000

## Neural Collapse in Deep Linear Networks: From Balanced to Imbalanced Data

Anonymous Authors<sup>1</sup>

## Abstract

Modern deep neural networks have achieved impressive performance on tasks from image classification to natural language processing. Surprisingly, these complex systems with massive amounts of parameters exhibit the same structural properties in their last-layer features and classifiers across canonical datasets when training until convergence. In particular, it has been observed that the last-layer features collapse to their classmeans, and those class-means are the vertices of a simplex Equiangular Tight Frame (ETF). This phenomenon is known as Neural Collapse ( $\mathcal{NC}$ ). Recent papers have theoretically shown that  $\mathcal{NC}$ emerges in the global minimizers of training problems with the simplified "unconstrained feature model". In this context, we take a step further and prove the  $\mathcal{NC}$  occurrences in deep linear networks for the popular mean squared error (MSE) and cross entropy (CE) losses, showing that global solutions exhibit  $\mathcal{NC}$  properties across the linear layers. Furthermore, we extend our study to imbalanced data for MSE loss and present the first geometric analysis of  $\mathcal{NC}$  under bias-free setting. Our results demonstrate the convergence of the last-layer features and classifiers to a geometry consisting of orthogonal vectors, whose lengths depend on the amount of data in their corresponding classes. Finally, we empirically validate our theoretical analyses on synthetic and practical network architectures with both balanced and imbalanced scenarios.

#### 1. Introduction

Despite the impressive performance of deep neural networks (DNNs) across areas of machine learning and artificial intelligence (Krizhevsky et al., 2012; Simonyan & Zisserman, 2014; Goodfellow et al., 2016; He et al., 2015; Huang et al., 2017; Brown et al., 2020), the highly non-convex nature of these systems, as well as their massive number of parameters, ranging from hundreds of millions to hundreds of billions, impose a significant barrier to having a concrete theoretical understanding of how they work. Additionally, a variety of optimization algorithms have been developed for training DNNs, which makes it more challenging to analyze the resulting trained networks and learned features (Ruder, 2016). In particular, the modern practice of training DNNs includes training the models far beyond *zero error* to achieve *zero loss* in the terminal phase of training (TPT) (Ma et al., 2017; Belkin et al., 2018; 2019). A mathematical understanding of this training paradigm is important for studying the generalization and expressivity properties of DNNs (Papyan et al., 2020; Han et al., 2021).

Recently, (Papyan et al., 2020) has empirically discovered an intriguing phenomenon, named Neural Collapse ( $\mathcal{NC}$ ), which reveals a common pattern of the learned deep representations across canonical datasets and architectures in image classification tasks. (Papyan et al., 2020) defined Neural Collapse as the existence of the following four properties:

 $(\mathcal{NC}1)$  Variability collapse: features of the same class converge to a unique vector, as training progresses.

 $(\mathcal{NC}2)$  **Convergence to simplex ETF:** the optimal classmeans have the same length and are equally and maximally pairwise seperated, i.e., they form a simplex Equiangular Tight Frame (ETF).

 $(\mathcal{NC}3)$  Convergence to self-duality: up to rescaling, the class-means and classifiers converge on each other.

 $(\mathcal{NC4})$  Simplification to nearest class-center: given a feature, the classifier converges to choosing whichever class has the nearest class-mean to it.

Theoretically, it has been proven that  $\mathcal{NC}$  emerges in the last layer of DNNs during TPT when the models belong to the class of "unconstrained features model" (UFM) (Mixon et al., 2020) and trained with cross-entropy (CE) loss or mean squared error (MSE) loss. With regard to classification tasks, CE is undoubtedly the most popular loss function to train neural networks. However, MSE has recently been shown to be effective for classification tasks, with comparable or even better generalization performance than CE loss (Hui & Belkin, 2020; Demirkaya et al., 2020; Zhou et al., 2022b).

**Contributions:** We provide a thorough analysis of the global solutions to the training deep linear network problem

with MSE and CE losses under the unconstrained features
model defined in Section 2.1. Moreover, we study the geometric structure of the learned features and classifiers under
a more practical setting where the dataset is imbalanced
among classes. Our contributions are three-fold:

**1.** UFM + MSE + balanced + deep linear network: We provide the *first mathematical analysis of the global solutions for deep linear networks with arbitrary depths and widths under UFM setting*, showing that the global solutions exhibit  $\mathcal{NC}$  properties and how adding the bias term can affect the collapsed structure, when training the model with the MSE loss and balanced data.

068 2. UFM + MSE + imbalanced + plain/deep linear net069 work: We provide the *first geometric analysis for the plain*070 *UFM*, which includes only one layer of weight after the un071 constrained features, when training the model with the MSE
1022 loss and imbalanced data. Additionally, we also generalize
073 this setting to the deep linear network one.

074<br/>0753. UFM + CE + balanced + deep linear network: We<br/>study deep linear networks trained with CE loss and demon-<br/>strate the existence of  $\mathcal{NC}$  for any global minimizes in this<br/>setting.

079 Related works: In recent years, there has been a rapid 080 increase in interest in  $\mathcal{NC}$ , resulting in a decent amount of 081 works in a short period of time. Under UFM, these works 082 studied different training problems, proving ETF and  $\mathcal{NC}$ 083 properties are exhibited by any global solutions of the loss 084 functions. In particular, a line of works use UFM with CE training to analyze theoretical abstractions of  $\mathcal{NC}$  (Zhu et al., 086 2021; Fang et al., 2021; Lu & Steinerberger, 2020). Other 087 works study UFM with MSE loss (Tirer & Bruna, 2022; 088 Zhou et al., 2022a; Ergen & Pilanci, 2020; Rangamani & 089 Banburski-Fahey, 2022). For MSE loss, recent extensions to 090 account for additional layers with non-linearity are studied 091 in (Tirer & Bruna, 2022; Rangamani & Banburski-Fahey, 092 2022), or with batch normalization (Ergen & Pilanci, 2020). 093 Furthermore, (Zhu et al., 2021; Zhou et al., 2022a;b) have 094 shown the benign optimization landscape for several loss 095 functions under the plain UFM setting, demonstrating that 096 critical points can only be global minima or strict saddle 097 points. Another line of work exploits the ETF structure to 098 improve the network design by initially fixing the last-layer 099 linear classifier as a simplex ETF and not performing any 100 subsequent learning (Zhu et al., 2021; Yang et al., 2022).

 lapse of features within the same class is preserved, but the geometry skew away from the ETF. (Thrampoulidis et al., 2022) theoretically studies the SVM problem, whose global minima follows a more general geometry than the simplex ETF, called "SELI". However, this work also makes clear that the unregularized version of CE loss only converges to KKT points of the SVM problem, which are not necessarily global minima. Due to space considerations, we defer a full discussion of related works to Appendix B. A comparison of our results with some existing works regarding the study of global optimality conditions is shown in Table 1 in Appendix B.

**Notation:** For a weight matrix  $\mathbf{W}$ , we use  $\mathbf{w}_j$  to denote its *j*-th row vector.  $\|.\|_F$  denotes the Frobenius norm of a matrix and  $\|.\|_2$  denotes  $L_2$ -norm of a vector.  $\otimes$  denotes the Kronecker product. The symbol " $\propto$ " denotes proportional, i.e, equal up to a positive scalar. Moreover, we denote the best rank-*k* approximation of a matrix  $\mathbf{A}$  as  $\mathcal{P}_k(\mathbf{A})$ . We also use some common matrix notations:  $\mathbf{1}_n$  is the all-ones vector, diag $\{a_1, \ldots, a_K\}$  is a square diagonal matrix size  $K \times K$  with diagonal entries  $a_1, \ldots, a_K$ .

#### 2. Problem Setup

We consider the classification task with K classes. Let  $n_k$  denote the number of training samples of class  $k, \forall k \in [K]$  and  $N := \sum_{k=1}^{K} n_k$ . A typical deep neural network  $\psi(\cdot) : \mathbb{R}^D \to \mathbb{R}^K$  can be expressed as follows:

$$\psi(\mathbf{x}) = \mathbf{W}\phi(\mathbf{x}) + \mathbf{b},$$

where  $\phi(\cdot)$ :  $\mathbb{R}^D \to \mathbb{R}^d$  is the feature mapping, and  $\mathbf{W} \in \mathbb{R}^{K \times d}$  and  $\mathbf{b} \in \mathbb{R}^K$  are the last-layer linear classifiers and bias, respectively. Formally, the feature mapping  $\phi(.)$  consists of a multilayer nonlinear compositional mapping, which can be written as:

$$\phi_{\theta}(\mathbf{x}) = \sigma(\mathbf{W}_L \dots \sigma(\mathbf{W}_1 \mathbf{x} + \mathbf{b}_1) + \mathbf{b}_L)$$

where  $\mathbf{W}_l$  and  $\mathbf{b}_l$ , l = 1, ..., L, are the weight matrix and bias at layer l, respectively. Here,  $\sigma(\cdot)$  is a nonlinear activation function. Let  $\theta := {\mathbf{W}_l, \mathbf{b}_l}_{l=1}^L$  be the set of parameters in the feature mapping and  $\Theta := {\mathbf{W}, \mathbf{b}, \theta}$  be the set of all network's parameters. We solve the following optimization problem to find the optimal values for  $\Theta$ :

$$\min_{\Theta} \sum_{k=1}^{K} \sum_{i=1}^{n_k} \mathcal{L}(\psi(\mathbf{x}_{k,i}), \mathbf{y}_k) + \frac{\lambda}{2} \|\Theta\|_F^2, \qquad (1)$$

where  $\mathbf{x}_{k,i} \in \mathbb{R}^D$  is the *i*-th training sample in the *k*-th class, and  $\mathbf{y}_k \in \mathbb{R}^K$  denotes its corresponding label, which is a one-hot vector whose *k*-th entry is 1 and other entries are 0. Also,  $\lambda > 0$  is the regularization hyperparameter that control the impact of the weight decay penalty, and  $\mathcal{L}(\psi(\mathbf{x}_{k,i}), \mathbf{y}_k)$  is the loss function that measures the difference between the output  $\psi(\mathbf{x}_{k,i})$  and the target  $\mathbf{y}_k$ .

