vi, Vi, Ul T (U, Vi, Vi, Uy, ) o I,
(WW3 W) (WiW3 W) T o (Un, Vi, )(Un, Vi, ) T o I,
(WiWiH) (WiWIH) o (U, Ujy,) " (U, Uy, ) o I,

(25)
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and,

WIWsWiH o Uy, Uy, Un, Vi, Vi, Vi, Vi, Uy, o Ik (26)
Next, we can derive the alignments between weights and features as following:

WiWEW o Uy, Vi, o H
WiWiH « Uy, Uy, x W37, 27)
WiEWS o Uy, Vi, o (WiH) .

e Ifb=3K Q/Kn/\w3 AW, AW, A, = ?: For this case, x} can either be 0 or ¥/2, as long as {x} }X_, is a decreasing
sequence. If all the singular values are 0’s, we have the trivial global minima (W3, W3, W7 Hj) = (0,0,0,0). If
there are exactly » < K positive singular values s; = so = ... =5, :=s > 0and 5,41 = ... = sg = 0, then we

can write the compact SVD form of weight matrices and H7 as following:

A
Wi M Uy, UY,,
AWs

Aw
W 1 T
; = SUV[/2 UW1 5
Wy

* T
Wi =sUw, Vy,,
Ves?

H=-——Y"_ Vv,ULY=HY
17 es5 4+ Nog, Wi U, ’

where Uy, Uy, Uw,, Vi, are semi-orthonormal matrices consist r orthogonal columns. Additionally, we note
that Uy, € REX" are created from orthonormal matrices size K x K with the removal of columns corresponding
with singular values equal 0. Thus, UW3U‘TV3 is the best rank-r approximation of Ic. From here, we can deduce the
geometry of the following:

WW:T o« H H « WWiWIH
o (WiW3)(WiW3) T oc (WiH) T (WiH)
o (WiWEWT)(WIWi W) T oc (WiWTH) T (W3 WiH) o Pr(Ik),

where P,.(Ix) denotes the best rank-r approximation of I. The collapse of features (NC1) and the alignments

between weights and features (N'C3) are identical as the case b < %.

D.2. Supporting Lemmas for UFM Deep Linear Networks with M Layers of Weights

Before deriving the proof for M layers linear network, from the proof of three layers of weights, we generalize some useful
results that support the main proof.

Consider MSE loss function with M layers linear network and arbitrary target matrix Y € R *V:

1 A
J(Wr, Wyrq,..., W3, W Hy) = ﬁHWMWM—l L WoW H, - Y%+ V;M W

>‘WM—1
2

A A A
IWaroallfe 4o+ S22 Woll + S IWF + S, @8)

* 2

with Wy, € REXdm Wy, | e Rémxdv—1 W, 5 € Rév—1xdv—2 W, ¢ Rlsxd W, ¢ Rlexd H ¢ RhxK
with dps,dps—1, ..., ds, dy are arbitrary positive integers.
thdy,d ey doyd bitrary posit teg
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Lemma D.1. The partial derivative of |[WpyWp—1... WoW i H; — Y||%2 wrt W, (i =1,2,...,M):

19|WyWyy... W, ... WoW, Hy - Y|}
2 oW, B}
WL W, WL (WyWayg ... W, . WoW H - Y)H W/ ... W,

This result is common and the proof can be found in (Yun et al., 2017), for example.

Lemma D.2. For any critical point (W, Wyr_1,..., Wao, W1, Hy) of f, we have the following:

Ay WL War = Awy, Wi Wiy,
)‘WM—leflefl = )\WM—2WA1*2WL72’
M, Wa Wy = Ay, Wi W/ |
A, W W, =\g HH]/,

and:

H, = (c(W]/ W)Y + Ny, I)"'W[ W, ...W,,Y, (29)
: Awy
R T T T
Proof of Lemma D.2. By definition and using Lemma D.1, any critical point (W, Wys_1,..., W, W, H;) satisfies
the following :

0 1
8“{]” = N(WMWM_l L WoW H —Y)H W/ .. W], | + Ay, Wy =0,
0 1
W]f\/.[l - NWL(W]MWM_l - WoWiH,; — Y)HIWI s W]—\tj_g + >\WM—1WM—1 =0,
of [ T -
OW, = ﬁw2 W .. W, (W Wy1... WoW H;, — Y)H; + Ay, W1 =0,
0 1
81—{1 = NWIW;W&(WMWM—1W2W1H1_Y)+)\H1H1 =0.

Next, we have:

cof _of
MOWr  OW g
= Ay Wiy War = Ay, War Wi

of of
Wiy—1 OWp_o

T T
= )‘WMf1WM—1WM—1 = AWM72W]\/]_2WJM'_2.

0=W

W;\rlfl = )‘WMW]—\F/[WM - )\WN171WM71WL71

0= W;vr[—l 9 W;\D—Q = )‘WMle—I\r/[—IWM—l - )‘WMszM—QW—I\r/[—Q

Making similar argument for the other derivatives, we have:

)\WJMW;&WM = )‘WMleM*IWJ—\r/Ifl?
A Wi W1 = Awy, W oW o,
M, Wa Wy = Ay, Wi W/
M, Wi W, = \y HH/.
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Also, from aa—ﬁcl = 0, solving for H; yields:

H = (W /W, .. W}, W, WyWy .. WoW, + Ny, 1) "W/ W, .. W], Y

A —1
- ( WVJ‘;*WIWJ...(WL,le,l)Q...W2W1 +N>\H11) W/WJ .. W, Y
M

-1
)\M—l

= Wi (WIW)M 4+ Nxg, | WIW, ... WY
AWar AWas—y - - AW,

c

(c(W]WDM 4 N g, I)"'W[ W, ... W], Y.

O

Lemma D.3. For any critical point (W, War_1,..., Wo, W1, Hy), we have r := rank(W ;) = rank(Wp,_1) =
rank(Wps_o) = ... = rank(Wy) = rank(H;) < min(K, dps, dpr—1,...,d1) := R.

Proof of Lemma D.3. The result is deduced from Lemma D.2 and the matrix rank property rank(A) = rank(ATA) =
rank(AAT). O

Lemma D4. For any critical point (W, Wpr_1,..., Wo, W1, Hy) of f, let Wy = UWISWIV;}—V1 be the SVD
decomposition of W1 with Uy, € Rd2xd2 Vy, € R4 XD gre orthonormal matrices and Sw, € Ré2xd1 jg g diagonal

matrix with decreasing non-negative singular values. We denote the r := rank(W+) singular values of W1 as {sy},_,
(r < R:=min(K,dy,...,d1), from Lemma D.3).

Then, we can write the SVD of weight matrices as:

WM = UWMSWJ\IU‘TVJM—17
W1 =Uw,,_, SW}V[—] U—‘;/J\l—27
Wy_o = UW]\{—ZSWA/I—2U—‘;/]\/I—37
Wiz = UW]VI_:;SWJM—.?U%M_AL’

W, = Uy, Sw, Uy, ,
Wi = Uw,Sw, Vi,

with:
Su, — Aw, {diag(sl,...,sr) 0, (d;—r) eRGTXA Y e [M],
Aw, 0 1—r)xr Od; 1 —r)x(d;—r)
and Uw,,, Uw,, ., Uwy o, Uwy sy .-, Uwy, Vi, are all orthonormal matrices.

Proof of Lemma D.4. From Lemma D.2, we have:

A A
W, W, = 2w, W = 2 Uy, Sy, S, UL = U, SY, Sw, Uy,
AW, AW,
where:
Sy, = Ay |:diag(31w”asr) 0y (dy—r) c Rdsxdz.
)\W2 0(d3—7")><’r‘ O(dg—r)x(dg—r)
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This means the diagonal matrix S‘TVZ Sy, contains the eigenvalues and the columns of Uy, are the eigenvectors of W, W,
Hence, we can write the SVD decomposition of Wy as Wy = Uy, Sy, UJVI with orthonormal matrix Uy, € R4,

By making similar arguments as above for W3, from:

AW,
AW,

A
W,oW, = AZ? Uw,Sw, S, Uty, = Uw, S, Sw, Uy,
3

SW — )\Wl |:dia'g(817"‘737“) O'r‘><(d3—7“) :| c ]Rd4><d3,
s Aw, O(d,—r)yxr O(dy—r)x(ds—r)
and thus, we can write SVD decomposition of W3 as W3 = Uy, Sy, Uy, with orthonormal matrix Uy, € Réx4s,
Repeating the process for other weight matrices, we got the desired result. O

Wi W; =

where:

Lemma D.5. Continue from the setting and result of Lemma D.4, we have:

M S M
dia ( Vet Ve ) 0, (K
HIZVW1 g T Ng, ’ ' csZM ¥ Nam, rx (K—r) U%MY,
0, —r)xr O¢dy —r)yx (K —r)
CeR41 <K
g () o
2M 2M X (K — T
WyWii... WoWH-Y = Uy, ST EN g, ST RNy ) S K gl Y
O(K—’I‘)X’I‘ —Ir—r
DERK XK
M—-1
A

Proof of Lemma D.5. From Lemma D.2, together with the SVD of weight matrices and the form of singular matrix Sy,
derived in Lemma D.4, we have:
H, = (c(W;/W)M £ N g, D)7'W/ W, .. W, Y
= (cVw, Sy, Swi )M Vi, + Ny, 1) 'V, St S, - - S, Uy, Y
= Vi, (c(Sy, Sw )™ + NAg, 1) 'Sy, Spi, --- Sy, Uy, Y

di M
_VW1(C(S%1SW1)M+N>\H11)1\/E|: 1ag(81 )

. SM) 0 x (K —r) :| T
) “r s r U Y
O0(d;—r)xr O(dy—ryx(K—r)| '™

. \/ESI\/I \/E.Siw
= le diag (CS%M+Ii/')\H1 i cs;%hf-"-N)\Hl) OTX(K_T) ‘| UTW Y
M
O, —ryxr O(dy —r)x (K —r)
CERdl XK
=Vw,CUy, Y

= WyWuy_1...WoWH; = Uw,,Sw,,Sw,,_, -.-Sw,CUy,,, Y

diag(s1,...,s.) O
0 0

} Swa_s---Sw,CUy, Y
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2M 2M
diag . ()]
= UWM CS%AI+N/\H1 ’ PV esPMANAg, U Y
0 0

W

. CS%I\/I CS?,M )

= Wy .. WH, — Y = Uy, [ |4 (CS%MHVAHl r TN A, Orx=n) | _1, ) U, Y

OK—r X OK—erfr

( ) ( )x( )
. —N\g —NXng
_ UWM [dlag (CS%NI—‘,-N)I\HI IR CS%JM'FN)I\HI ) OT‘X(K—T‘)‘| U%A{Y
(K—r)xr Ik,
DERKXK
= Uy, DUy, Y.
O
D.2.1. MINIMIZER OF THE FUNCTION g(z) = ﬁ + bx

Next, we study the minimization problem of the following function, this result will be used frequently in proofs of theorems
in the main paper:

- 1
oM 41

g(z) +bxwithz >0,b>0,M > 2.

Clearly, g(0) = 1. We consider the following cases for parameter b:

M-1 M-1
o Ifb > %: We have with 2 > 0: g(z) > —r + Y05 We will prove:

M1 M
1 (M _ 1)]\/[]\;1 > 1
P VA
M—1 M—1
o (M_]Vl[) M xM+17xM+(M_1) M >0
(30
M
& x(mM - M1y 1)>0
(M—-1)"m
M
= l']\/[ - 7]\471‘%]»171 + 1 2 0
(M —1)"
Let h(x) = 2M — %x”f’l + 1 with 2 > 0, we have:
M—1)" 8
B(z) = MaM~t — M(M — 1)V/MgM=2,
W(z)=0&z=00rz=(M-1)YM (31)

We also have: 2(0) = 1 and h((M — 1)"/M) = M —1 — M + 1 = 0. From the variation table, we clearly have
h(z) >0Vzx >0.
x 0 (M-1)YM

R (x) | - 0 +

h(z) | 1 0 00

Hence, in this case, g(z) > 1V z > 0, therefore, g(z) is minimized at 2z = 0.

M_1 M_1
o Ifo = M= We have g(z) = Tt (W=D M3 > 1. Thus, g(z) is minimized atz = 0 or & = (M —1)/M,
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e Ifb < % We take the first and second derivatives of g(x):

MaM-1
/ — b_ -
g (z) @7 1)
g”(x) Y (M _ 1):17]\472 3 2Mx2M72 .
@+ 12 (@M1 1)
(M2 + M)IQM*Z o (M2 _ M)‘TM72
- (@M 1 1)3

We have: ¢”(z) =0 <z =0orz = %/2=L Therefore, with z > 0, g’(a:) = 0 has at most 2 solutions. We further

M1
_ oy M-1 _
have ¢'( M,/%—ﬁ):b—M(%—ﬁ) T (%+1)2<(M—1) (%Jr}) o /(%j&—i—l) Actually,

we have:
(M — 1) y M (A4S
M (31 +1)7?
& <M1+1)2<M2
M+1 (M + 1)
- 4M? < M?
M+~ (1)

IVII

s4<(M+1)*
SA4< (M+1)"Y (true VM > 2).