109

060

061

062

063

064

065

066



(c) GOF (Thm. 4.1)

136

137

138

139

140

141

142

143

145

146

147

148

149

150

151

152 153

154

155

156

Figure 2. Visualization of geometries of Frobenius-normalized classifiers and features with K = 3 classes. For imbalanced example, the number of samples for each class is 30, 10, and 5.

#### 2.1. Formulation under Unconstrained Features Model

Following recent studies of the  $\mathcal{NC}$  phenomenon, we adopt the unconstrained features model (UFM) in our setting. 144 UFM treats the last-layer features  $\mathbf{h} = \phi(\mathbf{x}) \in \mathbb{R}^d$  as free optimization variables. This relaxation can be justified by the well-known result that an overparameterized deep neural network can approximate any continuous function (Hornik et al., 1989; Hornik, 1991; Zhou, 2018; Yarotsky, 2018). Using the UFM, we consider the following slight variant of (1):

$$\min_{\mathbf{W},\mathbf{H},\mathbf{b}} f(\mathbf{W},\mathbf{H},\mathbf{b}) \coloneqq \frac{1}{2N} \sum_{k=1}^{K} \sum_{i=1}^{n_k} \mathcal{L}(\mathbf{W}\mathbf{h}_{k,i} + \mathbf{b}, \mathbf{y}_k)$$
$$+ \frac{\lambda_W}{2} \|\mathbf{W}\|_F^2 + \frac{\lambda_H}{2} \|\mathbf{H}\|_F^2 + \frac{\lambda_b}{2} \|\mathbf{b}\|_2^2, \tag{2}$$

157 where  $\mathbf{h}_{k,i}$  is the feature of the *i*-th training sample in the k-158 th class. We let  $\mathbf{H} := [\mathbf{h}_{1,1}, \dots, \mathbf{h}_{1,n_1}, \mathbf{h}_{2,1}, \dots, \mathbf{h}_{K,n_K}] \in$ 159  $\mathbb{R}^{d \times N}$  be the matrix of unconstrained features. The 160 feature class-means and global-mean are computed as 161  $\mathbf{h}_k := n_k^{-1} \sum_{i=1}^{n_k} \mathbf{h}_{k,i}$  for  $k = 1, \dots, K$  and  $\mathbf{h}_{\mathbf{G}} :=$ 162  $N^{-1} \sum_{k=1}^{K} \sum_{i=1}^{n_k} \mathbf{h}_{k,i}$ , respectively. In this paper, we also denote **H** by **H**<sub>1</sub> and use these notations interchangeably. 163 164

Extending UFM to the setting with M linear layers:  $\mathcal{NC}$ phenomenon has been studied extensively for different loss functions under UFM but with only 1 to 2 layers of weights. In this work, we study  $\mathcal{NC}$  under UFM in its significantly more general form with  $M \geq 2$  linear layers by generalizing (2) to deep linear networks with arbitrary depths and widths (see Fig. 1 for an illustration). We consider the following generalization of (2) in the *M*-linear-layer setting:

$$\min_{\mathbf{H}_{1},\mathbf{b}} \mathbf{w}_{1} \frac{1}{2N} \sum_{k=1}^{K} \sum_{i=1}^{n_{k}} \mathcal{L}(\mathbf{W}_{M}\mathbf{W}_{M-1}\dots\mathbf{W}_{1}\mathbf{h}_{k,i} + \mathbf{b}, \mathbf{y}_{k} + \frac{\lambda_{W_{M}}}{2} \|\mathbf{W}_{M}\|_{F}^{2} + \frac{\lambda_{W_{M-1}}}{2} \|\mathbf{W}_{M-1}\|_{F}^{2} + \dots + \frac{\lambda_{W_{1}}}{2} \|\mathbf{W}_{1}\|_{F}^{2} + \frac{\lambda_{H_{1}}}{2} \|\mathbf{H}_{1}\|_{F}^{2} + \frac{\lambda_{b}}{2} \|\mathbf{b}\|_{2}^{2}, \quad (3)$$

where  $M \geq 2, \lambda_{W_M}, \ldots, \lambda_{W_1}, \lambda_{H_1}, \lambda_b > 0$  are regularization hyperparameters, and  $\mathbf{W}_M \in \mathbb{R}^{K \times d_M}, \mathbf{W}_{M-1} \in$  $\mathbb{R}^{d_M \times d_{M-1}}, \ldots, \mathbb{W}_1 \in \mathbb{R}^{d_2 \times d_1}$  with  $d_M, d_{M-1}, \ldots, d_1$ are arbitrary positive integers. In our setting, we do not consider the biases of intermediate hidden layers.

Imbalanced data: Without loss of generality, we assume  $n_1 \geq n_2 \geq \ldots \geq n_K$ . This setting is more general than those in previous works, where only two different class sizes are considered, i.e., the majority classes of  $n_A$  training samples and the minority classes of  $n_B$  samples with the imbalance ratio  $R := n_A/n_B > 1$  (Fang et al., 2021; Thrampoulidis et al., 2022).

We now define the "General Orthogonal Frame" (GOF), which is the convergence geometry of the class-means and classifiers in imbalanced MSE training problem with no bias (see Section 4).

Definition 2.1 (General Orthogonal Frame). A standard general orthogonal frame (GOF) is a collection of points in  $\mathbb{R}^{K}$  specified by the columns of:

$$\mathbf{N} = \frac{1}{\sqrt{\sum_{k=1}^{K} a_k^2}} \operatorname{diag}(a_1, a_2, \dots, a_K), \ a_i > 0 \ \forall i \in [K].$$

We also consider the general version of GOF as a collection of points in  $\mathbb{R}^d$   $(d \ge K)$  specified by the columns of **PN** where  $\mathbf{P} \in \mathbb{R}^{d \times K}$  is an orthonormal matrix, i.e.  $\mathbf{P}^{\top} \mathbf{P} =$  $\mathbf{I}_{K}$ . In the special case where  $a_{1} = a_{2} = \ldots = a_{K}$ , we have N follows OF structure in (Tirer & Bruna, 2022), i.e.,  $\mathbf{N}^{\top}\mathbf{N}\propto\mathbf{I}_{K}$ . Fig. 2 shows a visualization for GOF versus OF and ETF in (Papyan et al., 2020).

## 3. Neural Collapse in Deep Linear Networks under the UFM Setting with Balanced Data

In this section, we present our study on the global optimality conditions for the *M*-layer deep linear networks ( $M \ge 2$ ), 165 trained with the MSE loss under the balanced setting, i.e., 166  $n_1 = n_2 = ... = n_K := n$ , extending the prior results that 167 consider only one or two hidden layers. We consider the 168 following optimization problem for training the model: 169

where  $\mathbf{Y} = \mathbf{I}_K \otimes \mathbf{1}_n^\top \in \mathbb{R}^{K \times N}$  is the one-hot vectors matrix. Note that (4) is a special case of (3) when  $\lambda_{b_M} = 0$ .

We further consider two different settings from (4): (i) biasfree, i.e., excluding b, and (ii) last-layer unregularized bias,
i.e., including b. We now state the characteristics of the
global solutions to these problems.

**Theorem 3.1.** Let  $R := \min(K, d_M, d_{M-1}, \ldots, d_2, d_1)$ and  $(\mathbf{W}_M^*, \mathbf{W}_{M-1}^*, \ldots, \mathbf{W}_1^*, \mathbf{H}_1^*, \mathbf{b}^*)$  be any global minimizer of (4). Denoting  $a := K \sqrt[M]{Kn\lambda_{W_M}\lambda_{W_{M-1}}\dots\lambda_{W_1}\lambda_{H_1}}$ , then the following results hold for both (i) bias-free setting with  $\mathbf{b}^*$ excluded and (ii) last-layer unregularized bias setting with  $\mathbf{b}^*$  included:

(a) If 
$$a < \frac{(M-1)^{\frac{M-1}{M}}}{M^2}$$
, we have:

176

177 178

183

184

185

186

187

188

189

190

191

196

198

199

200

202

204

206

208

209

210

211

212

214

215

216

217 218

219

$$(\mathcal{NC1})$$
  $\mathbf{H}_1^* = \overline{\mathbf{H}}^* \otimes \mathbf{1}_n^\top$ , where  $\overline{\mathbf{H}}^* = [\mathbf{h}_1^*, \dots, \mathbf{h}_K^*] \in \mathbb{R}^{d \times K}$  and  $\mathbf{b}^* = \frac{1}{K} \mathbf{1}_K$ .

 $(\mathcal{NC}2)$   $\forall j = 1, \dots, M$ :

$$\mathbf{W}_{M}^{*}\mathbf{W}_{M}^{*\top} \propto \overline{\mathbf{H}}^{*+} \overline{\mathbf{H}}^{*} \propto \mathbf{W}_{M}^{*}\mathbf{W}_{M-1}^{*} \dots \overline{\mathbf{H}}^{*}$$
$$\propto (\mathbf{W}_{M}^{*}\mathbf{W}_{M-1}^{*} \dots \mathbf{W}_{j}^{*})(\mathbf{W}_{M}^{*}\mathbf{W}_{M-1}^{*} \dots \mathbf{W}_{j}^{*})^{\top}$$

and align to:

(*i*) *OF* structure if (4) is bias-free:

$$\begin{cases} \mathbf{I}_K & \text{if } R \ge K\\ \mathcal{P}_R(\mathbf{I}_K) & \text{if } R < K \end{cases}$$

*(ii) ETF structure if (*4*) has last-layer bias* **b***:* 

$$\begin{cases} \mathbf{I}_K - \frac{1}{K} \mathbf{1}_K \mathbf{1}_K^\top & \text{if } R \ge K - 1\\ \mathcal{P}_R \left( \mathbf{I}_K - \frac{1}{K} \mathbf{1}_K \mathbf{1}_K^\top \right) & \text{if } R < K - 1 \end{cases}.$$

 $(\mathcal{NC}3) \forall j = 1, \dots, M:$ 

$$\mathbf{W}_{M}^{*}\mathbf{W}_{M-1}^{*}\dots\mathbf{W}_{1}^{*}\propto\overline{\mathbf{H}}^{*+},$$
  
 $\mathbf{W}_{M}^{*}\mathbf{W}_{M-1}^{*}\dots\mathbf{W}_{j}^{*}\propto(\mathbf{W}_{j-1}^{*}\dots\mathbf{W}_{1}^{*}\overline{\mathbf{H}}^{*})^{\top}.$ 

(b) If 
$$a > \frac{(M-1)^{\frac{M-1}{M}}}{M^2}$$
, (4) only has trivial global minima  $(\mathbf{W}_M^*, \mathbf{W}_{M-1}^*, \dots, \mathbf{W}_1^*, \mathbf{H}_1^*, \mathbf{b}^*) = (\mathbf{0}, \mathbf{0}, \dots, \mathbf{0}, \mathbf{0}, \frac{1}{K} \mathbf{1}_K).$ 

(c) If  $a = \frac{(M-1)^{\frac{M-1}{M}}}{M^2}$ , (4) has trivial global solution  $(\mathbf{W}_M^*, \dots, \mathbf{W}_1^*, \mathbf{H}_1^*, \mathbf{b}^*) = (\mathbf{0}, \dots, \mathbf{0}, \mathbf{0}, \frac{1}{K} \mathbf{1}_K)$  and nontrivial global solutions that have the same ( $\mathcal{NC}1$ ) and ( $\mathcal{NC}3$ ) properties as case (a).

For  $(\mathcal{NC2})$  property, for  $j = 1, \ldots, M$ , we have:

$$\begin{split} \mathbf{W}_{M}^{*}\mathbf{W}_{M}^{*\top} \propto \overline{\mathbf{H}}^{*\top} \overline{\mathbf{H}}^{*} \propto \mathbf{W}_{M}^{*}\mathbf{W}_{M-1}^{*} \dots \overline{\mathbf{H}}^{*} \propto \\ (\mathbf{W}_{M}^{*}\mathbf{W}_{M-1}^{*} \dots \mathbf{W}_{j}^{*}) (\mathbf{W}_{M}^{*}\mathbf{W}_{M-1}^{*} \dots \mathbf{W}_{j}^{*})^{\top} \end{split}$$

and align to:

$$\begin{cases} \mathcal{P}_r(\mathbf{I}_K) & \text{if (4) is bias-free} \\ \mathcal{P}_r(\mathbf{I}_K - \frac{1}{K} \mathbf{1}_K \mathbf{1}_K^\top) & \text{if (4) has last-layer bias} \end{cases},$$

with r is the number of positive singular value of  $\overline{\mathbf{H}}^*$ .

Our proofs (in Appendix D) first characterize critical points of the loss function, showing that the weight matrices of the network have the same set of singular values, up to a factor depending on the weight decay. Then, we use the singular value decomposition on these weight matrices to transform the loss function into a function of singular values of  $\mathbf{W}_1$ and singular vectors of  $\mathbf{W}_M$ . Due to the separation of the singular values/vectors in the expression of the loss function, we can optimize each one individually. This method shares some similarities with the proof for bias-free case in (Tirer & Bruna, 2022) where they transform a lower bound of the loss function into a function of singular values. Furthermore, the threshold  $(M-1)^{\frac{M-1}{M}}/M^2$  of the constant *a* is derived from the minimizer of the function  $g(x) = 1/(x^M+1)+bx$ for x > 0. For instance, if  $b > (M-1)^{\frac{M-1}{M}}/M$ , q(x) is minimized at x = 0 and the optimal singular values will be 0's, leading to the stated solution.

The main difficulties and novelties of our proofs for deep linear networks are: i) we observe that the product of many matrices can be simplified by using SVD with identical orthonormal bases between consecutive weight matrices (see Lemma D.4) and, thus, only the singular values of  $\mathbf{W}_1$ and left singular vectors of  $\mathbf{W}_M$  remain in the loss function, ii) optimal singular values are related to the minimizer of the function  $g(x) = 1/(x^M + 1) + bx$  (see Appendix D.2.1), and iii) we study the properties of optimal singular vectors to derive the geometries of the global solutions.

Theorem 3.1 implies the following interesting results:

• Features collapse: For each  $k \in [K]$ , with class-means matrix  $\overline{\mathbf{H}}^* = [\mathbf{h}_1^*, \dots, \mathbf{h}_K^*] \in \mathbb{R}^{d \times K}$ , we have  $\mathbf{H}_1^* = \overline{\mathbf{H}}^* \otimes \mathbf{1}_n^\top$ , implying the collapse of features within the same class to their class-mean.

- Convergence to OF/Simplex ETF: The class-means matrix, the last-layer linear classifiers, or the product of consecutive weight matrices converge to OF in the case of bias-free and simplex ETF in the case of having last-layer bias. This result is consistent with the two and three-layer cases in (Tirer & Bruna, 2022; Zhou et al., 2022a).
- **Convergence to self-duality:** If we separate the product W<sub>M</sub><sup>\*</sup>...W<sub>1</sub><sup>\*</sup> $\overline{\mathbf{H}}^*$  (once) into any two components, they will be perfectly aligned to each other up to rescaling. This generalizes from the previous results which demonstrate that the last-layer linear classifiers are perfectly matched with the class-means after rescaling.

Remark 3.2. The convergence of the class-means matrix 233 to OF/Simplex ETF happens when  $d_m \ge K$  (or K-1) 234  $\forall m \in [M]$ , which often holds in practice (Krizhevsky et al., 235 2012; He et al., 2015). Otherwise, they converge to the best 236 rank-R approximation of  $\mathbf{I}_K$  or  $\mathbf{I}_K - \frac{1}{K} \mathbf{1}_K \mathbf{1}_K^{\top}$ , where the 237 class-means neither have the equinorm nor the maximally 238 pairwise separation properties. This result is consistent with 239 the two-layer case observed in (Zhou et al., 2022a). 240

241Remark 3.3. From the proofs, we can show that under the242condition  $d_m \geq K$ ,  $\forall m \in [M]$ , the optimal value of the243loss function is strictly smaller than when this condition244does not hold. Our result is aligned with (Zhu et al., 2018),245where they empirically observe that a larger network (i.e.,246larger width) tends to exhibit severe  $\mathcal{NC}$  and have smaller247training errors.

*Remark* 3.4. We study deep linear networks under UFM and balanced data for CE loss in Appendix A. The result demonstrates  $\mathcal{NC}$  properties of every global solutions, whose the matrices product  $\mathbf{W}_M \times \mathbf{W}_{M-1} \times \ldots \times \mathbf{W}_1$  and  $\mathbf{H}_1$  converge to the ETF structure when training progresses.

## 4. Neural Collapse in Deep Linear Networks under the UFM Setting with MSE Loss and Imbalanced Data

The majority of theoretical results for NC only consider the balanced data setting, i.e., the same number of training samples for each class. This assumption plays a vital role in the existence of the well-structured ETF geometry. In this section, we instead consider the imbalanced data setting and derive the first geometry analysis under this setting for MSE loss. Furthermore, we extend our study from the plain UFM setting, which includes only one layer of weight after the unconstrained features, to the deep linear network one.

#### 4.1. Plain UFM Setting with No Bias

254 255

256

257

258 259

260

261

262

263

264

265

266

267

268

269

270

271 272 273

274

The bias-free plain UFM with MSE loss is given by:

$$\min_{\mathbf{W},\mathbf{H}} \frac{1}{2N} \|\mathbf{W}\mathbf{H} - \mathbf{Y}\|_F^2 + \frac{\lambda_W}{2} \|\mathbf{W}\|_F^2 + \frac{\lambda_H}{2} \|\mathbf{H}\|_F^2, \quad (5)$$

where  $\mathbf{W} \in \mathbb{R}^{K \times d}$ ,  $\mathbf{H} \in \mathbb{R}^{d \times N}$ , and  $\mathbf{Y} \in \mathbb{R}^{K \times N}$  is the one-hot vectors matrix consisting  $n_k$  one-hot vectors for each class k,  $\forall k \in [K]$ . We now state the  $\mathcal{NC}$  properties of the global solutions of (5) under the imbalanced data setting when the feature dimension d is at least the number of classes K.