Therefore, ¢'( %/ %Jr}) < 0. Together with the fact that ¢’(0) = b > 0 and ¢'(4+00) > 0, ¢’(x) = 0 has exactly two

solutions, we call it 1 and x5 (21 < % %ﬁ < x3). Next, we note that ¢’(z2) =0 and ¢'(xz) >0 Va > x4 (since

1 M_1
g"(z) >0 Vx > x2). In the meanwhile, ¢'( /M —1) = b — W =b-— W < 0. Hence, we
must have x5 > /M — 1.

x 0 1 M % /M —1 T +00
g'(z) | 0 - 0 + + +
g(x) | + 0 - - 0 +
g(@) [ 1 gla) (/M) HHbVM—T glw) +oo
From the variation table, we can see that g(z2) < g( VM —1) = 3 +b VM —1 < 35 + M NM-—-1=
M + Agwl =1= 9(0)-
In conclusion, in this case, g(x) is minimized at 25 > M — 1, i.e. the largest solution of the equation b— % =

0.
D.3. Full Proof of Theorem 3.1 with Bias-Free

Now, we state the proof of Theorem 3.1 for general setting with M layers of weight with no bias (i.e., excluding b) with
arbitrary widths dps, dps—1, ..., d;.

Proof of Theorem 3.1 (bias-free). First, by using Lemma D.2, we have for any critical point
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(Wi, Wpr—1,..., Wo, Wi, Hy) of f, we have the following:
)‘WMWE\FIWM = )\WA471WM71WL71,
A Wi W1 = Awy, o W oWy o,
M, Wa Wy = Ay, Wi W/
A, W W, = \g HH]/.

Let Wi = Uy, Sw, Vy;, be the SVD decomposition of Wy with Uy, € R%*% Vi, € R%*% are orthonormal
matrices and Sy, € R%2*% s a diagonal matrix with decreasing non-negative singular values. We denote the r singular
values of Wy as {s;},_, (r < R := min(K,dp,...,d;), from Lemma D.3). From Lemma D.4, we have the SVD of
other weight matrices as:

Wy = UWM SVVM UWM 10
Wy = UWM 1 SWM 1UWM 27
Wy_o = UWM 2 SWM 2UWM 37

WM—3 = UW]Wfa SWIM—IjUW]\/[—AL’

W = Uy, SW2UW1,
Wi =Uw,Sw, Viy,,

where:
Sy = )\W1 |:diag(81a IR Sr) Orx(dj—r) :| c R%i+1%d; Vie [M]
! Aw; 0 11—r)xr 0d; 1 —r)x(d;—r) ’ ’
and Uy, , Uw,, ., Uw, _»: Uwy_s,- .-, Uwy, Vi, are all orthonormal matrices.
At

From Lemma D.5, denote ¢ := , we have:

AW AW g - AWy

H; =Vy,

. Vesy! \/es)!
dlag (CS%M-"-N)\HI’”"CSEM"FNAHl 0 UT Y
0

0 W
(32)
CERleK
— \/’{/V1 CUWIW
. —NXm, —NXm, )
WyuWart. WoW H-Y = Uy, | 1178 (cs‘f‘MHVAm » SN A, O |ul.Y
0 “r (33)

DeREXK
—U D-U-T Y
- 447 W &

Next, we will calculate the Frobenius norm of W, y,;W,,_1... WoW H-Y:
Wy Wy . WoW Hy — Y| = [[Uw, DUy, Y7
= trace(Uw,, DUy, Y(Uw,, DUy, Y)")
= trace(Uw,, DUy, YY "Uy, DUy, )
= trace(DQUlTVM YY 'Uy,,)

T 2
= ntrace(D?) =n [Z (N)\Hl> + K - r] . 34

2M
= \cs1 + N
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where we use the fact YY" = (Ix ® 1,/ )(Ix ® 1) T = nIx and Uyy,, is an orthonormal matrix.

Similarly, for H;, we have:

|H1||% = trace(Vw,CUy,, YY ' Uy, CTVy, ) = trace(C'CUy, YY Uy,,)
2M

4 csj;
= —_—k 35
" N, G

Now, we plug equations (34), (35) and the SVD of weight matrices into the function f and note that orthonormal matrix
does not change Frobenius norm, we got:

1 A A A
F(Waro s Wi HD = S WarWar Wo W H = Y3+ S0 Wal[f o+ o+ S5 W+ =5 [H

r

1 — (—N)\HI)Q K_T )\WM /\Wl 2 )\WIW 1 )\Wl 2
+ Z 25

2K Pt (est™M + Ny, )? )\WM War—1
+...F A;/l ;sz + n)\2H1 kzr:_l (csiMcj-i]]\ff/\Hl)Q
- n)\QHl ; csiM —iN)\Hl + I{2I}r + M;W1 ;Si
22;(2<I%+b33k) +%, (36)

. oM N NAw,, A\w Awy AH
with  xp = N(/E and b = J\ff()\v[/1 M\/ % = ]\4[()\1/{/1 Ai/ M /\Azfu 2 — =
1

Wy
MK JKI/Kn)\WMAWM_l e >‘W1)‘H1'

Recall that we have studied the minimizer of function g(z) = I%H + bz in Section D.2.1. From equation (36), f can be

. 1 r
written as 55 >, (%)
equality conditions are as following:

(z), we finish bounding f and the

M-1

* If b = MK ¥/KnAwy Awy_, - Awy Al > %: all the singular values of W are zeros. Therefore,
the singular values of Wy, Wy, _1,..., H; are also all zeros. In this case, f(Wn, War_1,..., Wo, W1, Hy) is
minimized at (W3, W3,_,,..., Wi, H}) = (0,0,...0,0).

M1
o Ifb= MK N/KnAw, Awy,_, - Aw, Am, < M' In this case, W7 have r singular values, all of which are
equal a multiplier of the largest positive solution of the equation b — % 0, we denote that singular value as

s. Hence, we can write the compact SVD form (with a bit of notation abuse) of W3, _; as W7 = sUWlV‘TV1 with
semi orthonormal matrices Uy, € R%*" Vy,, € R4X", (note that UJVlle = I and VJVIVW1 = I). Since
+bz* < 1, wehave r = R = min(K,dpy, ..., d;) in this case.

2?*]\44-1



Neural Collapse in Deep Linear Networks: From Balanced to Imbalanced Data

Similarly, we also have the compact SVD form of other weight matrices and feature matrix as:

Aw:
* 1 T
WM - SU{/V]u UW]\/[_l 5
AW
Aw:
* _ 1 T
WA4—1 = SUW]M_lUW]VI_Q?
)\WIW—I

* T
Wl — 8UW1 VW17

H* ves Uty (f tion (35))

= —— rom equation

L7 oM L NAy, W q ’

with semi-orthonormal matrices Uw,,,Uw,, ,,Uw,, ,,-..,Uw,, Vi, that each has R orthogonal
columns, ie. Uy, Uw, = Uy Uw, , = ... = Uy Uy, = V|, Vi, = Ig. Furthermore,
Uw.,Uw.y_is---» Uw,, Vi, are truncated matrices from orthonormal matrices (remove columns that do not
correspond with non-zero singular values), hence UWMU%M , UWM_lU%M_17 e 7UW1UTW1 , VWlV%1 are the

best rank- R approximations of the identity matrix of the same size.

LetH = %VWIU%M € R4*K then we have (NC1) Hi = H'Y = H © 1], thus we conclude the

features within the same class collapse to their class-mean and H ' is the class-means matrix.

From above arguments, we can deduce the geometry of the following (N C2):

Wi, W, o« Uy, Uy, o Pr(Ix),
—k | =k
H H «Uw, Uy, xPr(Ix),
Wi, Wi Wi . WhWTH « Uy, U, o Pr(Ix),

(WiyWi . WHWLWi o W) o Uy, Uy, o« Pr(lx), Vje[M]

(37

Note that if R = K, we have Pr(I1x) = Ik.
Also, the product of each weight matrix or features with its transpose will be the multiplier of one of the best
rank-r approximations of the identity matrix of the same size. For example, W3] W%, | o UWAthITVM,Q and

Wi, Wil | UWMAUJVM_1 are two best rank- R approximations of I5,, , and I,,,, respectively.

Next, we can derive the alignments between weights and features as following (AN C3):

* * * T el
WyWi .. . Wi Uy, Vi, o H |

Wi Wi, . WiH o« Uy, U}, o« W3/, (38)
Wiy Wi Wi oc U, Uy o (W5 . WiH )T

M1
o Ifb = MK Y/KnAwy Awy_, - Awy Al = W: In this case, xj, can either be 0 or the largest positive
solution of the equation b — % = 0. If all the singular values are 0’s, we have the trivial global minima

(Wi,,...,W;, H) = (0,...,0,0).

If there are exactly 0 < r < R positive singular values s; = sg = ... =5, :=s >0and s,4; = ... = sgp =0,

M-1
then similar as the case b < W, we also have similar compact SVD form (with exactly 7 singular vectors,
instead of R as the above case). Thus, the nontrivial solutions exhibit (A'C1) and (AC3) property similarly as the case
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—1

M
b < W above.

For (N'C2) property, for j = 1,..., M, we have:

Wi, Wi ocH H o Wi, Wi, W, .. WW'H'
o (Wi Wi q... WH(Wiy, Wiy . WHT « P (Ik).

We finish the proof of Theorem 3.1 for bias-free case. O

D.4. Full Proof of Theorem 3.1 with Last-layer Unregularized Bias

Now, we state the proof of Theorem 3.1 for general setting with M layers of weight with last-layer bias (i.e., including b)
with arbitrary widths dps, dpr—1, - .., ds.

Proof of Theorem 3.1 (last-layer bias). First, we have that the objective function f is convex w.r.t b. Hence, we can derive
the optimal b* through its derivative w.r.t b (note that N = Kn):

1
N(WMWM_l ...WyW H; +b*1, - Y)ly =0

n

K
1 1
=b" = (Y = Wy Wy Wo W H Ly = Z > (k= WuWay... WoWihe,).  (39)

Noo
Since {y} } are one-hot vectors, we have:
noo1l e 1
bl = —— — WiuWy_1... WoW ) hy, = = — (WyWa_i...WoW;5)Lh 40
& NN};;(MJWI oW1)hy, K(M M-1 2sW1)ha, (40)
where hg = %25:12?:1 hy; is the features’ global-mean and (W Wy_q... WoWy)g is k/-th row of

WiyWhq... WoWy.
Next, we plug b* into f:

1 . A A A
= 5 IWarWaroy . Wo Wi HL + b1 = Y[+ S5 W[+ + S5 [Wol|f + =05 (W

/\H1

HH1II2F

Y . A A A
ZHWMWM,L..wzwlhmb —yellE + SFHIWa R 4+ S Wallf + S W

k=1 1=1

+ZZ i3

k=11=1

n K 2

1 1 A

= 72Kn E E E ((WMW]\{l . W2W1)£/(hk,z - hg) + ? - 1k_k’> + 71/;/1” ||WM||%~ +...
k=11i=1k'=

2Kn

>N

n

Aw
A w30 el
=1 i=1
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K n K

1 1 9 -
> — WauWa1...WsW1)/, (h i—h = 1 ALYITEY VTE- R
‘QK”;;,gl (( MWar1 oW1 )i (hy, G)+K kk) + =5 W% +

K n
Aw
+ 21||W1H%+ZZ||hk,i*hG||§
k=1 1:1=1
1 , 1. ooy A
= TK’ILHWMWMil .. .W2W1H1 — (Y — ?1K1N>||F +

A
v A

2M Warllz+... +

A A , / /
+ ;Vl IW1l% + %HHH@* =f (Wa,Wy_1,...,Wy, W H)),

where H/1 =[h11 —hg,...,hg, —hg] € RN and the inequality is from:
K n K n
DO Imwills =Y (Il — hell3 + 2(he; — he) "he + [hel3)
k=1i=1 k=1 i=1
K n
=> Y | —hel3 + Nhe|3
k=1 i=1

K n
>3 > g — hell3, (41)

where the equality happens when hg = 0.

E
Il
-
o
I
—

Noting that f/ has similar form as function f for bias-free case (except the difference of the target matrix Y), we
can use the lemmas derived at Section D.2 for f . First, by using Lemma D.2, we have for any critical point
(Wi, War—1,...,Wo, Wy, H;) of f, we have the following:

A W War = Aw,, Wi Way
Ao Wi W1 = Awy, s WaoWyy o,
M, Wa Wy = Ay, Wi W/ |
Ay, W] Wy =\ HH,.

Let Wi = Uy, Sw, Vyj, be the SVD decomposition of W1 with Uy, € R%2*% Vy, € R%*% are orthonormal
matrices and Sy, € R%2*% s a diagonal matrix with decreasing non-negative singular values. We denote the r singular
values of Wy as {sx};_; (r < R := min(K,dp, ..., d), from Lemma D.3) . From Lemma D.4, we have the SVD of
other weight matrices as:

Wy = Uw,, Swy, U%}\x[—l’
Wy = UW]yjflsWJ\4flU%]vI—27
Wy_o= UW}V[—ZSWI\/I—2U%A4737
Wy_3= UWAI—SSWM73U—‘1‘7/AI—4’

W = Uy, Sw, Uy,
Wi =Uw,Sw, Viy,,

Sw. = )\Wl diag(sla B Sr) Orx(dj—r) c R%i+1 ><d]-’ Vije [M],
W; (djy1—T)XT (djr1—r)x(dj—7)

where:
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and Uw,,, Uw,, ., Uwy_», Uwy s, .-, Uw,, Vi, are all orthonormal matrices.