**Theorem 4.1.** Let  $d \ge K$  and  $(\mathbf{W}^*, \mathbf{H}^*)$  be any global minimizer of problem (5). Then, we have:

 $(\mathcal{NC1})$   $\mathbf{H}^* = \overline{\mathbf{H}}^* \mathbf{Y} \Leftrightarrow \mathbf{h}_{k,i}^* = \mathbf{h}_k^* \forall k \in [K], i \in [n_k],$ where  $\overline{\mathbf{H}}^* = [\mathbf{h}_1^*, \dots, \mathbf{h}_K^*] \in \mathbb{R}^{d \times K}.$ 

$$(\mathcal{NC}2)$$
 Let  $a := N^2 \lambda_W \lambda_H$ , we have:

$$\mathbf{W}^* \mathbf{W}^{*\top} = \operatorname{diag} \left\{ s_k^2 \right\}_{k=1}^K,$$
$$\overline{\mathbf{H}}^{*\top} \overline{\mathbf{H}}^* = \operatorname{diag} \left\{ \frac{s_k^2}{(s_k^2 + N\lambda_H)^2} \right\}_{k=1}^K,$$
$$\mathbf{W}^* \mathbf{H}^* = \operatorname{diag} \left\{ \frac{s_k^2}{s_k^2 + N\lambda_H} \right\}_{k=1}^K \mathbf{Y}$$
$$= \begin{bmatrix} \frac{s_1^2}{s_1^2 + N\lambda_H} \mathbf{1}_{n_1}^\top & \dots & \mathbf{0} \\ \vdots & \ddots & \vdots \\ \mathbf{0} & \dots & \frac{s_K^2}{s_k^2 + N\lambda_H} \mathbf{1}_{n_K}^\top \end{bmatrix}.$$

where:

$$f_{n_{1}}^{a} \leq \frac{a}{n_{2}} \leq \ldots \leq \frac{a}{n_{K}} \leq 1;$$
$$s_{k} = \sqrt{\sqrt{\frac{n_{k}\lambda_{H}}{\lambda_{W}}} - N\lambda_{H}} \quad \forall k \in [K]$$

• If there exists  $a \ j \in [K-1]$  s.t.  $\frac{a}{n_1} \leq \frac{a}{n_2} \leq \ldots \leq \frac{a}{n_j} \leq 1 < \frac{a}{n_{j+1}} \leq \ldots \leq \frac{a}{n_K}$ :

$$s_k = \begin{cases} \sqrt{\sqrt{\frac{n_k \lambda_H}{\lambda_W}} - N \lambda_H} & \forall k \le j \\ 0 & \forall k > j \end{cases}$$

• If 
$$1 < \frac{a}{n_1} \le \frac{a}{n_2} \le \dots \le \frac{a}{n_K}$$
:  
 $(s_1, s_2, \dots, s_K) = (0, 0, \dots, 0),$ 

and  $(\mathbf{W}^*, \mathbf{H}^*) = (\mathbf{0}, \mathbf{0})$  in this case.

For any k such that  $s_k = 0$ , we have:

$$\mathbf{w}_k^* = \mathbf{h}_k^* = \mathbf{0}.$$

$$(\mathcal{NC3})$$
  $\mathbf{w}_k^* = \sqrt{\frac{n_k \lambda_H}{\lambda_W}} \mathbf{h}_k^* \quad \forall \ k \in [K].$ 

275 The detailed proofs are provided in the Appendix E. We use 276 the same approach as the proofs of Theorem 3.1 to prove 277 this result, with challenge arises in the process of lower 278 bounding the loss function w.r.t. the singular vectors of 279  $\mathbf{W}$ . Interestingly, the left singular matrix of  $\mathbf{W}^*$  consists 280 multiple orthogonal blocks on its diagonal, with each block 281 corresponds with a group of classes having the same number 282 of training samples. This property creates the orthogonality of  $(\mathcal{NC}2)$  geometries. 284

Theorem 4.1 implies the following interesting results:

- Features collapse: The features in the same class also converge to their class-mean, similar as balanced case.
- Convergence to GOF: When the condition 289  $N^2 \lambda_W \lambda_H / n_K < 1$  is hold, the class-means ma-290 trix and the last-layer classifiers converge to GOF (see 291 Definition 2.1). This geometry includes orthogonal 292 vectors, but their length depends on the number of training samples in the class. The above condition 294 implies that the imbalance and the regularization level 295 should not be too heavy to avoid trivial solutions that 296 may harm the model performances. We will discuss 297 more about this phenomenon in Section 4.2.
- Alignment between linear classifiers and last-layer features: The last-layer linear classifier is aligned with the class-mean of the same class, but with a different ratio across classes. These ratios are proportional to the square root of the number of training samples, and thus different compared to the balanced case where  $\mathbf{W}^*/||\mathbf{W}^*||_F = \overline{\mathbf{H}}^{*\top}/||\overline{\mathbf{H}}^{*\top}||_F$ .

306 Remark 4.2. We study the case d < K in Theorem E.2. 307 In this case, while ( $\mathcal{NC1}$ ) and ( $\mathcal{NC3}$ ) are exactly similar 308 as the case  $d \ge K$ , the ( $\mathcal{NC2}$ ) geometries are different if 309  $a/n_d < 1$  and  $n_d = n_{d+1}$ , where a square block on the 310 diagonal is replaced by its low-rank approximation. This 311 square block corresponds to classes with the number of 312 training samples equal  $n_d$ . Also, we have  $\mathbf{w}_k^* = \mathbf{h}_k^* = \mathbf{0}$  for 313 any class k with the amount of data is less than  $n_d$ . 314

#### 4.2. GOF Structure with Different Imbalance Levels and Minority Collapse

316

329

Given the exact closed forms of the singular values of  $W^*$ stated in Theorem 4.1, we derive the norm ratios between the classifiers and between features across classes as follows:

**Lemma 4.3.** Suppose  $(\mathbf{W}^*, \mathbf{H}^*)$  is a global minimizer of problem (5) such that  $d \ge K$  and  $N^2 \lambda_W \lambda_H / n_K < 1$ , so that all the  $s_k$ 's are positive. The following results hold:

$$\begin{array}{l} 324\\ 325\\ 326\\ 327\\ 327\\ 328 \end{array} \quad \frac{\|\mathbf{w}_i^*\|^2}{\|\mathbf{w}_j^*\|^2} = \frac{\sqrt{\frac{n_i\lambda_H}{\lambda_W}} - N\lambda_H}{\sqrt{\frac{n_j\lambda_H}{\lambda_W}} - N\lambda_H}, \\ \frac{\|\mathbf{h}_i^*\|^2}{\|\mathbf{h}_j^*\|^2} = \frac{n_j}{n_i} \frac{\sqrt{\frac{n_j\lambda_H}{\lambda_W}} - N\lambda_H}{\sqrt{\frac{n_i\lambda_H}{\lambda_W}} - N\lambda_H} \\ 328 \\ \frac{328}{328} \quad \text{ff } n_i > n_i \text{ we have } \|\mathbf{w}^*\| > \|\mathbf{w}^*\| \text{ and } \|\mathbf{h}^*\| \le \|\mathbf{h}^*\| \end{aligned}$$

If  $n_i \ge n_j$ , we have  $\|\mathbf{w}_i^*\| \ge \|\mathbf{w}_j^*\|$  and  $\|\mathbf{h}_i^*\| \le \|\mathbf{h}_j^*\|$ .

It has been empirically observed that the classifiers of the majority classes have greater norms (Kang et al., 2019). Our result is in agreement with this observation. Moreover, it has been shown that class imbalance impairs the model's accuracy on minority classes (Kang et al., 2019; Cao et al., 2019). Recently, (Fang et al., 2021) discover the "Minority Collapse" phenomenon. In particular, they show that there exists a finite threshold for imbalance level beyond which all the minority classifiers collapse to a single vector, resulting in the model's poor performance on these classes. *Theorem 4.1 is not only aligned with the "Minority Collapse" phenomenon, but also provides the imbalance threshold for the collapse of minority classes to vector* **0**, *i.e.*,  $N^2 \lambda_W \lambda_H / n_K > 1$ .

# 4.3. Bias-free Deep Linear Network under the UFM setting

We now generalize (5) to bias-free deep linear networks with  $M \ge 2$  and arbitrary widths. We study the following optimization problem with imbalanced data:

$$\min_{\mathbf{W}_{M},\mathbf{W}_{M-1},\ldots,\mathbf{W}_{1},\mathbf{H}_{1}} \frac{1}{2N} \|\mathbf{W}_{M}\mathbf{W}_{M-1}\ldots\mathbf{W}_{1}\mathbf{H}_{1}-\mathbf{Y}\|_{F}^{2} + \frac{\lambda_{W_{M}}}{2} \|\mathbf{W}_{M}\|_{F}^{2} + \ldots + \frac{\lambda_{W_{1}}}{2} \|\mathbf{W}_{1}\|_{F}^{2} + \frac{\lambda_{H_{1}}}{2} \|\mathbf{H}_{1}\|_{F}^{2},$$
(6)

where the target matrix  $\mathbf{Y}$  is the one-hot vectors matrix defined in (5). We now state the  $\mathcal{NC}$  properties of the global solutions of (6) when the dimensions of the hidden layers are at least the number of classes K.