)\Z\/Ifl

Wy .
——+———, we have:
AW r AW g o AWy

, . \/ESJM \/6571?1 )
H, =Vy, ldlag (CS?MHi’/\Hl T est TN A 31 Uy, (Y - Il(lKlfTV)

From Lemma D.5, denote ¢ :=

0
CERleK (42)
1
= Vw,CUy,, (Y — K1K1;> .
WyuWy_i... WoW H, - Y
. —NAm, ~NAm, ) 1
_ UWM ldlag(cs%A1+NAH16..., cng-ﬁ-N)\Hl IO ‘| UTWM (Y— K1K1]1\-{>
—L1K-—r
DeRKxK
1
Next, we will calculate the Frobenius norm of W, Wp,_1... WoW; H/1 -Y:
1 2
IWyWaq... WoWH, —Y|% = HUWMDUJVM (Y — K1K1JTV)
F

T 1 T T 1 T N
= trace UWJ\/IDUW]W Y — ?1](11\/' U[/V]M DUW}\/I Y - ?]_K ]‘N

T 1 T 1 T ! T
= trace UWAIDUWM Y — E].K]_N Y — glK 1N UWIW DUW}VI

1 1 T

= trace (DQUJVM (Y — K1K1]TV) <Y — K1K17V> UWM> . (43)

Note that:

1 T
I — K1K1;) ® 12)

[
=
|
»—\N‘»—l
i
=
i
®
-
S H
N—
N
N

since I — % 1x 1}; is an idempotent matrix.

Next, we have:

T
1 1 1
U%JM <Y - K]'K]'J—l\—f) <Y - K]-K]-—I\r/> UWM = nU%M (IK - K]'Kl}—(> UWM
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1
=n (IK - KUVTWlKl}UWM> :

We denote q = Uy, 1k = [q1,...,qx]" € R, then g will equal the sum of entries of the k-th column of Uyy,,. Hence,

U}, 1x1%Uw,, = aq" = (¢iq;);,;. Note that from the orthonormality of Uy, ,, we can deduce 3°;*  ¢? = K. Thus,
continue from equation (43):

, 1
IWyWar1... WoW H, — Y||% = ntrace (D2 (IK — quT))

(S0 e & (- 5))

k=1 h=r+1

Similarly, we calculate the Frobenius norm for H/l, continue from the RHS of equation (42):

T
/ 1 1
|H,||% = trace (lechM <Y - K1K1;> (Y — KlKlE) UWMCTVJ[G)

1
= ntrace <CTC (IK — quT)>

a3 (1- L) 3)
— K (cs?M 4+ N Ay, )?

Plug the equations (44), (45) and the SVD of weight matrices into f ' yields:

2

1 / 1 AW, A A ,
KTLHWMWML-~W1H1—(Y—1K1%) + V;M IWunllF+ ... ;Vl W17 + gl |H, |7

K F
r K
! (1 1q2>< —NAm, )2+ 1 3 (1 1 ) AWMZ Aw, 52
- ) (A — _
2K et K CS}C]V[ —|—N/\H 2K hert1 K )\WILI
)\WJW—I . )\Wl 2 )‘W1 . 2 n/\Hl ( 1 2 CSiM
+ sy + s, 1= —=q;
2 kz_l )\V[/M_1 ] kz::l K (CSQJVI + ]\7)\]{1)2
1y (1 - 1q,§) (VA )* ”AHl s (1 - qk) s LM s
2 ot K (Csk + Ny, )? P (CS%IW + Ny, )? 2 Pt
K 1
2
toe 3 (1-5d)
h=r+1
R N Miw, o= , 1 & 1,
) > 2 & Nag 2 Skt oK K I
k=1 k=1 h=r+1
r K
1 - +q} s NXg, [ ar] csiM 1 1,
=57 s2M + MK/\W1 + Z - =4y
2 el (N; +1 C ]\/v)\H1 2K hert1 K
r K
1 (1 - *q? > 1 ( 1,
= S (B b ) o S (1~ (46)
M h |
2K =\ 2} +1 2K, = K
with @ = Y/SE- and b = MEAw, Y220 = MK, \/ e
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Before continue optimizing the RHS of equation (46), we first simplify it by proving if s; > 0 then g, = 0, i.e. sum of
entries of k-th column of Uyy,, equals 0. To prove this, we will utilize a property of H; = [h; ; — hg, ..., hk,, —hg],
which is the sum of entries on every row equals 0. First, we connect W ; and H/1 through:

of 1 1

W= N (WMWM1 .. W H, — (Y - K1K1}>> H, W/ .. W, |+, Wy =0

1 / ’ ’ -1
S Wy = (Y - K1K1;> H W] .. W],_, (WM,1 LW HH]TW] W+ NAWMIK) . @)

G

From the definition of H/1 we know that the sum of entries of every column of HllT is 0. Recall the class-mean definition
hy = 237" hy;, we have:

(h;y —hg) T
(Y - [1(1[(1}) H =YH =n (hy f.]f‘G)T
(hg —hg) "
(hy —hg)’
LWy = | (2O g
(hx —hg) "

and thus, the sum of entries of every column of W, equals 0. From the SVD W, = Uw,, Sw,, V;,M, denote u; and v;
the j-th column of Uyy,, and Vyy,,, respectively. We have from the definition of left and right singular vectors:

WMVj = s;uy, (48)

and since the sum of entries of every column of W equals 0, we have the sum of entries of vector W 5,v; equals 0. Thus,
if s; > 0, we have ¢; = 0.

Return to the expression of f " as the RHS of equation (46), notice that it is separable w.r.t each singular value s;, we will
analyze how each singular value contribute to the value of the expression (46). For every singular value s; withj = 1,...,7,
if s; > 0, then ¢; = 0, and its contribution to the expression (46) will be ﬁ(ﬁ +bx;) = 59(x;) (with the minimizer
J

of g(x) has been studied in Section D.2.1). Otherwise, if s; = 0 (hence x; = 0), its contribution to the value of the

_ 142
expression (46) will be ! 2;‘(% , and it eventually be ﬁ because Zszl %qu always equal 1, thus %qu has no additional
contribution to the expression (46). Therefore, it is a comparision between ﬁ and % ming; >0 g(x;) to decide whether

* « _ 2M [ NAgy = . A . )
s;=0ors; = "/ — =+, /x] with 2] = argming > g(x). Therefore, we consider three cases:

M_1
o Ifb > % In this case, g(z) is minimized at # = 0 and g(0) = 1. Hence, 5} < 5% ming,~o g(z;) and thus,
sE=0Yj=1,...,r
J Y I

M-—1
s If b < % In this case, g(x) is minimized at some zop > ~/M —1 and g(z9) < 1. Hence,
. N }
37 Ming, 50 9(7;) < 5 and thus, 7 = *Y/ ==L 2oV ji=1,...,7.
We also note that in this case, we have g; = 0Vj = 1,...,r (meaning the sum of entries of every column in the first r
columns of Uyy,, is equal 0).
M-—1

o Ifb = W In this case, g(z) is minimized at x = 0 or some x = x¢ > ¥ M — 1 with g(0) = g(zo) = 1.

% . o .
Therefore, s} can either be 0 or z¢ as long as {sk}r_; is a decreasing sequence.

To help for the conclusion of the geometry properties of weight matrices and features, we state a lemma as following:
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Lemma D.6. Let W € RE X4 pe g matrix with r < K — 1 singular values equal a positive constant s > 0. If there exists
a compact SVD form of W as W = sUV T with semi-orthonormal matrices U € RE*" 'V € R X" sych that the sum of
entries of every column of U equals 0. Then, WW T o« UUT and UU is a best rank-r approximation of the simplex
ETF (Ix — #1g1}).

Proof. Let’s denote U = [uy, ..., u,] withuy, ..., u, are r orthonormal vectors. Since the sum of entries in each u; equals
0, \/%IK can be added to the set {uy, ..., u,} to form r 4+ 1 orthonormal vectors. Let U= [ug,..., ., \/%IK], we have
dim(ColU) = r 4 1. Hence, dim(NullUT) = K — r — 1 and thus, we can choose an orthonormal basis of Null U T
including K —r — 1 orthonormal vectors {u, 1, U2, ..., ux_1 }. And because these K —r — 1 orthonormal vectors are in
Null IjT, we can add these vectors to the set {uy, ..., u,, %1 K } to form a basis of RE including K orthonormal vectors
{u, .., W W1, Upgay e U, flK} We denote U = [uy, ..., Uy, Wpy1, Urgo, ..., UK _1, \ﬁlK] € RExK,

—T— —1 =T
We have U U = I. From the Inverse Matrix Theorem, we deduce that U ~ = U and thus, U is an orthonormal matrix.
We have U is an orthonormal matrix with the last column \/% 1x, hence by simple matrix multiplication, we have:

1
[ulv ceey Uy, Upgp 1, Upg2, 00y uK*l][ulv ce U, Upg 1, Up g2,y -0y uK*l]T = IK - ?11('1}
=3 IK,1 0| =T 1
:>U|: 0 O]U :IK—?IKI}. (49)
Therefore, UU T is the best rank-r approximation of Iy — %11, and the proof for the lemma is finished. O
Thus, we finish bounding f and the equality conditions are as following:
M —

* Ifb= MK ¥/KnAw, Awy,_, - Aw, A, > %: all the singular values of W are zeros. Therefore, the
singular values of Wy, W1, .. ,Hll are also all zeros. In this case, f(Wa, Wpr—1,..., Wo, W1, Hy,b) is

minimized at (W3, W3,_,,..., Wi, T,b*):(O,O,...O,O,%lK).

M1
e Ifo=MK A{/Kn)\WM AWpyeq - AWy AH, < M‘ In this case, W7 will have the its  (r will be specified
later) singular values all equal a multiplier of the largest positive solution of the equation b — % = 0, denoted as

s. Hence, we can write the compact SVD form (with a bit of notation abuse) of W3, , as Wi = sUy, V ‘TVI with
semi-orthonormal matrices Uy, € R¥*" V€ R%X" (note that UJVIle =TIand VJVIVW1 =1).

Similarly, we also have the compact SVD form of other weight matrices and feature matrix as:

. [ Aw
WM = )\WM SUWM UWM 1

* _ T
WM—l = SUWM 1UWM 29

* T
Wi =sUw, Vy,,

M
’ \/ES 1
H'= ——————Vu, U} (Y- —1x1}

U7 es2M 4 Ny, Wi =W K N
with semi-orthonormal matrices Uw,,, Uw,, ,,...,Uw,, Vi, that each has r orthogonal columns,
; _ _ _ T _ T -
ie., UWMUWM = UWM Uwy, = ... = UpUw, = Vu Vy, = 1.  Furthermore,
Uw,,Uwy_is---» Uw,, Vi, are truncated matrices from orthonormal matrices (remove columns that
does not correspond with non-zero singular values), hence Uyy,, U‘TVM s Uw UITVMA, ..., U, UJVl , VWlV‘TV1

are the best rank-r approximations of the identity matrix of the same size.
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Since (Y — 21x1%) = (Ix—21x1%)Y = (Ixg—L11x1%) ® 1] , let H =
sM . —x —x%
cSQﬂlVi7‘JVMIVVV1UJW (Ix — 21x1}) € RUXK, then we have (MC1) H = HY = H © 1], thus

we conclude the features within the same class collapse to their class-mean and H' is the class-means matrix.
We also have hg = 0 (the equality condition of inequality (41)), hence Hf = H;*. Furthermore, clearly we

have rank(H}*) = rank(H') and since hg = 0, we have r = rank(H}*) = rank(H') < K — 1. Hence,
r=min(R, K —1).

By using Lemma D.6 for W, with the note ¢; = 0V j < r, we have UWU% is a best rank-r approximation of the
simplex ETF Ix — +1x1 . Thus, we can deduce the geometry of the following (AC2):

* * ]‘
Wi, W,/ o Uy, Uy, o< Pr(Ix — ?1;(1;),

—% | =% 1 1 1

H H o (Ix - E1K11T<)UWMU1;/M Ik — §1K11T<) o Uw,, Uyy,, o Pr(Ix — ElKlI{)7 50
s 1 1

Wi, Wiy ... WiWiH « Uy, Uy, (Ix — ?1K1}) x Uw,, Uy, o Pr(Ix — ?1K1}<)7

1 .
(WiyWi . WHWy Wi WHT o Uy, Uy, o Pr(Ix — ?11{1;) V4 e [M].

Note thatif r = K — 1, wehave P, (Ix — £1x1}) =I5 — +1x1).

Also, the product of each weight matrix or features with its transpose will be the multiplier of one of the best
rank-r approximations of the identity matrix of the same size. For example, W3/ W3, _; o< Uy, , Uy, and

Wi, Wil | o UWM—lUITVM,l are two best rank-r approximations of I5,, , and I,,, respectively.

Next, we can derive the alignments between weights and features as following (N C3):

* * * T FH T
Wi Wi . W« Uy, Vi, < H

Wi Wi o . WiH « Uy, U, < Wi, (51)
Wiy Wi ... Wi o Up, Uy, o (Wi, . WiH )T

M1
* Ifb = MK Y/KnAwy Awy_, - Awy Al = W: In this case, xj, can either be 0 or the largest positive

]\/IIJ\/I—I

solution of the equation b — @iz = 0. If all the singular values are 0’s, we have the trivial global minima

(Wi..., Wi, Hi,b*) = (0,...,0,0, +1x).

If there are exactly 0 < ¢t < r = min(R, K — 1) positive singular values 1 = so = ... = sy := s > 0 and

M—1
St+1 = ... = 8 = 0, we also have compact SVD form similar as the case b < M, (with exactly ¢ singular

vectors, instead of 7 as the above case). Thus, the nontrivial solutions exhibit (A'C1) and (N C3) property similarly as

M-—1
the case b < UVF# above.

For (NC2) property, for j = 1,..., M, we have:
Wi, Wil ocH H o Wi, Wi, W, .. WW'H'
* * * * * * 1
x (Wi Wiy . W)Wy Wi . WHT o Py(Ig — E1K1}).

We finish the proof. O
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E. Proof of Theorem 4.1
Theorem E.1. Let d > K and (W*, H*) be any global minimizer of problem (5). Then, we have:

(NC1) H*=HY & hj, =h;Vke [K]i€ [n], where H = [h},... hj] € RI*K,

(NC3) wj=,/™2h; VE e [K].
(NC2) Let a := N>\ \pg, we have:

W*W*T = diag {sﬁ}szl ,

—* | =% Si K
H H =diag { } )
(sh+Nxu)? -,

52 K
W*H* = diag k Y
st + NAm J oy
2
87 T
sT+NAg 1“1 0
0 s% T
s2.+NAg ~ K
where:
o[fl<i<,.,<i<1
ny — ng — — ng —

°Ifthereexistsaj6[Kfl]s.t.n%§n%§...§ﬁ§1<n‘irl < LS
J J
A
o= DV =N VR <
0 Vk>j

cfl<t<a< <o

= ng — = nk

and (W* , H*) = (0, 0) in this case.

And, for any k such that s;, = 0, we have:

Theorem E.2. Let d < K, thus R = min(d, K) = d and (W*,H*) be any global minimizer of problem (5). Then, we have:

(MC1) H*=H'Y & hj,=h;Vke [K],ic [n), where H = [hj,..., hy] € R>K,

(NC3) wj=./%2h* VEe K]

w

(NC2) Let a := N>\ A\, we define {s;@}g:l as follows:
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L]

=
Zle
IA
IA
IA
B
A
=

gle

nk)\H
sp=4 VA N VRS R (52)

0 Vk>R
Then, ifb/ng = 1 or ng > nry1, we have:

WW*T = diag {57}, ,

T 52 K
B e )
)

(Si + Ny
52 K
W'H = dlag{ k } ,
Si +NAu ),y
and for any k > R, we have w;, = hj, = 0.
Ifb/ng < 1 and there exists k < R, 1 > Rsuchthatng_1 > ng =nNgy1 = ... =N =...=n; > nyy1, then:
[s2 ... 0 0 0
—_ S : :
WWo =1lo ... &, 0 0 : (53)
0o ... 0 SiPR_kJ,.l(Il_k_A'_l) 0
0o ... 0 0 Ok —1)x (K1)
- 2 .
m ... O O 0
7*T7* ) 2. : ’
H H = Sk—1 , 54
0 Ty 0 0 (54)
82
0 o 0 mlprk+1(Il,k+l) 0
i 0 e 0 0 Ok —yx(x—1) ]
-2 -
WH = Shs , 55
0 R P S 0 0 (55)
0 e 0 ‘gi#gijl\c/')%[pR—k-‘rl(Il—k-i-l) 0
|0 . 0 0 Ok —i)x (K1)

and for any k > | > R, we have w; = hj = 0.

* Ifthereexistsaj € [R—1] st ;= < & <. < 2 <1< <. < A
J

- N2 — ’I’L]'+1—“' nr
o= JVVHE - N VRS
0 Vk>j

Then, we have:

W*W*T = diag {si}szl ,

—k | =% Sz K
H H =diag{—* ,
g{(si"‘N)‘H)Q}k 1

—x% 52 K
W*H :diag{Qk} ,
s k=1

and for any k > j, we have wj, = h}, =0
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1< < E< S

— ng — — ng

(s1,82,...,8K) = (0,0,...,0),
and (W*, H*) = (0, 0) in this case.

Proof of Theorem E.1 and E.2. By definition, any critical point (W, H) of f(W, H) satisfies the following:

) 1
va; = H(WH - Y)HT + AW =0, (56)
ﬁ—lWT(WH—Y)—k)\ H=0 (57)
OH N AR
From 0 = WT% - gIJ;HT, we have:
AwWTW = yHH'. (58)

Also, from % = 0, solving for H yields:

H=(W'W4+N\gI)'W'Y. (59)

Let W = Uy, SWV{,FV be the SVD decomposition of W with orthonormal matrices Uy, € REXK Vy, € R4*4 and

diagonal matrix Sy € R¥*? with non-decreasing singular values. We denote 7 singular values of W as {s %}y (we have
r < R:=min(K,d)).

From equation (59) and the SVD of W:
H=(W'W4+N\gI)"'W'Y
= (VwS{ySwVyy, + NAgD) 'V S, UL Y.
=V (S§ySw + NgD) 'S}, U, Y

. 51 Sy 60
— vy | B8 (swm{,”" i) 3] ULY ©0
CERIXK
=V CULY,
WH = Uy Sw [diag (s%-&j\})\Hl(;' o sgﬁ\?}\Hl) g] U, Y
(61)
Uy dia i i o 0)uLy
= 1
w g S%—‘FN)\H’ 78%+N}\H7 5 5 w
i s T
==WH-Y=U d r 0,...,0 ] —Ig|UyY
W[lag(S%_’_N)\Hv 75%+N}\H7 ) ) > K:| w
Ny —NAy -
=Upd . —1,...,—1)ULY
w lag( 2y Ny 82+ Nhg ) w 62)
DE]RKXK
= Uy DUy, Y.

Based on this result, we now calculate the Frobenius norm of WH — Y:
[WH - Y|% = |[UpDUJ, Y||% = trace(Uy DU}, Y (U DU Y) T)
= trace(Up DU, YY T Uy DU, = trace(D*Uy, YY "Uy). (63)



Neural Collapse in Deep Linear Networks: From Balanced to Imbalanced Data

We denote u” and uy, are the k-th row and column of Uy, respectively. Let n = (nq,...,ng), we have the following:
—u'— o
UW = “ee = |ur ... Uug|,
K
—u” - [

YYT = diag(ni,ng2,...,ng) € REXK

| | | —u'—
UL YY Uy = [(u)T ... ()7 | diag(ni,ng,...,nx) | ...
_nEK_
\ | | —nju'—
= [(H" ... (uf)T .
\ | | —npuf —
= (U%YYTUW)Mc = nlu?k + n2u§k +...+ nku%(k =(ux ® uk)Tn

N
= |WH — Y||% = trace(D*Uy, YY ' Uy) = Z(uk ®Oup)'n (s( m NI;H + Z u, ©uy) n,
k=1 h=r+1

where the last equality is from the fact that D? is a diagonal matrix, so the diagonal of D2U [, Y'Y " Uyy is the element-wise
product between the diagonal of D? and Uy, YY " Uyy.

Similarly, we calculate the Frobenius norm of H, from equation (60), we have:

|H|% = trace(VWCUT YY Uy CTV),) = trace(CTCU[, YY Uy)

2
S,
E: . 65
uk®uk n(sz NN )2 (65)

Now, we plug the equations (64) and (65) into the function f, we get:
K r

1 T (=NAg)? 1 T Aw 2
f(W H) QNZ(UkQHk) HW"‘W Z (uh®uh) n+728k
k=1 h=r4+1 k=1
K
+ — (up Oug) n-——5——=-r——
2~ (s + NAn)?
A s (up ©ug) 'n K
— i % T
= S T NAL Z k+ (uh®uh) n
k=1 h r—+1
= (o) : - 0
1 u, ©ug) 'n 9 sz 1 T
= on o2 + N A\wg - + —= Z (uh®uh) n
2N Pt N);\CH +1 Ny 2N Wi
T K
1 (upy ®ug)'n 1 T
= AR TR T4y el
oN < ot 1 tha | + o (up, ©up) n
k=1 h=r+1
T K
1 Qg 1
= — b R —
ON <Ik+1+ -’L'k>+2N Z G,
k= h=r+1
with x;, := N>\H , Qf 1= (uk ® uk>Tn and b := NQ)\W)\H.
From the fact that Uy is an orthonormal matrix, we have:
T

K K K
Zak—z ukGuk)Tn: <Zuk®uk> nlen:an:N, (67)
k=1 k=1 k=1
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and, for any j € [K], denote p; j := u3, + uj + ... +u; Vi € [K], we have:

(ur ©ug) 'n = ng(u? +ud, obud) Fno(udy Fudy + o+ ud) o k(U + g +

ol
&
1= T

k=1
=p1jn +p2ne+ ...+ i1 01+ (J—Dp1j— - —Pj—1,7)n;
J j—1 J
= an + Z(nh —n;) (P, —1) < Z”k
k=1 h—1 k=1
K j K
= Y a=N-Y nm= Y n Vje[K] (68)
k=j+1 k=1 k=j+1

where we used the fact that Zszl Pr,; = J since it is the sum of squares of all entries of the first j columns of an
orthonormal matrix, and p; ; < 1V ¢ because it is the sum of squares of some entries on the i-th row of Uyy.

We state a lemma regarding minimizing a weighted sum as following.

Lemma E.3. Consider a weighted sum Zéil a2k, with {ay }E_| satisfies (67) and (68) and 0 < z1 < 25 < ... < zg.
Then, we have:

ay,...,0K

K K
min E akzkzg N2 -
k=1 k=1

The equality happens when for any k > 1, zi41 = 2k OF Q41 + Q2+ . . . + QK = Ngyp1 +Ngya + . .. + Nk (equivalently,
a1 +as+...+a=n1+ns+...+ng)

Proof of Lemma E.3. We have:

K

ot uy)

Zakzk = (0,1 +ag + ...+ aK)zl =+ (ag + ...+ aK)(Zg — 2:1) + ...+ (aK_l + aK)(zK_l — ZK_Q) + (IK(ZK — ZK_1)

k=1

>(nit+ne+...+ng)z1+(ne+...+ng)(za—21)+ ...+ (ngk—1 + 1K) (zrk-1 — 2x—2) + nk(zx — 2K —1)

K
- e
k=1
O
By applying Lemma E.3 to the RHS of equation (66) with zj, = ﬁ V k < rand z; = 1 otherwise, we obtain:
1 <[ n 1 &
k
H) > — —
F(W.H) > 5 Z(xk+1+bx,€)+m > (69)
k=1 h=r+1
1 < ( 1 b ) 1 =
N TR B Y (70)
2N Pt T+ 1 Nk 2N hert1
Consider the function:
1
g(x):$+1+ax withz > 0,a > 0. (71)

‘We consider two cases:
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e Ifa > 1, g(0) = 1and g(z) > ¢g(0) Yz > 0. Hence, g(x) is minimized at = 0 in this case.
* If a < 1, by using AM-GM, we have g(z) = %ﬂ +a(x+1) —a > 2y/a — a with the equality holds iff x = \/g —1.

By applying this result to each term in the lower bound (70), we finish bounding f(W, H).

1
xr+1

Now, we study the equality conditions. In the lower bound (70), by letting z} be the minimizer of + Fbk:z: i for all

k < rand xj = 0forall k > r, there are only four possibilities as following:

» Case A: If 27 > O and n; > ny: we have 27 = |/ — 1 > max(0, /52 — 1) > z3 and therefore from the equality
condition of Lemma E.3, we have a; = n;. From the orthonormal property of u, we have:

T 2 2 2 2 2 2
a1 = (u1 Ouy) n=njuy; +neusy + ...+ ngugy < ni(uj; +Fusy + ...+ upq) =ng.

The equality holds when and only when u%l =landusy =... =ug =0.
» Case B: If 27 > 0 and there exists 1 < j < r such thatn; =ny = ... =n; > n;y, we have:
1 b 1 b 1 b
+ —x = + —r=...= + —ux,
r+1 m r+1  ne z+1  n;
andthus,z] =25 = ... = m;‘ > a:;fﬂ. Hence, from the equality condition of Lemma E.3, we have a; +-as+. .. +a; =

n1 + ...+ n;. We have:

J
Z(uk Ouy) n=n(ud +udy,+... + ufj) +ng(udy +udy + ... +u§j)
k=1

J
+...+nK(u%(1+u%(2+...+u%(j)ank,
k=1

where the inequality is from the fact that for any k € [K], (u?; +ud, + ... +u2;) < Land S5 (uf, +uly+ ...+
uj;) = jand n; > nji1. The equality holds iff uj, +ujy + ... +uf; =1Vk=1,2,... jand ups = upe = ... =
up; = 0VEk=j+41,..., K, ie. the upper left sub-matrix size j x j of Uyy is an orthonormal matrix and other entries
of Uyy lie on the same rows or columns with this sub-matrix must all equal 0’s.

* Case C: If 7 > 0, r < K and there exists r < j < K suchthatn, =ny = ... =n, = ... =n; > n;y, thus we
have 27 = 25 = ... =27 > 0and 27, = ... = 2% = 0. Hence, from the equality condition of Lemma E.3, we
have a; + a2 +...+a, =ny + ...+ n,. We have:

.
Yo (weOw) 'n=ng(udy Fuly o b ud,) +ng(udy Fudy ot )
k=1

+...+nK(u%<1+u§<2+...+u%(T)§an7
k=1

where the inequality is from the fact that for any k € [K], (u?, +u2, + ... +u2,) < Land i (u2, +uy + ... +
u? ) = r. The equality holds iff uy; = ups = ... =ug, =0Vk =j+1,..., K, ie., the upper left sub-matrix size
j x r of Uy includes 7 orthonormal vectors in R/ and the bottom left sub-matrix size (K — j) x r are all zeros. The
other K — r columns of Uy, does not matter because W* can be written as:

T

-

W* = g SpUEV
k=1

*

with v, is the right singular vector that satisfies W* Tuy, = s} vy,. Note that since s7 = s5 = ... = s} 1= s*, we have
the compact SVD form as follows:

W* = s*Uy, Vi, (72)
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where U/W € RE*" and V;,V € R¥*", Especially, the last K — j rows of W* will be zeros since the last K — j rows

of U/W are zeros. Furthermore, tbhe matrix U;/VU;,—V'— after removing the last K — j zero rows and the last K — j zero
columns is the best rank-r approximation of I;.