**Theorem 4.4.** Let  $d_m \geq K$ ,  $\forall m \in [M]$ , and  $(\mathbf{W}_M^*, \mathbf{W}_{M-1}^*, \dots, \mathbf{W}_1^*, \mathbf{H}_1^*)$  be any global minimizer of problem (6). We have the following results:

 $(\mathcal{NC1}) \quad \mathbf{H}_1^* = \overline{\mathbf{H}}^* \mathbf{Y} \Leftrightarrow \mathbf{h}_{k,i}^* = \mathbf{h}_k^* \,\forall \, k \in [K], i \in [n_k],$ where  $\overline{\mathbf{H}}^* = [\mathbf{h}_1^*, \dots, \mathbf{h}_K^*] \in \mathbb{R}^{d_1 \times K}.$ 

 $(\mathcal{NC}2)$  Let  $c := \frac{\lambda_{W_1}^{M-1}}{\lambda_{W_M}\lambda_{W_{M-1}}\dots\lambda_{W_2}}, a := N \sqrt[M]{N\lambda_{W_M}\lambda_{W_{M-1}}\dots\lambda_{W_1}\lambda_{H_1}} and \forall k \in [K], x_k^* is the largest positive solution of the equation <math>\frac{a}{n_k} - \frac{x^{M-1}}{(x^M+1)^2} = 0,$  we have the following:

$$\begin{split} \mathbf{W}_{M}^{*}\mathbf{W}_{M}^{*\top} &= \frac{\lambda_{W_{1}}}{\lambda_{W_{M}}} \operatorname{diag} \left\{ s_{k}^{2} \right\}_{k=1}^{K}, \\ (\mathbf{W}_{M}^{*} \dots \mathbf{W}_{1}^{*}) (\mathbf{W}_{M}^{*} \dots \mathbf{W}_{1}^{*})^{\top} &= \operatorname{diag} \left\{ cs_{k}^{2M} \right\}_{k=1}^{K}, \\ \overline{\mathbf{H}}^{*\top} \overline{\mathbf{H}}^{*} &= \operatorname{diag} \left\{ \frac{cs_{k}^{2M}}{(cs_{k}^{2M} + N\lambda_{H_{1}})^{2}} \right\}_{k=1}^{K}, \\ \mathbf{W}_{M}^{*} \mathbf{W}_{M-1}^{*} \dots \mathbf{W}_{1}^{*} \mathbf{H}_{1}^{*} &= \left\{ \frac{cs_{k}^{2M}}{cs_{k}^{2M} + N\lambda_{H_{1}}} \right\}_{k=1}^{K} \mathbf{Y}, \end{split}$$

(
$$\mathcal{NC3}$$
) We have,  $\forall k \in [K]$ :

$$(\mathbf{W}_M^*\mathbf{W}_{M-1}^*\ldots\mathbf{W}_1^*)_k = (cs_k^{2M} + N\lambda_{H_1})\mathbf{h}_k^*$$

where:

• If 
$$\frac{a}{n_1} \leq \frac{a}{n_2} \leq \ldots \leq \frac{a}{n_K} < \frac{(M-1)^{\frac{M-1}{M}}}{M^2}$$
, we have:  
 $\frac{2M}{N\lambda_{H_1} x_k^{*M}} > (J_1 = [M])$ 

$$s_k = \sqrt[2M]{\frac{N\lambda_{H_1} x_k^{*M}}{c}} \quad \forall k \in [K].$$

• If there exists  $a \ j \in [K-1]$  s.t.  $\frac{a}{n_1} \le \frac{a}{n_2} \le \ldots \le \frac{a}{n_j} < \frac{(M-1)^{\frac{M-1}{M}}}{M^2} < \frac{a}{n_{j+1}} \le \ldots \le \frac{a}{n_K}$ , we have:

$$s_k = \begin{cases} \sqrt[2M]{\frac{N + M_1 \cdot x_k}{c}} & \forall k \le j \\ 0 & \forall k > j \end{cases}.$$

For any k such that  $s_k = 0$ , we have:

$$(\mathbf{W}_M^*)_k = \mathbf{h}_k^* = \mathbf{0}$$

• If 
$$\frac{(M-1)^{\frac{M-1}{M}}}{M^2} < \frac{a}{n_1} \le \frac{a}{n_2} \le \ldots \le \frac{a}{n_K}$$
, we have:  
 $(s_1, s_2, \ldots, s_K) = (0, 0, \ldots, 0),$ 

and 
$$(\mathbf{W}_{M}^{*}, \dots, \mathbf{W}_{1}^{*}, \mathbf{H}_{1}^{*}) = (\mathbf{0}, \dots, \mathbf{0}, \mathbf{0})$$
 in this case

The detailed proofs of Theorem 4.4 and the remaining case where there are some  $\frac{a}{n_k}$ 's equal to  $\frac{(M-1)\frac{M-1}{M}}{M^2}$  are provided in Appendix F.

*Remark* 4.5. The equation that solves for the optimal singular value,  $\frac{a}{n} - \frac{x^{M-1}}{(x^{M}+1)^2} = 0$ , has exactly two positive solutions when  $a < (M-1)^{\frac{M-1}{M}}/M^2$  (see Section D.2.1). Solving this equation leads to cumbersome solutions of a high-degree polynomial. Even without the exact closedform formula for the solution, the ( $\mathcal{NC}2$ ) geometries can still be easily computed by numerical methods.

374 *Remark* 4.6. We study Rthe case ·= 375  $\min(d_M,\ldots,d_1,K) < K$  in Theorem F.2. In this 376 case, while  $(\mathcal{NC}1)$  and  $(\mathcal{NC}3)$  are exactly similar as the case R = K in Theorem 4.4, the ( $\mathcal{NC}2$ ) geometries 378 are different if  $a/n_R \leq 1$  and  $n_R = n_{R+1}$ , where a 379 square block on the diagonal is replaced by its low-rank 380 approximation. This square block corresponds to classes 381 with the number of training samples equal  $n_R$ . Also, we 382 have  $(\mathbf{W}_M)_k^* = \mathbf{h}_k^* = \mathbf{0}$  for any class k with the amount of 383 data is less than  $n_R$ . 384



*Figure 3.* Illustration of  $\mathcal{NC}$  with 6-layer MLP backbone on CI-FAR10 for MSE loss, balanced data and bias-free setting.



Figure 4. Same setup as Fig. 3 but having last-layer bias.

## 5. Experimental Results

In this section, we empirically verify our theoretical results in multiple settings for both balanced and imbalanced data settings. In particular, we observe the evolution of NC properties in the training of deep linear networks with a prior backbone feature extractor to create the "unconstrained" features (see Fig. 1 for a sample visualization). The experiments are performed on CIFAR10 (Krizhevsky, 2009) dataset for the image classification task. Moreover, we also perform direct optimization experiments, which follows the setting in (3) to guarantee our theoretical analysis.

The hyperparameters of the optimizers are tuned to reach the global optimizer in all experiments. The definitions of the  $\mathcal{NC}$  metrics, hyperparameters details, and additional numerical results can be found in Appendix C.

#### 5.1. Balanced Data

Under the balanced data setting, we alternatively substitute between multilayer perceptron (MLP), ResNet18 (He et al., 2016) and VGG16 (Simonyan & Zisserman, 2014) in place of the backbone feature extractor. For all experiments with MLP backbone model, we perform the regularization on the "unconstrained" features  $H_1$  and on subsequent weight layers to replicate the UFM setting in (3). For deep learn-





Figure 6. Illustration of  $\mathcal{NC}$  with 6-layer MLP backbone on an imbalanced subset of CIFAR10 for MSE loss and bias-free setting.

ing experiments with ResNet18 and VGG16 backbone, weenforce the weight decay on all parameters of the network,which aligns to the typical training protocol.

Multilayer perceptron experiment: We use a 6-layer MLP model with ReLU activation as the backbone feature extractor in this experiment. For deep linear layers, we cover all depth-width combinations with depth  $\in \{1, 3, 6, 9\}$  and width  $\in \{512, 1024, 2048\}$ . We run both bias-free and lastlayer bias cases to demonstrate the convergence to OF and ETF geometry, with the models trained by Adam optimizer (Kingma & Ba, 2014) for 200 epochs. For a concrete illustration, the results of width-1024 MLP backbone and linear layers for MSE loss are shown in Fig. 3 and Fig. 4. We consistently observe the convergence of  $\mathcal{NC}$  metrics to small values as training progresses for various depths of the linear networks. Additional results with MLP backbone for other widths and for CE loss can be found in Appendix C.1.

Deep learning experiment: We use ResNet18 and VGG16 as the deep learning backbone for extracting  $H_1$  in this experiment. The depths of the deep linear network are selected from the set  $\{1, 3, 6, 9\}$  and the widths are chosen to equal the last-layer dimension of the backbone model (i.e., 512). The models are trained with the MSE loss without 430 data augmentation for 200 epochs using stochastic gradient descent (SGD). As shown in Fig. 5 above and Fig.7 in the 431 Appendix C.1.2,  $\mathcal{NC}$  properties are obtained for widely used 432 architectures in deep learning contexts. Furthermore, the 433 results empirically confirm the occurrences of  $\mathcal{NC}$  across 434 435 deep linear classifiers described in Theorem 3.1.

<sup>436</sup> <sup>437</sup> <sup>438</sup> <sup>439</sup> **Direct optimization experiment:** To exactly replicate the problem (3),  $\mathbf{W}_M, \dots, \mathbf{W}_1$  and  $\mathbf{H}_1$  are initialized with standard normal distribution scaled by 0.1 and optimized with gradient descent with step-size 0.1 for MSE loss. In this experiment, we set K = 4, n = 100,  $d_M = d_{M-1} = \dots = d_1 = 64$  and all  $\lambda$ 's are set to be  $5 \times 10^{-4}$ . We cover multiple depth settings with M chosen from the set  $\{1, 3, 6, 9\}$ . Fig. 8 and Fig. 9 in Appendix C.1.2 shows the convergence to 0 of  $\mathcal{NC}$  metrics for bias-free and last-layer bias settings, respectively. The convergence errors are less than 1e-3 at the final iteration, which corroborates Theorem 3.1.