We note that if Case C happens, then the number of positive singular values are limited by the matrix rank r (e.g., by
r < R =min(d, K) = dwhend < K), and n, = n,41, thus z} > 0 and z;_, = 0 (x}, should equal z; > 0 if it is
not forced to be zero).
« Case D: If 2 = 0, we must have 25 = ... = 2% = 0, S0 (up @ uy) "
arbitrary size K x K orthonormal matrix.

n always equal /V and thus, Uy can be an

We perform similar arguments as above for all subsequent x;’s, after we finish reasoning for prior ones. Before going to the
conclusion, we first study the matrix Uy . If Case C does not happen for any x7’s, we have:

Uw=|. . . s (73)

where each A; is an orthonormal block which corresponds with one or a group of classes that have the same number of
training samples and their z* > 0 (Case A and Case B) or corresponds with all classes with * = 0 (Case D). If Case C
happens, we have:

A; 0 0 O
0 Ay, 0 O

Up=1|. . . .|, (74)
0 0 0 A
where each A;,i € [l — 1] is an orthonormal block which corresponds with one or a group of classes that have the same

number of training samples and their 2* > 0 (Case A and Case B). A; is the orthonormal block has the same property as
Uy in Case C.

We consider the case d > K from now on. By using arguments about the minimizer of g(x) applied to the lower bound
(70), we consider three cases as following:

* Casela: - < b <. . <. b <

- n2 — nK

Then, the lower bound (70) is minimized at (z7, z35,...,z%) = ( R TRVA S NS ES 1). Therefore:

(555 8t) = [ 1/ 2 N [ P22 N T N | (75)
Aw Aw Aw

First, we have the property that the features in each class hj ; collapsed to their class-mean hj (NC1). Let H =

VwCUY,, we know that H* = H'Y from equation (60). Then, columns from the (12, + 1)-th until (n;,)-th of H
will all equals the k-th column of H', thus the features in class k are collapsed to their class-mean hj (which is the
k-th column of '), i.e., hf ; =hj, =... =hj}  Vk € [K].

Case C never happens because if we assume we have » < K positive singular values, meaning s > 0. Then, if
Ny41 = N, we must have s3,; > 0 (contradiction!). Hence, Uy must have the form as in equation (73), thus we can
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conclude the geometry of the following :

) ) )
WW*T = Uy SwS, UL = diag { /22— N, o/ 22— Ny, S5 Ny b e REXE
A A A
(76)
W*H* = Uy dia 51 Sk ULy
TOWER S TN S N
- S’;’
R v 1 10 0 0 0
I U= ST 0 0 0 1 1 0 0
0 ... 00 ... 0 ... 1 ... 1
L 0 0 DEEY S%(—’—i?v)\lf

1 0

0 L Sk qT

s%(—i-N/\H nK

H*"H* =Y U, CTCU}, Y

2

L2 A
_yr| Y w0y
0 0 o GRENARY
52 T
mlnl ].n1 , O e 0
S2 T
_ 0 (SngN)\H.)Q 1n21n2 0 c RNXN’ (77)
0 0 S SR T s
T (s%4+NAg)?2 K TnK
where 1,,,1,] is any x ny, matrix will all entries are 1’s.
We additionally have the structure of the class-means matrix:
5T
G LA 0
7 T3t T ~T 0 ﬁ e 0 KK
H H =U,;,C CUy = 2 ) e RAXH, (78)
0 0 sk
o GEANAR)?
82
m O DR O
. . 0 % ... 0
W*'H =UpySyCUw ' = ‘ A . e RFXK, (79)
: : . :
0 O DY m

And the alignment between the linear classifier and features are as following. For any k € [K], denote wy, the k-th row
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of W*:

* Case 2a: There exists j € [K — 1] s.t.

Then, the lower bound (70) is minimized at:

(8T5+++3 87,8541+ 38K) =

First, we have the property that the features in each class hj

" = VWCUW, we know that H*
of H* will all equals the k-th column of H',

the k-th column of H), i.e hf;, =hj,=... =h;  Vk € [K].

'L

NEAH | 4

PY

b < b
Nj41 T — nk

S A N0, 0
)\W )\W

collapsed to their class-mean h} (NC1).
=H’ from equation (60). Then, columns from the (n_; + 1)-th until (n;)-th

(80)

81)

Let

thus the features in class k are collapsed to their class-mean hj; (which is

Recall Uy, with the form (73) (Case C cannot happen with the same reason as in Case 1a). From equations (60) and

(62), we can conclude the geometry of the following:

W*W*T = Uy Sy S}y,

WHH* delag< 51

81 + N)\H
[ T
p +N>\H 1. 0 e 0
T
_ 0 gl - 0
o 0 0N
g im 0
0 % 1,17
H*TH* _ W n2+ng
i 0 0
where 1nk1n is a ni X ny matrix will all entries are 1’s.

UT
) ) )
_dlag<,/"1 H NAHM/”2 T Nig,... ,/”J T Nxg,o0,..., )

,0,. U Y
S Jr]\/v)\H )

c RKXN

9

NXxN
e RYX

OHKXTLK

For any k € [K], denote w; the k-th row of W* and vy, the k-th column of V', we have:

(82)

(83)

(84)

And, for k > j, we have w; = h} = 0, which means the optimal classifiers and features of class k > j will be 0.
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-Case3a:1<%§%<...§i
Then, the lower bound (70) is minimized at:
(s1,85,...,8%) =1(0,0,...,0). (85)
Hence, the global minimizer of f in this case is (W*, H*) = (0, 0).
Now, we turn to consider the case d < K, and thus, r < R = d < K. Again, we consider the following cases:

e Caselb: L < b <. .. < <y,

nr

Then, the lower bound (70) is minimized at (z7, 23, ... ,x*K) (V3 -Ly3®—-1,...,/% -10..,0) =

\/%— A "oy — Lo/ e — 1,0, ). Therefore:

513523" 5R35R+1a--

) ) )
\/,/””’ NAH7\/,/"2H NAH7...,\/ ”fWH—NAH,o,...,o . (86)

We have (NC1) and (N C3) properties are the same as Case 1a.

We have Case C happens iff b/ng < 1 (i.e., xf > 0)and ngp = ng41. Then, if b/ng = 1 or ng > ngy1, we have:

mdn  Nag o 0 0]
W*W*T = Uy Sy Sy, Uy, = 0 Y TS VY S RN eRFEXE - (87)
i 0 0 0 |
s3
(s2+NXg) 2 0
s T —x T ~T 0 (52 2+j\?)\ 2o 0 KxK
H H =U/,C'CUy = s3+NAn e REXK, (88)
0 0 0
o 0 0
+NXAg
. 0 55 0
W'H =UpSyCUw ' = s5HN g € REXK, (89)
0 0 0

Furthermore, we have w; = hy = 0 for k£ > R.

If Case C happens, there exists k < R, > Rsuchthatng_; >ng =ng41 =... =ng =...=mn; > n;41. Recall
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the form of Uy as in equation (74), then:

W*W*T

* | =%

H H

*

W*H

NniAg
Aw

2
51

(S%—‘,—N)\H)Q

0

and for any £ > [ > R, we have wj, = h}, = 0.

* Case 2b: There exists j € [R — 1] s.t. -~ g

Then, the lower bound (70) is minimized at:

(s7,...

* % _
187,85 41 1 SK) =

We have (NC1) and (N C3) properties are the same as Case 2a.

— Ny 0 0
ME_1A
“xw N
0 ( T N)\H) Pr—k+1(Li—k+1)
0 0
0 0 0
Si'—l
(Sk 1+N)\H) 0 0
52
0 iy Pr-k+1(Liog41) 0
0 0 Ok —1yx (k1) |
0 0 0
Si.—l
2 +Nam 0 0 ’
82
0 o PR—k+1(Li-k+1) 0
0 0 O(r—1yx (r—1)
b < <b<cic b << b
n2 n; Nj+1 nR

ST A s 00 o
Aw Aw

o -
Ok —1yx(x—1)]
(90)
o1
(92)
(93)

Case C does not happen in this case because b/np > 1 and thus, 27, = 0. Thus, we can conclude the geometry of the

following:

W*W*T

= UwSwSyy

UT
A ) )
_dlag<,/ LAH NAH,,/”2 " Ny, ... ,/”J B NAy,0 o)

W*H* = Uy d L ) ,0,...,0 | ULY
w lag<81+N)\H S -‘rN/\H )
-
2+NAH17,1 0 ... 0
T
0 2+NAH1n2 ... 0 € RIXN,
0 0 R

nK

(94)
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s T
(s§+]\;)\H)2 1711 1n1 0 . 0
s T
H*  H = 0 (s§+z\?/\H)2 1,1, ... 0 c RNxN7 95)
0 0 cor Onpexong

where 1,,, 17Tbk is a ny x ng matrix will all entries are 1’s. And for any & > j, w; = h} = 0.

-Case3b:1<ni§i§...<i
1 n2

= ng

Then, the lower bound (70) is minimized at:
(s1,85,...,8%) =(0,0,...,0). (96)

Hence, the global minimizer of f in this case is (W* , H*) = (0, 0).

F. Proof of Theorem 4.4
Theorem F.1. Let d,, > K¥'m € [M]and (W3, , W3, _1,..., W5, W7, HY}) be any global minimizer of problem (6).
We have:

(NC1) H{=HY & hj, =h;Vke K] i€ [n], where H = [h},... hj] € RExK,

>\]\4—1

(NC2) Let ¢ := y——2———, a:= N ¥/NXwy, Awy,_, .- A\w, A, and Vk € [K], xj, is the largest positive solution
2

W AW g - AW

of the equation n‘l—k — (;‘”1\14%7_;11)2 = 0, we have the following:

S A . K
WMWJ\; = )\VI://l dlag{s%}kzl,

M

T cs2M }K
H H =dia k ,
g{(csi]‘/f—l—N)\Hl)2 pe1

2M

K
CS
*WE L WIH =k Y,
MM 1 {cng+NAHl}k_l

(NC3) We have, ¥V k € [K]:
(Wi Wiy WoWi)i = (esi™ + N, )hj,

M-—1
M—-1) M
el <a < <e < XD e have:

s = 2AI/N)\H1.',CZM Vk‘
C

M-—1
o Ifthere existsa j € [K — 1] s.t. %gig...<i<M< a <...§£,wehave:

no — ny M Njt1 —
onM [ NAg, oM .
Sk = Vv — VE<j .
0 Vk>j

And, for any k such that s, = 0, we have:
(Wir)r =hg =0.
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M-—1
. 11‘7(ij34)2 T ceca < -2 we have:

ni no T — ng’
(s1,82,...,8x) =(0,0,...,0),

and (Wi, ..., Wi, H7) = (0,...,0,0) in this case.

IN

The only case left is if there exists i,j € [K] (i < j < K)suchthatn#"1 < % <...< nil <= nil =...= nij =
M-—-1
(M—l) M a a a .
i < T < s <...< o we have:
2”{/N/\HIJ:ZM/C Vk<i—1
Sk = ”(/N)\HIQCZM/C or0 Vi<k<j-
0 Vk>j5+1
furthermore, let v is the largest index that s, > 0, we must have s, 1 = $y12 = ... = s = 0. (NC1) and (N'C3) are the
same as above but for (NC2):
$2 ... 0 0 0
Wy Wiy = e |0 st 0 0 ’ 7
"o 0 siProit1(Lj—it1) 0
0 0 0 Ok ) (K )
B cs?M T
TN 0 0 0
=k [ = ' cs%M .
H H = 0 e TN 0 0
CSZA{
0 e 0 mtprfwrl(lj%ﬂ) 0
L 0 0 0 O —jyx (K —j)]
(98)
i 0 0 0 i
csfMJrN)\Hl e
* * * *TTF ' ' ,sg.M ’ ’
WMWI\/Ifl e W2W1H == 0 . Cs?i\%i}\})\Hl O 0 B
C52]VI
0 . 0 mpr_i+1(1j_i+1) 0
L0 0 0 Ox—j)x (k=)
99

and, for any b > j, (W3, W3,_, ... WiW{), = hj, = 0.

Theorem F.2. Let R = min(dyy,...,d1, K) < K and (W3, W3,_,,..., W5, Wi HY}) be any global minimizer of
problem (6). We have:

(NC1) H;=H'Y & hj,=h;Vke[K]icn), where H =[h],... hy] € Rh*K,

(NC3) We have,Vk € [K]:
(W3 Wiy WEWE) = (s + N, )i,

M—1
)\Wl

T P w—

AW AWy g AWy

(NC2) Letc :=

. ) K
solution of the equation nik ~ GMFE T 0, we define {s.},_, as follows:

a = N YN/NA\wyAwy,_, --- Aw, A, and Vk € [K], x}; is the largest positive
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a (M
'SE<

=
3
N

Then, if ng > ng41, we have:

M—1
71) M

e , we have:

|

* * A
VVMVVMT = 2

2M [ N, a3

Wy

VE<R
0 Vk>R

diag {si}szl ,

M

ﬁ*Tﬁ* = diag {

WHWE L WiH, = {

2M
CSy

(cs?™M 4+ Ny, )?

K
b
k=1

2M
CSy,

cst™M + Ny,

K

b
k=1

and for any k > R, we have (W3, W3, ;... WiW7}), =h; =0.

ni41, we have:

ﬁ*—rﬁ*

Wi W WEWIH

and, forany h > 1> R, (W%, W%,_, ... WiW?), = hi = 0.

o Ifthere existsa j € [R — 1] s.t.

Otherwise, if ng = npry1, and there exists k < R, | > R such thatni_1 > np =ngy1 =...=nNp=...=n; >
57 0 0 0
)\Wj\l 0 sz—l 0 0 , (100)
0 0  s{Prkt1(Ti—k41) 0
0 0 0 Otk iy (1)
B CS?AI )
s+ NAu, )2 0 0 0
e,
0 N e 0
0 0 (cngc-iWPR—kH(Iz—kH) 0
) ’ 0 0 Ok —1)x(K—1)
(101)
CS?M .
cs?M+Nm, 0 0 0
estM,
’ RN A, 2M 0 0 ’
0 0 CS,%EFWPR*’CH(II%H) 0
) ’ 0 0 O(k—1)x(K—1).
(102)
Mo1
Lca s ga ORI <o << e have:
ni no nj i1 o
aM [ NAg, M .
0 Vk>j
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Then, we have:

A
W}*V[WTMT — 2" diag {si}f_l,
)‘WM B
—% | =% CSQM K
H H = diag{ k } ,
(cs?M 4+ N, )? 1
CS%M

WEWE L WIH, =k
M VY M-1 1H1 {632M+N)\H1

and for any k > j, we have (W3, W3, ;... WiW7), =h; =0.

K
b
k=1

M-1
°U%<%§%§. .§%,wehave:
(81,827...,8}():(0,0, '70)3
and (Wi,,...,Wi,H7) = (0,...,0,0) in this case.
The only case left is if there exists i, j € [R] (i < j < R) suchthat ;= < ;= < ... < = < & = nil =.=2=
M-—1
% ﬁ < ﬁ <...< %,wehave:
NN gaiMje VE<i—1
Sk = NINAgziM e or 0 Vi<k<j>
0 VE>j5+1
furthermore, let v is the largest index that s, > 0, we must have r < Rand s,11 = Sp10 = ... = sxg = 0. (NC1) and
(NC3) are the same as above but for (NC2), we have:
22 ... 0 0 0
* *T Aw, : i
"o 0 siProit1(Lj—it1) 0
0 0 0 Ok —j)x (K—j)
B csj‘fM T
(cs?M+ Ny, )? 0 0 0
T | ek aM
H H = CSi—
0 (cs?ﬂ/[lJer)\Hl)z 0 0
CSZA{
0 0 WPT,PFl(Ij,iH) 0
I 0 0 0 Ok —j)x(r—j) ]
(104)
_estM 0 0 0 i
cs%MJrN)\Hl
* * * *TTF ,éM
WMW]\/171 e W2W1H == O Cs?i\/lcls_:_;\})\Hl 0 O B
CSZM
0 0 wri g, Pr—itt (L—it1) 0
L0 0 0 Ok —j)x (5—j) |
(105)

and, forany h > j, (W3, Wi, ;... WiW7), =h} =0.
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Proof of Theorem F.1 and F.2. First, by using lemma D.2, we have for any critical point (W s, Wj/_1,..., Wo, W Hy)
of f, we have the following:
/\WM WXIWM = AW]VI—l WM—1W]T4—1 )
>‘WMf1W;\rI—1W1W—1 = /\WMfsz—QW;\r/I—%

M, Wy Wy = Ay, Wi W/
A, W] W, = g HH/.

Let W; = Uy, Sy, V‘Tvl be the SVD decomposition of W1 with Uy, € R¥%x42 Vy, € R¥4*d1 are orthonormal
matrices and Sy, € R%*41 is a diagonal matrix with decreasing non-negative singular values. We denote the r singular
values of W as {Sk}2=1 (r < R:=min(K,dy,...,d;)). From Lemma D.4, we have the SVD of other weight matrices

as:
Wi = Uw,, Swy, U%M—l’
Wy = UW]%—lsWAlflU%JVI—27
Wy_o = UW}\472SWIVI—2U—‘;/M—3’
W3 = UW]Mf:jSWIM—ZSU—‘;/J\/[—AL’

W = Uy, Sw, Uy,
Wi = Uy, Sw, Viy,,

with:
Sy = \/>\7W1 {diag(sl, ey 8y) 0 (d;—r) ] e RU<h v (M),
’ Aw; 0(dj 1 —r)xr Od; 1 —r)x(d;—r)
and Uw,,, Uw,, ., Uw, _,,Uw, _5,-.., Uw,, Vi, are all orthonormal matrices.
Ay

From Lemma D.5, denote ¢ := , we have:
2

AW a AWas g A

. Vest! Ves) )
H, = VW1 d1ag (CS%ZM—"_N)\HI(’)' © es2M TN, g U%MY
(106)
CeRdlxK
=Vy,CUy,, Y.
. —N)\Hl _NAHI )
WuWay 1. WoWH-Y = Uy, [dlag (cs%M+NAH1 1 TN A, 10 ] Uy, Y
0 - -7

K (107)

DeRK XK
_ T
= Uw, DU}, Y.

Next, we will calculate the Frobenius norm of W, W,_1... WoW H; — Y:

IWyWar_i... WoW Hy = Y||7 = |Uw,, DUy, Y||3 = trace(Uw,, DU}, Y(Uy,, DUy, Y)")
= trace(Uw,, DUy, YY Uy, DUy, )
= trace(DzU%MYYTUWM).
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We denote u” and uy, are the k-th row and column of Uy, ,, respectively. Let n = (ny, ..., nx ), we have the following:
—u'— I
UWM: = |u ... ug|,
K
—ut— I

YY' =diag(ni,no,...,ng) € REXE

| | | —u—
= Uy, YY Uy, = [(u)T ... (uf)7]| diag(ni, no,...,nk) - (108)
| | | —ut—
| I | —niut—
= [(uh)T ... @7
| I | —npuf —

= (U, YY "Uw,, ik = niuiy + noudy + ...+ ngugy, = (0, @ i) 'n

= |[WyWy1... WoW H; — Y||% = trace(D?*U}, YY ' Uy)

. N
=3 (w @uk)Tn gM ~ JI\?A + Z w,ow)'n, (109
= h=r+1

where the last equality is from the fact that D? is a diagonal matrix, so the diagonal of DZU;VM YY "Uyy,, is the
element-wise product between the diagonal of D? and Uy}, YY "Uyy,, .

Similarly, we calculate the Frobenius norm of H, from equation (106), we have:

|H1 |3 = trace(Vw, CUy,, YY ' Uy, CT VY, ) = trace(C'CUy,, YY ' Uy,,)
2M

T CSk
= . 110
Z(uk © uy) n(csiM Vg )? (110)

Now, we plug the equations (109), (110) and the SVD of weight matrices into the function f and note that orthonormal
matrix does not change Frobenius norm, we got:

1 A A A
F = g IWarWaroy o WiHL = Y [[f 4+ S5 W[5+ S W 7+ S0 [

r K
1 (—N)\H )2 1 )\W )\W 2
= on (quuk)Tn . + — (uhG)uh n+ —X% E
2N st (CS%M + N/\H1)2 2N h:Zr-H Z /\WM
)‘WM 1 - )\Wl 2 A 1 . 2 /\H1 : T CSiM
+ .+ ST+ (up @ ug) 'n
Z )\Wl\l i 2 =1 k 2 kX::l (CSZA{ + N>\H1 )2

s

K T
)\H1 uk@“k Il 1 T M)\Wl 2
= L T o, Ty 2 (et TR

r K
1 (up ®ug) 'n s N, [ 0] es3M 1 T
— + MNAw, 1 + - (up ©up) n
N e\ et Ve Na, N 2

k=1 NAm, h=r+1

r K
1 1
= 7 > ( u, ©ug) 'n bxk> + N E (up @uh)Tn

M 9N
+ 1 2 h=r+1
1 7“ 1 &
= o < M+1+b:rk)+2 > an, (111)
k=1 h=r+1
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. oM N NAw,, Aw AWy Al
with 7, == N[5~ ax = (up © up)'nand b := MNAw, {/ =" = MNAw, \/ M A%I = WAL LR
1

MN A{/N/\WMAWM,l AW AH,

From the fact that Uy, is an orthonormal matrix, we have:

K K K T K
Zak:Z(quuk)Tn: (Zuk®uk> n:lTn:an:N, (112)
k=1 k=1 k=1

k=1

and, for any j € [K], denote p; j := u7, + uf + ... +uf; Vi € [K], we have:

S~

AT

Zpkjnk < prgm+pane + o+ Pio1M-1 + (Pig i1 T Piv2g + o+ PRGN
k=1
=PLmt P 3”2 SRR VIS R E R Ay R R R U RS R L%

J

—anrz nh =) (phy —1) <Y n

k=1

= Zak>N an_ an Vje K], (113)

k=j+1 k=j+1

where we used the fact that Zszl Pk, = J since it is the sum of squares of all entries of the first j columns of an
orthonormal matrix, and p; ; < 1V ¢ because it is the sum of squares of some entries on the i-th row of Uyy.

By applying Lemma E.3 to the RHS of equation (111) with z; = V k < rand z; = 1 otherwise, we obtain:

]\/1+1

1 T 1 K
e H,)>— — 114
JWar, Wy q,..., Wy, Wy, 1)_2Nz< +b$k)+2N Z nh (114)

k= h=r+1

1 T b 1 K

= — . 1
2NkZ <M+1+ >+2Nh;+1"” (115)

The minimizer of the function g(x) = xM —7 T ax has been studied in Section D.2.1. Apply this result for the lower bound
(115), we finish bounding f(Wj;, Wps_1,..., Wo, W1, Hy).

Now, we study the equality conditions. In the lower bound (115), by letting x}, be the minimizer of + n—bk:ck for all

M+1
k < rand xj = 0 forall k > r, there are only four possibilities as following:

* Case A: If 27 > 0 and ny > ng: If 25 = 0, it is clear that 27 > z5. Otherwise, we have x7] and x5 must satisfy (see
Section D.2.1 for details):

M™M=t b
(xT]\/[_Fl)Q - 7’7/17
Moyt b

GRSV

uk®uk)Tn:n1(u%1+u%2+...—|—u%j)—i—ng(u%l—i—u%z—i—...+u§j)+...+n;{(u%ﬂ—|—u%<2+...

—l—u%{j)



Neural Collapse in Deep Linear Networks: From Balanced to Imbalanced Data

M/ M—-1
M+1°

Hence, from the equality condition of Lemma E.3, we have a; = n,. From the orthonormal property of uj, we have:

b b : _ MMt ; : * *
Because ;> < > and the function p(z) = @iz 182 decreasing function when z > we got x7 > 3.

T 2 2 2 2 2 2
a1 = (ug Ouy) n=njuj; +neus +...+npuig <ni(uj; +uz + ...+ upq) =nq.

The equality holds when and only when u%l =landusy =... =ug; =0.
Case B: If 27 > 0 and there exists 1 < j < r such that ny = no = ... =n; > n;,1, we have:
1 b 1 b 1 b
P O R T
and thus, 2] =25 = ... = x;‘ > xj 1. Hence, from the equality condition of Lemma E.3, we have a; +-az+. .. +a; =

n1 + ...+ n;. We have:

J
Z(uk Oup) ' n=mn(ud +ui+... + u%j) +no(udy +udy + ...+ ugj)
k=1

J
—|—...+nK(u%ﬂ+u%(2+...+u§<j)§an,
k=1

where the inequality is from the fact that for any k € [K], (u?; +ud, + ... +u2;) < Land S5 (uf, +uly + ...+
uij) =7. Theequalityholdsiffui1 +ui2+...+uij =1VEk=1,2,...,jandup; =upa = ... =up; =0Vk =
j+1,..., K, i.e. the upper left sub-matrix size j x j of Uyy,, is an orthonormal matrix and other entries of Uyy,, lie
on the same rows or columns with this sub-matrix must all equal 0’s.

Case C: If 27 > 0, r < K and there exists 7 < j < K suchthatn; =ny = ... =n, = ... =n; > n;y, we have
i =x5=...=x;>0and z;,; = ... = x} = 0. Hence, from the equality condition of Lemma E.3, we have
air+as+...+a, =n1+ ...+ n,. We have:
T
D (w©ug) ' =n(uf; +uly + 4 ui,) +na(ud) +udy + .+ ud,)
k=1

-
+...+nK(u§<1+u%Q+...+u%(r)San,
k=1

where the inequality is from the fact that for any k € [K], (u?, + u?y + ... +u?,) < 1 and Zle(uil +uly+ ...+
uir) = r. The equality holds iff ug; = uge = ... =ug, =0Vk =354 1,..., K, i.e. the upper left sub-matrix size
j x 7 of Uyy,, includes 7 orthonormal vectors in R? and the bottom left sub-matrix size (K — j) x r are all zeros. The
other K — r columns of Uyy,, does not matter because W7, can be written as:

T
* § : * T
WAI = SkUkvk ;
k=1

*

with vy, is the right singular vector that satisfies W3/ uy, = s}vy. Note that since s} = s5 = ... = s} := s*, thus we

have compact SVD form as follows:
Wi, = 5" Uy, Vi, (116)

where U/WM € RE*" and V;,VM € RY*" Especially, the last K — j rows of W%, will be zeros since the last K — j

rows of U',,  are zeros. Furthermore, U}, U\l after removing the last K — j zero rows and the last K — j zero
- W . > T W T W
columns is the best rank-r approximation of I;.