#### 5.2. Imbalanced Data

For imbalanced data setting, we perform two experiments: CIFAR10 image classification with an MLP backbone and direct optimization with a similar setup as in Section 5.1.

**Multilayer perceptron experiment:** In this experiment, we use a 6-layer MLP network with ReLU activation as the backbone model with removed batch normalization. We choose a random subset of CIFAR10 dataset with number of training samples of each class chosen from the list {500, 500, 400, 400, 300, 300, 200, 200, 100, 100}. The network is trained with batch gradient descent for 12000 epochs. Both the feature extraction model and deep linear model share the hidden width d = 2048. This experiment is performed with multiple linear model depths M = 1, 3, 6 and the results are shown in Fig. 6. The converge of  $\mathcal{NC}$  metrics to 0 (errors are at most 5e-2 at the final epoch) strongly validates Theorem 4.1 and 4.4 with the convergence to GOF structure of learned classifiers and features.

**Direct optimization experiment:** In this experiment, except for the imbalanced data of K = 4 and  $n_1 = 200, n_2 = 100, n_3 = n_4 = 50$ , the settings are identical to the direct optimization experiment in balanced case for MSE loss. Fig. 12 in Appendix C.2.2 corroborates Theorems 4.1 and 4.4 for various depths M = 1, 3, 6 and 9.

#### 6. Concluding Remarks

In this work, we extend the global optimal analysis of the deep linear networks trained with the mean squared error (MSE) and cross entropy (CE) losses under the unconstrained features model. We prove that NC phenomenon is exhibited by the global solutions across layers. Moreover, we extend our theoretical analysis to the UFM imbalanced data settings for the MSE loss, which are much less studied in the current literature, and thoroughly analyze NC properties under this scenario. In our work, we do not include biases in the training problem under imbalanced setting. We leave the study of the collapsed structure with the presence of biases as future work. As the next natural development of our results, characterizing NC for deep networks with non-linear activations under unconstrained features model is a highly interesting direction for future research.

## 440 **References**

- 441 Baldi, P. and Hornik, K. Neural networks and 442 principal component analysis: Learning from 443 examples without local minima. Neural Net-444 works, 2(1):53-58, 1989. ISSN 0893-6080. doi: 445 https://doi.org/10.1016/0893-6080(89)90014-2. 446
- 447 URL https://www.sciencedirect.com/ 448 science/article/pii/0893608089900142.
- Belkin, M., Rakhlin, A., and Tsybakov, A. B. Does data interpolation contradict statistical optimality?, 2018. URL https://arxiv.org/abs/1806.09471.
- Belkin, M., Hsu, D., Ma, S., and Mandal, S. Reconciling modern machine-learning practice and the classical bias-variance trade-off. *Proceedings of the National Academy of Sciences*, 116(32):15849–15854, jul 2019. doi: 10.1073/pnas.1903070116. URL https://doi.org/10.1073%2Fpnas.1903070116.
- 460 Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, 461 J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., 462 Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., 463 Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, 464 J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., 465 Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, 466 S., Radford, A., Sutskever, I., and Amodei, D. Language 467 models are few-shot learners, 2020. URL https:// 468 arxiv.org/abs/2005.14165. 469
- 470 Cao, K., Wei, C., Gaidon, A., Arechiga, N., and Ma, T.
  471 Learning imbalanced datasets with label-distribution472 aware margin loss, 2019. URL https://arxiv.
  473 org/abs/1906.07413.
- 474
  475 Demirkaya, A., Chen, J., and Oymak, S. Exploring the role of loss functions in multiclass classification. In 2020 54th Annual Conference on Information Sciences and Systems (CISS), pp. 1–5, 2020. doi: 10.1109/CISS48834.2020. 1570627167.
- 480
  481
  482
  482
  483
  483
  484
  485
  485
  485
  485
  486
  487
  487
  487
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
  488
- Fang, C., He, H., Long, Q., and Su, W. J. Exploring deep neural networks via layer-peeled model: Minority collapse in imbalanced training. *Proceedings of the National Academy of Sciences*, 118(43), oct 2021. doi: 10.1073/pnas.2103091118. URL https://doi.org/ 10.1073%2Fpnas.2103091118.
- 491
  492
  493
  493
  494
  494
  Goodfellow, I. J., Bengio, Y., and Courville, A. Deep Learning. MIT Press, Cambridge, MA, USA, 2016. http://www.deeplearningbook.org.

- Han, X. Y., Papyan, V., and Donoho, D. L. Neural collapse under mse loss: Proximity to and dynamics on the central path, 2021. URL https://arxiv.org/abs/ 2106.02073.
- He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition, 2015. URL https://arxiv.org/abs/1512.03385.
- He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pp. 770–778. IEEE Computer Society, 2016. doi: 10.1109/CVPR.2016.90. URL https://doi.org/ 10.1109/CVPR.2016.90.
- Hornik, K. Approximation capabilities of multilayer feedforward networks. Neural Networks, 4(2):251–257, 1991. ISSN 0893-6080. doi: https://doi.org/10.1016/0893-6080(91)90009-T. URL https://www.sciencedirect.com/ science/article/pii/089360809190009T.
- Hornik, K., Stinchcombe, M., and White, H. Multilayer feedforward networks are universal approximators. Neural Networks, 2(5):359–366, 1989. ISSN 0893-6080. doi: https://doi.org/10.1016/0893-6080(89)90020-8. URL https://www.sciencedirect.com/ science/article/pii/0893608089900208.
- Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. Densely connected convolutional networks. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2261–2269, 2017. doi: 10.1109/ CVPR.2017.243.
- Hui, L. and Belkin, M. Evaluation of neural architectures trained with square loss vs cross-entropy in classification tasks, 2020. URL https://arxiv.org/abs/ 2006.07322.
- Kang, B., Xie, S., Rohrbach, M., Yan, Z., Gordo, A., Feng, J., and Kalantidis, Y. Decoupling representation and classifier for long-tailed recognition. 2019. doi: 10. 48550/ARXIV.1910.09217. URL https://arxiv. org/abs/1910.09217.
- Kawaguchi, K. Deep learning without poor local minima, 2016. URL https://arxiv.org/abs/1605. 07110.
- Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization, 2014. URL https://arxiv.org/abs/ 1412.6980.
- Krizhevsky, A. Learning multiple layers of features from tiny images. Technical report, 2009.

| 495<br>496<br>497<br>498                                                                 | Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet<br>classification with deep convolutional neural networks. In<br><i>Proceedings of the 25th International Conference on Neu-</i><br><i>ral Information Processing Systems - Volume 1</i> , NIPS'12, | Xie, L., Yang, Y., Cai, D., and He, X. Neural collapse in-<br>spired attraction-repulsion-balanced loss for imbalanced<br>learning, 2022. URL https://arxiv.org/abs/<br>2204.08735.                                                               |
|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>499</li> <li>500</li> <li>501</li> <li>502</li> <li>503</li> <li>504</li> </ul> | <ul> <li>pp. 1097–1105, Red Hook, NY, USA, 2012. Curran Associates Inc.</li> <li>Laurent, T. and von Brecht, J. Deep linear neural networks with arbitrary loss: All local minima are global, 2017. URL https://arxiv.org/abs/1712_01473</li> </ul>           | Yang, Y., Chen, S., Li, X., Xie, L., Lin, Z., and Tao, D.<br>Inducing neural collapse in imbalanced learning: Do we<br>really need a learnable classifier at the end of deep neural<br>network?, 2022. URL https://arxiv.org/abs/<br>2203.09081.  |
| 505<br>506<br>507<br>508                                                                 | Lu, J. and Steinerberger, S. Neural collapse with cross-<br>entropy loss, 2020. URL https://arxiv.org/<br>abs/2012.08465.                                                                                                                                     | Yarotsky, D. Universal approximations of invariant maps by neural networks, 2018. URL https://arxiv.org/abs/1804.10306.                                                                                                                           |
| 508<br>509<br>510<br>511                                                                 | Ma, S., Bassily, R., and Belkin, M. The power of in-<br>terpolation: Understanding the effectiveness of sgd in<br>modern over-parametrized learning. 2017. URL https:                                                                                         | Yun, C., Sra, S., and Jadbabaie, A. Global optimal-<br>ity conditions for deep neural networks, 2017. URL<br>https://arxiv.org/abs/1707.02444.                                                                                                    |
| <ul> <li>512</li> <li>513</li> <li>514</li> <li>515</li> <li>516</li> </ul>              | <ul> <li>//arxiv.org/abs/1712.06559.</li> <li>Mixon, D. G., Parshall, H., and Pi, J. Neural collapse with unconstrained features, 2020. URL https://arxiv.</li> </ul>                                                                                         | Yun, C., Sra, S., and Jadbabaie, A. Small nonlinearities<br>in activation functions create bad local minima in neural<br>networks, 2018. URL https://arxiv.org/abs/<br>1802.03487.                                                                |
| 517<br>518<br>519<br>520<br>521<br>522                                                   | <ul> <li>Papyan, V., Han, X. Y., and Donoho, D. L. Prevalence of neural collapse during the terminal phase of deep learning training. <i>CoRR</i>, abs/2008.08186, 2020. URL https://arxiv.org/abs/2008.08186.</li> </ul>                                     | <ul> <li>Zhou, DX. Universality of deep convolutional neural networks, 2018. URL https://arxiv.org/abs/1805.10769.</li> <li>Zhou, J., Li, X., Ding, T., You, C., Qu, Q., and Zhu, Z. On the optimization landscape of neural collapse.</li> </ul> |
| 523<br>524<br>525                                                                        | Rangamani, A. and Banburski-Fahey, A. Neural collapse<br>in deep homogeneous classifiers and the role of weight<br>decay. In <i>ICASSP 2022 - 2022 IEEE International</i>                                                                                     | under mse loss: Global optimality with unconstrained<br>features, 2022a. URL https://arxiv.org/abs/<br>2203.01238.                                                                                                                                |
| 526<br>527<br>528<br>529<br>520                                                          | Conference on Acoustics, Speech and Signal Process-<br>ing (ICASSP), pp. 4243–4247, 2022. doi: 10.1109/<br>ICASSP43922.2022.9746778.                                                                                                                          | Zhou, J., You, C., Li, X., Liu, K., Liu, S., Qu, Q., and Zhu,<br>Z. Are all losses created equal: A neural collapse per-<br>spective, 2022b. URL https://arxiv.org/abs/<br>2210.02192.                                                            |
| 530<br>531<br>532<br>533                                                                 | algorithms, 2016. URL https://arxiv.org/abs/<br>1609.04747.                                                                                                                                                                                                   | Zhu, Z., Soudry, D., Eldar, Y. C., and Wakin, M. B. The global optimization geometry of shallow linear neural networks, 2018. URL https://arxiv.org/abs/                                                                                          |
| 534<br>535<br>536                                                                        | mon in two-layer relu neural networks, 2017. URL https://arxiv.org/abs/1712.08968.                                                                                                                                                                            | 1805.04938.<br>Zhu, Z., Ding, T., Zhou, J., Li, X., You, C., Sulam, J., and                                                                                                                                                                       |
| 537<br>538<br>539<br>540                                                                 | Simonyan, K. and Zisserman, A. Very deep convolutional<br>networks for large-scale image recognition, 2014. URL<br>https://arxiv.org/abs/1409.1556.                                                                                                           | unconstrained features. <i>CoRR</i> , abs/2105.02375, 2021.<br>URL https://arxiv.org/abs/2105.02375.                                                                                                                                              |
| 541<br>542<br>543<br>544<br>545                                                          | Thrampoulidis, C., Kini, G. R., Vakilian, V., and Behnia,<br>T. Imbalance trouble: Revisiting neural-collapse geom-<br>etry, 2022. URL https://arxiv.org/abs/2208.<br>05512.                                                                                  |                                                                                                                                                                                                                                                   |
| 546<br>547<br>548<br>549                                                                 | Tirer, T. and Bruna, J. Extended unconstrained features<br>model for exploring deep neural collapse, 2022. URL<br>https://arxiv.org/abs/2202.08087.                                                                                                           |                                                                                                                                                                                                                                                   |