We note that if Case C happens, then the number of positive singular values are limited by the matrix rank r (e.g., by
r < R =min(dy,...,d,K) < K),and n, = n,41,thus z; > 0and 27, = 0 (2}, should equal ;. > 0 if it is
not forced to be zero).
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o CaseD: If 27 =0, wemusthave 25 = ... =27, =0, Zszl(uk ®uy) 'n always equal N and thus, Uyy,, can be an
arbitrary size K x K orthonormal matrix.

We perform similar arguments as above for all subsequent x’s, after we finish reasoning for prior ones. Before going to the
conclusion, we first study the matrix Uyy,,. If Case C does not happen for any x;;’s, we have:

UWM = . . . : 9 (117)

where each A; is an orthonormal block which corresponds with one or a group of classes that have the same number of
training samples and their z* > 0 (Case A and Case B) or corresponds with all classes with * = 0 (Case D). If Case C
happens, we have:

UWM = : . . < (118)

where each A, € [l — 1] is an orthonormal block which corresponds with one or a group of classes that have the same
number of training samples and their 2* > 0 (Case A and Case B). A; is the orthonormal block has the same property as
Uyy,, in Case C.

We consider the case R = K from now on. By using arguments about the minimizer of g(«) applied to the lower bound
(115), we consider four cases as following:

M-—1
— M
o Casela:%g%g...§%<%.

Then, the lower bound (115) is minimized at (z}, x5, ...,z ) where x is the largest positive solution of the equation
ni — % =0fori=1,2,..., K. We conclude:

(1,85, .. (119)

- 5 P

o) = ( ont [N 2T ot [NX g asM oy N)\Hlx’;{M> |
c c c

First, we have the property that the features in each class hy ; collapsed to their class-mean hy (NC1). Let

H = Vw, CUIVM, we know that H* = H'Y from equation (106). Then, columns from the (ny_; + 1)-th until

(ng)-th of HY will all equals the k-th column of H', thus the features in class k collapse to their class-mean hj, (which

is the k-th column of H'),i.e., hj ; =hj,=...=h} Ve [K].

kmk

Since r = R = K, Case C never happens, and we have Uyy,, as in equation (117). Hence, together with equations
(106) and (107), we can conclude the geometry of the following:

R . Awy Aw
Wi, Wi/ = Uy, Sw, Sy, Uy, = diag (A s2..., ;) L s§<> , (120)
Wnm Wnm
CS%JM T
(CS%JLI+N>\H1)2 1’77.1 171,1 M 0
H;"H; =Y Uy, CTCUj, Y = : : , (121)
CSQAI
0 U— — T

K
(Csf(AI+N)\H1)2 NK "Nk
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Wi, Wi, ... WsWiH} = Uw,,Sw,,Sw,,_, ---Sw, CUy,,, Y

2M

csy T 0
cs?M A NAg, — ™ e
- ; ; . (122)
0 C‘S%(JW T
csi(M-i-N)\Hl nK
We additionally have the structure of the class-means matrix:
CS?Zu O
(cs?M4+NAg, )2
7 Tt T T . . .
H H =Uy,, C CUy, = : . : , (123)
Csi(Ai
CS%Iu O
csfM-‘rN)\Hl T
o T . . .
Wi, Wi, .. W;WIH =Uy,, Sy,,CUw = : . : . (124)
O C.S%(I\/I

s+ N,

And the alignment between the weights and features are as following. For any k& € [K]|, denote
(W3, Wi, ... WEWT), the k-throw of W3, W3, | ... WiW:
Wi, Wiy ... WiW7T = U, Sw,, Swy, . --- Sw, Vip,s
o - Vw, CU&/M (125)
= (Wi Wi_1... WiW?), = (esi™ + NAg, )hj.

M—-1
. . i i _ b b b (M—1) M b b
Case 2a: There exists j € [K — 1] s.t. << S W < i T S <
Then, the lower bound (115) is minimized at (x7, 235, ..., z} ) where ] is the largest positive solution of equation
n% - % =0fori=1,2,...,jand 2} =0for¢=j+1,..., K. We conclude:

M / M

. % % « 2M N)‘Hl'f{ oM N)\HleM 2M N/\Hlx;
= ——F—,0 0 126
(51,835,587, 8541,- - 5k) = - ) ; yeres . ,0,...,0] . (126)

First, we have the property that the features in each class hy ; collapsed to their class-mean hy (NC1). Let
H' = Vi CU],, we know that H; = H' Y. Then, columns from the (n;_1 + 1)-th until (ny,)-th of H¥ will all

equals the k-th column of H', thus the features in class k are collapsed to their class-mean h} (which is the k-th
column of H),i.e hy ; =hj,=...=h;  Vke [K]

k,ng
For any k € [K], denote (W3, W3,_; ... WiW7), the k-th row of W}, W3, | ... WiW7:

Wi, Wi ... WiW7i =Uw,, Sw, Swy_, ---Sw, Viy,,
H =Vy,CUj,, (127)
= (Wi, Wi, ... WiW7) = (esiM + Ny, )h}.

And, for k > j, we have (W%, W%, | ... W5W?), = h} = 0.
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Recall the form of Uyy,, as in equation (117) (Case C cannot happen since 7 = j and n; > n;41). We can conclude
the geometry of following objects, with the usage of equations (106) and (107):

VV#;\/I‘N“JK\/—Ir = UWM SWM S‘—l/;/J\l U;l/l—/

A A A
:diag( Wh g2 2WA 2 W s?,o,...70) : (128)

I
>\WM ’ >\WM ’ ’ )\WIM
CSZM T
Wlnl 1,'.L1 0 PR 0
0 il 17 0
H!TH! = (cs3M+NXp,)? " M2Tn2 T , (129)
0 0 U |
CS%M CSQJ\I T
Wi Wi, ... WisWiH; = Uy dia ,...,0| UpY
M M1 27 w diag es?M 4 Ny, ’cs?M—i—N)\Hl’ ’ w
2M
¢Sy T
cs?M L Ny, ~m 0 0
2M
€Sy T
— 0 cs3M+ Ny, ~1n2 0
b
0 0 0,
where 1,,,1,] is any x ny, matrix will all entries are 1’s.
(M—1) "5
. (M- b b b
o Case3a.T<n—1§n—2§...§E.
In this case, the lower bound (115) is minimized at:
(s1,85,...,8%) =(0,0,...,0). (130)

Hence, the global minimizer of f is (W3, W%, _,,..., W3 Wi H}) = (0,0,...,0).

. . .. . . b b b b _ _b
* Case 4a: There exists i, j € [K] (i S])suchthatn—1 Sl S < = === — <
b < b << b
nj+1 — Mgz — 07T = ni’
Then, the lower bound (115) is minimized at (7,5, ..., 2% ) where V¢ < i — 1, x} is the largest positive solution
fprM—1 . . . oL . .
of equation n% — (Zgﬁw = 0. If i« <t < j,x7 can either be 0 or the largest positive solution of equation

M—-1 . . . .
% — gﬁw = 0 as long as the sequence {x} } is a decreasing sequence. Otherwise, V¢ > j, z; = 0.

In this case, we have N'C1 and N'C3 properties similar as Case 1a.

For (N'C2), we can freely choose the number of positive singular values 7 to be any value between ¢ and j. Thus, Case
C does happen for this case. As a consequence, the diagonal block diag(s?, .. ., s?) of W3, W+ in Case 1a, will be

replace by s2P,_;11(I;_;41). Similar changes are also applied for H; TH} and W3, W%, | ... WiWiH;.
Now, we turn to consider the case R < K. Again, we consider the following cases:

M1
.Caselb:n%gn%g...<i<w

— NR M
Then, the lower bound (115) is minimized at (z}, x5, ..., x};) where x is the largest positive solution of the equation
n% — % =0fori=1,2,...,Randa; =0fort=R+1,..., K. We conclude:

M M M
( % « « £ 2M ]V)\[_[ll’iK 2M N)\Hl.’E; 2M N)\Hlx}i-i 0 0 131
81,85, -+, SR, SRe1s -+ SK) = - , - - —0,...,0]. (131)
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We have (NC1) and (N C3) properties are the same as Case 1a.

We have Case C happens iff 27, > 0 (already satisfied) and ng = npr41. If ng > ng41, we can conclude the geometry

of the following:

- >\ -
)\‘:/V]; 52 0 0
WTWWR}— = UWMSWJMS%A{U%ZW = 0 ;\Wl S% 0
W
L 0 0 0 |
A A
:diag( W s%,...,Wls%,O,...,O), (132)
>‘WM /\WM
r CS?M
(cs?M+ Ny, )? 0 0
——x | ——x% _ T T _ ’ CSéM ' ’
H H =Uj, C CUy, = 0 e o 0|0 1
L 0 0 0
cs?M A
cs%MJrNkHl 0 0
Wi, Wi, ... WiW;H = Uy, Sw, CUy,, = 0 s 0 (134)
csh +N)\H1
i 0 0 0 |
Furthermore, for k > R, we have (W3, W3, ;... WiW7), =h} =0.
Ifng =npgyi, thereexists k < R, 1 > Rsuchthatng_1 >ng =ngy1 =...=nrp=...=n; > ny41, then:
57 0 0 0
WiyWiy = . | O s:_ 0 0 : (135)
"lo ... 0 Si'PRka(Il,kJrl) 0
o ... 0 0 O(Kk—1)x (K1)
B CS?M T
W ... O O O
T —x : oM
H H = csi
0 TN 0 0
082]\4
0 ‘e O mprk+1(Il,k+l) 0
L 0 e 0 0 Ok —yx(x—1)]

(136)
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cs2M B
STTANAEL 0 0 0
Wi Wi .. Wi;WiH = e
MYV M-1 2¥V1 0 .. m 0 0
(,QQIVI
0 0 WPR er1(Di—gg1) 0
. 0 - 0 0 Ok —1)x (K1)
(137)
and, forany h > 1> R, (W3, Wi,_;... WsW7), =h; =0.
* Case 2b: There exists j € [R — 1] s.t. = < b <. <-b <(M+< b o< <
ne n; Mj41 nRr
Then, the lower bound (115) is minimized at (z7, 23, ..., 2} ) where z is the largest positive solution of equation

#—%:Oforz':1,2,...,jandxf:Ofori:j—i—l,...,K.Weconclude:

M
% % « 2M N)\Hl‘TikM 2M N)\Hll’;M 2M N)\Hlx;k
(875855387, 8j 415+ SK) = - , - ey #,0,...,0 . (138)

We have (NC1) and (N C3) properties are the same as Case 2a.

We can conclude the geometry of following objects, with the usage of equations (106) and (107):
VV}kVIVV*M—r = UWM SWM S;l/I—/M U;l/l—/

:diag</\wl s‘;‘,%sg, Aws 52,0, 0), (139)

)‘WM >‘WM )‘WM
2M
(Csflwcj_llv/\Hl)z 1rL1 1’11 0 “ e 0
0 et 9T 0
H "H; = (es3+NAn )2 m2tny v : (140)
0 O e OnKXnK
cs%M 03§M T
W3 W73 .. WiWiH; = Uy dia 0,...,0 | Uy Y
MM -1 27 w ciag es?M + Ny, ' 7cs?M—i—N)\Hl’ ’ w
CS2IW T
CSfM-i}N/\Hl 1n1 0 - 0
0 . e U 1

— cng +NAg, "2

0 0 A
where 1,,, 1n is a ny X nj matrix will all entries are 1’s. Case C cannot happen in this case because r = j < R and
nj > g1

And, for k > j, we have (W3, W3, ;... Wi5W7), =h} =0.

M—1
'Case3bzw<#§#§ < b,

_nR

In this case, the lower bound (115) is minimized at:
(s7,85,...,8%) =1(0,0,...,0). (141)
Hence, the global minimizer of f is (W%, W3,_,..., W3 Wi Hj) = (0,0,...,0).
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°Case4b:Thereexistsi,j€[R](Z'Sng)suchthatn%gn%g...g /_b <t ="t - =2t

M-—-1
(M_l) M < b < b < . < L.

M njt1 — M4z — 77— nR

Then, the lower bound (115) is minimized at (23,3, ..., 2% ) where V¢ < i — 1, z} is the largest positive solution

M-—-1
of equation % — (]ﬁﬁw = 0. If « <t < j,z7 can either be 0 or the largest positive solution of equation

M—1 . . - .. .
n% — (Jfﬁw = 0 as long as the sequence {x}} is a decreasing sequence and there is no more than R positive singular
values. Otherwise, V¢t > j, z} = 0.

In this case, we have (AV'C1) and (N'C3) properties similar as Case 1b.

M—-1
For (N C2), if b/ngr > %, we can freely choose the number of positive singular values r between ¢ and j,
thus we have similar results as in Case 4a.

M—-1
Otherwise, if b/nr = (M_#, we can freely choose the number of positive singular values r between i and R,

thus we still have similar geometries as in Case 4a.