## Appendix for "Neural Collapse in Deep Linear Networks: From Balanced to **Imbalanced Data**"

Firstly, we study  $\mathcal{NC}$  characteristics for cross-entropy loss function in deep linear networks in Appendix A. The delayed related works discussion are provided in Appendix B. Next, we present additional numerical results and experiments, details of training hyperparameters and describe  $\mathcal{NC}$  metrics used for experiments in Appendix C. Finally, detailed proofs for Theorems 3.1, 4.1, 4.4 and A.1 are provided in Appendix D, E, F and G, respecively.

## A. Neural Collapse in Deep Linear Networks under UFM Setting for CE with Balanced Data

In this section, we turn to cross-entropy loss and generalize  $\mathcal{NC}$  for deep linear networks with last-layer bias under balanced setting, and a mild assumption that all the hidden layers dimension are at least K-1 is required. We consider the training problem (3) with CE loss as following:

$$\min_{\mathbf{W}_{M},\dots,\mathbf{W}_{1},\mathbf{H}_{1},\mathbf{b}} \frac{1}{N} \sum_{k=1}^{K} \sum_{i=1}^{n} \mathcal{L}_{CE}(\mathbf{W}_{M}\dots\mathbf{W}_{1}\mathbf{h}_{k,i}+\mathbf{b},\mathbf{y}_{k}) + \frac{\lambda_{W_{M}}}{2} \|\mathbf{W}_{M}\|_{F}^{2} + \dots + \frac{\lambda_{H_{1}}}{2} \|\mathbf{H}_{1}\|_{F}^{2} + \frac{\lambda_{b}}{2} \|\mathbf{b}\|_{2}^{2}, \quad (7)$$

where:

$$\mathcal{L}_{CE}(\mathbf{z},\mathbf{y}_k) := -\log\left(\frac{e^{z_k}}{\sum_{i=1}^{K} e^{z_i}}\right).$$

**Theorem A.1.** Assume  $d_k \ge K - 1 \forall k \in [M]$ , then any global minimizer  $(\mathbf{W}_M^*, \dots, \mathbf{W}_1^*, \mathbf{H}_1^*, \mathbf{b}^*)$  of problem (7) satisfies:

•  $(\mathcal{NC}1) + (\mathcal{NC}3)$ :

$$\mathbf{h}_{k,i}^* = \frac{\lambda_{H_1}^M}{\lambda_{W_M} \lambda_{W_{M-1}} \dots \lambda_{W_1}} \frac{\sum_{k=1}^{K-1} s_k^2}{\sum_{k=1}^{K-1} s_k^{2M}} (\mathbf{W}_M^* \mathbf{W}_{M-1}^* \dots \mathbf{W}_1^*)_k \quad \forall k \in [K], i \in [n]$$
$$\Rightarrow \mathbf{h}_{k,i}^* = \mathbf{h}_k^* \quad \forall i \in [n], k \in [K],$$

where  $\{s_k\}_{k=1}^{K-1}$  are the singular values of  $\mathbf{H}_1^*$ .

•  $(\mathcal{NC}2)$ :  $\mathbf{H}_1^*$  and  $\mathbf{W}_M^* \mathbf{W}_{M-1}^* \cdots \mathbf{W}_1^*$  will converge to a simplex ETF when training progresses:

$$\left(\mathbf{W}_{M}^{*}\mathbf{W}_{M-1}^{*}\cdots\mathbf{W}_{1}^{*}\right)\left(\mathbf{W}_{M}^{*}\mathbf{W}_{M-1}^{*}\cdots\mathbf{W}_{1}^{*}\right)^{\top} = \frac{\lambda_{H_{1}}^{M}\sum_{k=1}^{K-1}s_{k}^{2M}}{(K-1)\lambda_{W_{M}}\lambda_{W_{M-1}}\cdots\lambda_{W_{1}}}\left(\mathbf{I}_{K}-\frac{1}{K}\mathbf{1}_{K}\mathbf{1}_{K}^{\top}\right)$$

• We have  $\mathbf{b}^* = b^* \mathbf{1}$  where either  $b^* = 0$  or  $\lambda_b = 0$ .

The proof is delayed until Section G and some of the key techniques are extended from the proof for the plain UFM in (Zhu et al., 2021). Comparing with the plain UFM with one layer of weight only, we have for deep linear case similar results as the plain UFM case, with the ( $\mathcal{NC}2$ ) and ( $\mathcal{NC}3$ ) property now hold for the product  $\mathbf{W}_M \mathbf{W}_{M-1} \dots \mathbf{W}_1$  instead of  $\mathbf{W}$ .

## **B. Related Works**

In recent years, there has been a rapid increase in interest in Neural Collapse, resulting in a decent amount of papers within a short period of time. Under the unconstrained feature model, (Zhu et al., 2021; Tirer & Bruna, 2022; Zhou et al., 2022a;b; Thrampoulidis et al., 2022; Fang et al., 2021; Lu & Steinerberger, 2020; Ergen & Pilanci, 2020; Yang et al., 2022) studied different training problems, proving simplex ETF and  $\mathcal{NC}$  properties are exhibited by any global solutions of the loss functions. In particular, (Zhu et al., 2021; Fang et al., 2021; Lu & Steinerberger, 2020) uses UFM with CE training to analyze theoretical abstractions of Neural Collapse. Other works study UFM with MSE loss (Tirer & Bruna, 2022; Zhou et al., 2022a; Ergen & Pilanci, 2020; Rangamani & Banburski-Fahey, 2022), and recent extensions to account for one additional layer and nonlinearity (with an extra assumption) are studied in (Tirer & Bruna, 2022) or with batch normalization (Ergen & Pilanci, 2020). The work (Rangamani & Banburski-Fahey, 2022) studies deep homogeneous networks with MSE 

| 605 |                                     | T    | Truein medal                                                  | C. the second | Consider   | Extra                                          | NC2         |
|-----|-------------------------------------|------|---------------------------------------------------------------|---------------|------------|------------------------------------------------|-------------|
| 005 |                                     | LOSS | Irain model                                                   | Setting       | d < K - 1? | assumption                                     | geometry    |
| 606 | (Zhu et al., 2021)                  | CE   | Plain UFM                                                     | Balanced      | No         | N/a                                            | Simplex ETF |
| 607 | (Fang et al., 2021)                 | CE   | Layer-peeled                                                  | Balanced      | No         | N/a                                            | Simplex ETF |
| 007 | (Zhou et al., 2022a)                | MSE  | Plain UFM                                                     | Balanced      | Yes        | N/a                                            | Simplex ETF |
| 608 |                                     | MSE  | Plain UFM, no bias                                            | Balanced      | No         | N/a                                            | OF          |
| 600 | (Tirer & Brung 2022)                | MSE  | Plain UFM, un-reg. bias                                       | Balanced      | No         | N/a                                            | Simplex ETF |
| 007 | (1111) (1111) (1111)                | MSE  | Extended UFM 2 linear layers, no bias                         | Balanced      | No         | N/a                                            | OF          |
| 610 |                                     | MSE  | Extended UFM 2 layers with ReLU, no bias                      | Balanced      | No         | Nuclear norm<br>equality <sup>1</sup>          | OF          |
| 612 | (Rangamani & Banburski-Fahey, 2022) | MSE  | Deep ReLU network, no bias                                    | Balanced      | No         | Symmetric Quasi-<br>interpolation <sup>2</sup> | Simplex ETF |
| 612 | (Thrampoulidis et al., 2022)        | CE   | UFM Support Vector Machine                                    | Imbalanced    | No         | N/a                                            | SELI        |
| 015 |                                     | MSE  | Extended UFM M linear layers, no bias (Theorem 3.1)           | Balanced      | Yes        | N/a                                            | OF          |
| 614 |                                     | MSE  | Extended UFM M linear layers, un-reg. last bias (Theorem 3.1) | Balanced      | Yes        | N/a                                            | Simplex ETF |
| 615 | This work                           | MSE  | Plain UFM, no bias (Theorem 4.1)                              | Imbalanced    | Yes        | N/a                                            | GOF         |
| 015 |                                     | MSE  | Extended UFM M linear layers, no bias (Theorem 4.4)           | Imbalanced    | Yes        | N/a                                            | GOF         |
| 616 |                                     | CE   | Extended UFM M linear layers (Theorem A.1)                    | Balanced      | No         | N/a                                            | Simplex ETF |

Table 1. Selected comparison of theoretical results on global optimality conditions with  $\mathcal{NC}$  occurrence.