We finish the proof. O
G. Proof of Theorem A.1
Proof of Theorem A.1. Let Z = WyWy1...WoyW H;. We begin by noting that any critical point
(W, Wpr_q,..., Wy, W, Hy, b) of f satisfies the following:
3f 2 09 o1 T T
=——=H W, .. W Ay, Wy =0 142
aWM N az M-—1 + W}w M I ( )
_or W]T/, Q9 HTWT . W1, s+ Awsy W1 =0, (143)
6WM_1 0Z N M=t
of 2 T T T 09 (o7
=—=W, W, ... W H +\w,W;=0 144
oW, N 23 Maz + A, Wi ) (144)
of 2 T T T 09 o7
=W,/ W, ...W H A, Hy = 0. 145
oH, N ! 72 Mpgz T Am (145)
Next, we have:
r of of

0=W

MOW, 5WM71W1\TJ—1 = A Wi War = Awy Warma Wiy

= My WarWar = Awy, Wi Wiy

of of
_ T _
0=Wy OWp—1  OWy_o

T T
= >\WM_1WM_1WJV[—1 = )\WM_QWM—2WM_2~

T T T
Wiy o =2Awn Wy iWr1 = Awy, s W oWy o

Making similar argument for the other derivatives, we also have:

Awa WarWar = Aw,, War Wiy,
M W Wars: = Ay, o War—o Wi s,
(146)
M, Wa Wy = Ay, Wi W/
M, Wi W, = \y HiH/.
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Now, let H; = UgS HVITI be the SVD decomposition of H; with orthonormal matrices U € R4 x4V € RVXN and
S € R XN s a diagonal matrix with decreasing singular values. We note that from equations (146), r := rank(W ;) =
... = rank(Wy) = rank(H;y) is at most R := min(das,dp—1,-..,d1, K). We denote r singular values of H; as
{Sk}zzr

Next, we start to bound g(W ;W1 ... WoW H; + b1T) with techniques extended from Lemma D.3 in (Zhu et al.,
2021). By using Lemma G.1 for z ; = Wy Wy—1 ... WaW i hy ; + b with the same scalar ¢, ¢z (¢ can be chosen
arbitrarily) for all k£ and ¢, we have:

(1+ce)(K = D[g(WyWa—1... WoW H; +b17) — ¢

K n
1
=1 +e)E -1) |5 ; ; Lep(WyuWao1... WoWihy; +b,yi) — ¢
1 K n K
> I Z Z Z((WMWM—I . WoWq) by 4+ b)) — K(WayWag ... WoWy)hy ; + b)
k=1i=1 |j=1
Lo K K K K K
:NZ ZZ(WMWM_lWl)jhkﬂiKZ(WMWM—lWl)khk,z +Zz(bjibk)
i=1 k=1 j=1 k=1 k=1j=1
- =0 (147)
Lo K K K
= NZ SN (WuWy1 .. . WoWi) by — K> (Wy Wi ... WoWi)ihy
i=1 \k=1j=1 k=1
K n K 1 K
:NZZ (WaWag ... WoWy),, Z —hy)
i=1 k=1 j:l
1 n K
=3 (WuWai ... WoW)(hy — hy )
n =1 k=1
_1 n K
= Z(WMWM—l WoWi)i(hy,; —hy),
i=1 k=1

where h; = % Zszl h; ;. Now, from the AM-GM inequality, we know that for any u, v € R¥ and any c3 > 0,

T C3 1
uv< 5”“”3 + 273”"”%

The equality holds when c3u = v. Therefore, by applying AM-GM for each term (W ;W1 ... Wo W) (hy; — h;),
we further have:

(1+Cl)(K )[ (WMWM_l...W2W1+b1T)7CQ:|

K K
c 1 2

Z—gZH(WMWM 1 Wo W5 — 2% nZZHhkz h; |,
k=1 i=1 k=1
K n

=— %3 D WA W1 W W5 — o Z KZ ||hk,i||§> - K ||hl||§] (148)
k=1 =1 k=1

W War s WaWi (|H1||F wYIm:)

1

C3 2 2
> Z|[WyWay_t1...WoW - —|H
> 2“ MWar—1 2 Wil|% 203n” 1|7,
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where the first inequality becomes an equality if and only if

cs(WyWoar1...WoWy)g = hy; — h; Vk, i, (149)
and we ignore the term >, ]Hi Hz in the last inequality (equality holds iff h; = 0 V).
Now, by using equation (146), we have:

IWaWar1... WoW1||% = trace( W] W, ... W, Wi, WyWy_i...WyW))
)\JW

= trace[(H;H )M] M (150)
A, AWy s - - Aw, I Z

(&

We will choose c; to let all the inequalities at (148) become equalities, which is as following:

Cg(WMWM,1 ‘e W2W1)k = hk,i Vk,’&

K

2= Zk:l Zﬁ: _ | H H% _ 22:1 5%

= = = .
”Zf:l [(WarWar—1 .. . WoW)i|3 nllWarWa—g . WoWi |5 end_ 53

(151)

With c3 chosen as above, continue from the lower bound at (148), we have:

1 c r T
g(W]wWM,1 W2W1H1 + blT) m —\/; < E Si) ( E SiM> + ca. (152)
k=1 k=1

Using this lower bound of f, we have for any critical point (W ;W ;1 ... WoW;, H;, b) of function f and ¢; > 0:

A
f(W]\/[,WM_l, .. .,Wg,wl,Hl,b) = g(WMW]W_l ... WoW H, + blT) + WM HWMHF

Aw. Aw, A
o+ S WaE + IW[E + =+ [Hy )l
1 \F - - AWn A —
> | —\/= 53 s2M )| g + 52
e (Vi (5) (5) > s
/\W )\H /\H D T (153)
o+ 2R + = ;sk+§||b\\2

1 c ~ ~ u M+1 . VI
TAxenE -0\ " \Vn ——A 2
Tre)(E -1 \/; (Zsk> (Zsk oot =5 —Am ) _si+5 bl
k=1 k=1 k=1
5(51,52 ..... ySry >\W27)\W1 )\Hl)

Z 5(81752%' '757’a)‘WM""7>\W1?)‘H1)7

where the last inequality becomes an equality when either b = 0 or A\, = 0.

From Lemma G.2, we know that the inequality f(Wuy,Wpy_1,...,Wo, Wi, Hy,b)

v
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E(81,82, -y Sry AWays - - - s AWy, AH, ) becomes equality if and only if:
[(WarWar—1. .. Wiy = [(WauWar—1... Wil =+ = [(WyWa—1... Wikl
b=0or )\, =0,

K

— 1

h; := E E hj,i =0, Vie [’I’L], and Cg(W]wWMfl .. ~W1)K = hk,i> Vk € [K},Z S [n],
=1

T e st 1 T (159
WMW]Wfl...Wl(WMW]\/Ifl...W1> Zﬁ IK—E]_KIK s

cg = | (K —1)exp _(K—\/IE)\/E (;ﬁ) <’;SiM> )

with c3 as in equation (151). Furthermore, H; includes repeated columns with K non-repeated columns, and the sum of

these non-repeated columns is 0. Hence, rank(H) < min(das, dpr—1,...,d1, K — 1) = K — 1.
Now, the only work left is to prove &(S1,S82,-..,Sr AWys---» AWy, Am,) achieve its minimum at
finite s1,...,s, for any fixed Aw,,...A\w,,Am,- From equation (154), we know that c; =

4
[(K —1)exp (—ﬁ\/(zzzl s2) (Xhen siM)ﬂ is an increasing function in terms of si,82,...,S,

and ¢y = ﬁ log (14 ¢1) (K —1)) + +4—log (1+Cl) is a decreasing function in terms of ¢;. Therefore, we observe

1+cq c1
: . 1 g
the following: When any s — +00, ¢1 — 400 and 7= (—\/%\/(2221 s2) (Xhey SiM)) —0,c0— 0,50
that £(s1, .., SK, AWy - - - AWy, AH, ) — +00 as s — +00.
Since  &(81,82,--+ySry AWyyy s AW, Al,) 1S a  continuous  function  of  (s1,82,...,8.) and
E(81,82y -y Sry AWass - - - s AWy, A, ) — +00 when any s, — +00, £ must achieves its minimum at finite (s1, S, . . ., $r).
This finishes the proof.
O]

G.1. Supporting lemmas

Lemma G.1 (Lemma D.5 in (Zhu et al., 2021)). Let y;, € RE be an one-hot vector with the k-th entry equalling 1 for some
k € [K]. For any vector z € RX and c; > 0, the cross-entropy loss Lcg (2, y) with yj, can be lower bounded by

Lck (z,yk) > 1 (Zfil ZZ) — Kz,

71+C1 K—l +027

where ¢y = ﬁ log (1 +c1) (K — 1)) + 135 log (%) The inequality becomes an equality when

1
(ZZK:1 Zi) — Kz
K—-1

zi =25, Vi,j#k, and c1 = |(K—1)exp

Lemma G.2 (Extended from Lemma D.4 in (Zhu et al., 2021)). Let (W, Wp_1,..., Wo, W1, Hy,b) be a
critical point of f with {sy},_, be the singular values of Hy. The lower bound (152) of g is attained for
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(War, W1, ..., Wo, Wy, Hy, b) if and only if:

[(WyWar1... WoWi)ill, = [(WyWar1... WaWi)ol, = = [[(WyWa1... WoWy) k||,
b = b1,
_ 1 XK
h; .= ? Zhj’i =0, Vie [TL], and C3(W]\4WM_1 .. .Wle)k = hk-ﬂ', vk € [K],Z € [’I”I}7
=1
(155)

T CZf—ﬁzM 1 T
WJWWM_l...WQWl(W]\/jWM_l...WQW1) :ﬁ IK*?]-K]-K N

/e K K -
cp= [(K—1)exp —m (Zsﬁ) (;sil‘/f) )

k=1

with c3 as in equation (151).

Proof of Lemma G.2. For the inequality (152), to become an equality, first we will need two inequalities at (148) to become
equalities, this leads to:

Ei =0 Vie [ﬂ],
C3(WMW]\/[_1 . ..Wng)k = hkﬂ* Vk € [K],Z € [n},

g2 M
=1 Sk and ¢ = Hy

with ¢cg = | —=k=1"E — .
3 en iy siM AW AWap_q - AWy

Next, we will need the inequality at (147) to become an equality, which is true if and only if (from the equality conditions of
Lemma G.1):
(WaurWar—1... WoWy ) hy s +b; = (WyWaror ... WoWy)ihy + b, V5,1 #k,

(E;I‘(:ﬂzk,i]j) — Klzplk -

= [(K -1 j kelK
a = |( ) exp 1 Vi € [n];k € [K],
with 2z, = Wy W1 ... WoWihy ;, and we have:
K K K K 1 K
Zl 254, = Zl(WMWM,1 o WoW) g + Zl b; = Zl b+ Zl b;
J= j= j= j= =

K
Khih, + ) b = Kb,
j=1

with b = % Zfil b;, and:
K [zk,i]k = K(WMW]\/[_l .. ~W2W1)k:hk,i 4+ Kbk = KCgH(W]WWM_l - WQWl)kH% =+ Kbk-

With these calculations, we can calculate c; as following:

(S0 ;) = K 20,
K-1

cp= [(K—1)exp
(156)

{(K —1)exp <KK_1 (b— csl(WarWas_1 ... WaWi),|2 — bk)ﬂ o
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Since ¢; is chosen to be the same for all & € [K|, we have:

C3||(W]\/[WM_1...W2W1)1€||§—l—bk :CgH(WMW]\/[_]...WQWl)l”g+bl Vi 7é ]43, (157)
Second, since (2] ; = [21,], for all Vj, £ # k, k € [K], we have:

(WyuWag.. . Wy)ihy +0 = (WyWarr .. . Wa)ihyg + b, Vi, 1#E (158)
= Cg(WM .. -Wl)j(WIM .. .Wl)k + bj = Cg(WM ce Wl)l(WJw .. ~W1)k + b, Vy,l 7£ k.

Based on this and Eszl(WMWM_l S WoW ), = é Zszl h,, = éKhi = 0, we have:

c3||(WyWarog ... W2W1)k||§ + by = —c3 Z(WZVIWM—l W) (W W0 W) + by
itk

_ (159)

=—(K —1)cs (WMWM—I . Wng)l(WMWM_l WO W)+ | b+ Z (b — bj)

1%k JF#LE

= 7(K — l)Cg(W]uWM_l N W2W1)Z(WMWIM—1 . .WQWl)k + [Qbk + (K - l)bl - Kl_)] ,

for all | # k. Combining equations (157) and (159), for all k,! € [K] with k # [ we have:
20 4+ (K — 1)by — Kb =2b; + (K — 1)b,, — Kb <= by =b;,Vk #l.

Hence, we have b = b1 for some b > 0. Therefore, from equations (157), (158) and (159):

1 ¢
IOWar e W[5 == [[(War o W[5 = 2 [[(War - W) = 52 > st (160)
k=1

(WJWWM_l - Wl)j(WMWM—l - Wl)k = (WMWM_1 - Wl)l(WMWM—l - Wl)k

b
K-1

WuWat. Wihl2= ———o ST @My 161
(W Wy Vllz K(K_l)gsk Vil #k, (161)

and this is equivalent to:

T _ s L T
(WMW]ijl...Wl)(WMW]W,]_...Wl) = ﬁ IK_?]-K]-K . (162)

Continue with ¢; in equation (156), we have:

K-1

\/E T T
= | (K —1)exp —m (;ﬁ) (;SiM>

. {(K—l)exp( c3||(WJV[WM_1...W1)k|§)]_1

-1