617

loss and trained with stochastic gradient descent. Specifically, the critical points of gradient flow satisfying the so-called symmetric quasi-interpolation assumption are proved to exhibit  $\mathcal{NC}$  properties, but the other solutions are not investigated. (Zhou et al., 2022b) recently extended the global optimal characteristics to other loss functions, such as focal loss and label smoothing. Moreover, (Zhu et al., 2021; Zhou et al., 2022a;b) provide the benign optimization landscape for different loss functions under plain UFM, demonstrating that critical points can only be global minima or strict saddle points. Another line of work, for example (Zhu et al., 2021; Yang et al., 2022), exploits the simplex ETF structure to improve the network design, such as initially fixing the last-layer linear classifier as a simplex ETF and not performing any subsequent learning.

631 Most recent papers study Neural Collapse under a balanced setting, i.e., the number of training samples in every class is the 632 same. This setting is vital for the existence of the simplex ETF structure. To the best of our knowledge, Neural Collapse with 633 imbalanced data is studied in (Fang et al., 2021; Thrampoulidis et al., 2022; Yang et al., 2022; Xie et al., 2022). In particular, 634 (Fang et al., 2021) is the first to observe that for imbalanced setting, the collapse of features within the same class  $\mathcal{NC1}$  is 635 preserved, but the geometry skew away from ETF. They also present a phenomenon called "Minority Collapse": for large 636 levels of imbalance, the minorities' classifiers collapse to the same vector. (Thrampoulidis et al., 2022) theoretically studies 637 the SVM problem, whose global minima follows a more general geometry than the ETF, called "SELI". However, this work 638 also makes clear that the unregularized and bias-free (i.e., no bias) version of CE loss only converges to KKT points of 639 the SVM problem, which are not necessarily global minima, and thus the geometry of the global minima of CE loss is not 640 guaranteed to be the "SELI" geometry. (Yang et al., 2022) studies the imbalanced data setting but with fixed last-layer linear 641 classifiers initialized as a simplex ETF right at the beginning. (Xie et al., 2022) proposed a novel loss function for balancing 642 different components of the gradients for imbalanced learning. Therefore,  $\mathcal{NC}$  characterizations with imbalanced data for 643 commonly used loss functions in deep learning regimes such as CE, MSE, etc., still remain open. A comparison of our 644 results with some existing works regarding the study of global optimality conditions is shown in Table 1. 645

646 This work also relates to recent advances in studying the optimization landscape in deep neural network training. As pointed 647 out in (Zhu et al., 2021), the UFM takes a top-down approach to the analysis of deep neural networks, where last-layer 648 features are treated as free optimization variables, in contrast to the conventional bottom-up approach that studies the 649 problem starting from the input (Baldi & Hornik, 1989; Zhu et al., 2018; Kawaguchi, 2016; Yun et al., 2017; Laurent & von 650 Brecht, 2017; Safran & Shamir, 2017; Yun et al., 2018). These works studies the optimization landscape of two-layer linear 651 network (Baldi & Hornik, 1989; Zhu et al., 2018), deep linear network (Kawaguchi, 2016; Yun et al., 2017; Laurent & von 652 Brecht, 2017) and non-linear network (Safran & Shamir, 2017; Yun et al., 2018). (Zhu et al., 2021) provides an interesting 653 perspective about the differences between this top-down and bottom-up approach, with how results stemmed from UFM 654 can provide more insights to the network design and the generalization of deep learning while requiring fewer unrealistic 655 assumptions than the counterpart.

 $<sup>\</sup>frac{1}{1} (\text{Tirer \& Bruna, 2022}) \text{ assumes the nuclear norm of } \mathbf{W}_{1}^{*} \mathbf{H}_{1}^{*} \text{ and } \text{ReLU}(\mathbf{W}_{1}^{*} \mathbf{H}_{1}^{*}) \text{ are equal for any global solution } (\mathbf{W}_{2}^{*}, \mathbf{W}_{1}^{*}, \mathbf{H}_{1}^{*}).$   $\frac{1}{2} (\text{Rangamani \& Banburski-Fahey, 2022}) \text{ assumes having a classifer } f : \mathbb{R}^{D} \to \mathbb{R}^{K} \text{ where } [f(\mathbf{x}_{k,i})]_{k} = 1 - \epsilon \text{ and } [f(\mathbf{x}_{k,i})]_{k'} = \epsilon/(K-1) \forall k' \neq k \text{ for all training samples}$ 

## C. Additional Experiments, Network Training and Metrics

#### 662 C.1. Balanced Data

## $^{663}_{664}$ C.1.1. Metric for measuring $\mathcal{NC}$ in balanced settings

For balanced data, we use similar metrics to those presented in (Zhu et al., 2021) and (Tirer & Bruna, 2022), but also extend them to the multilayer network setting:

• Features collapse. Since the collapse of the features of the backbone extractors implies the collapse of the features in subsequent linear layers, we only consider  $\mathcal{NC}1$  metric for the output features of the backbone model. We recall the definition of the class-means and global-mean of the features  $\{\mathbf{h}_{k,i}\}$  as:

$$\mathbf{h}_k := \frac{1}{n} \sum_{i=1}^n \mathbf{h}_{k,i}, \quad \mathbf{h}_G := \frac{1}{Kn} \sum_{k=1}^K \sum_{i=1}^n \mathbf{h}_{k,i}.$$

We also define the within-class, between-class covariance matrices, and  $\mathcal{NC}1$  metric as following:

$$\boldsymbol{\Sigma}_{W} := \frac{1}{N} \sum_{k=1}^{K} \sum_{i=1}^{n} (\mathbf{h}_{k,i} - \mathbf{h}_{k,i}) (\mathbf{h}_{k,i} - \mathbf{h}_{k,i})^{\top}, \quad \boldsymbol{\Sigma}_{B} := \frac{1}{K} \sum_{k=1}^{K} (\mathbf{h}_{k} - \mathbf{h}_{G}) (\mathbf{h}_{k} - \mathbf{h}_{G})^{\top},$$
$$\mathcal{NC}_{1} := \frac{1}{K} \operatorname{trace}(\boldsymbol{\Sigma}_{W}, \boldsymbol{\Sigma}_{-}^{\dagger})$$

$$\mathcal{NC1} := \frac{1}{K} \operatorname{trace}(\boldsymbol{\Sigma}_W \boldsymbol{\Sigma}_B^{\dagger}).$$

where  $\Sigma_B^{\dagger}$  denotes the pseudo inverse of  $\Sigma_B$ .

• Convergence to OF/Simplex ETF. To capture the  $\mathcal{NC}$  behaviors across layers, we denote  $\mathbf{W}^m := \mathbf{W}_M \mathbf{W}_{M-1} \dots \mathbf{W}_{M-m+1}$  as the product of last m weight matrices of the deep linear network. We define  $\mathcal{NC2}_m^{OF}$  and  $\mathcal{NC2}_m^{ETF}$  to measure the similarity of the learned classifiers  $\mathbf{W}^m$  to OF (bias-free case) and ETF (last-layer bias case) as:

$$\mathcal{NC2}_{m}^{OF} := \left\| \frac{\mathbf{W}^{m}\mathbf{W}^{m\top}}{\|\mathbf{W}^{m}\mathbf{W}^{m\top}\|_{F}} - \frac{1}{\sqrt{K}}\mathbf{I}_{K} \right\|_{F},$$
$$\mathcal{NC2}_{m}^{ETF} := \left\| \frac{\mathbf{W}^{m}\mathbf{W}^{m\top}}{\|\mathbf{W}^{m}\mathbf{W}^{m\top}\|_{F}} - \frac{1}{\sqrt{K-1}}\left(\mathbf{I}_{K} - \frac{1}{K}\mathbf{1}_{K}\mathbf{1}_{K}^{\top}\right) \right\|_{F}.$$

• Convergence to self-duality. We measure the alignment between the learned classifier  $\mathbf{W}_M \mathbf{W}_{M-1} \dots \mathbf{W}_1$  and the learned class-means  $\overline{\mathbf{H}}$  via:

$$\mathcal{NC3}^{OF} := \left\| \frac{\mathbf{W}_{M}\mathbf{W}_{M-1}\dots\mathbf{W}_{1}\overline{\mathbf{H}}}{\left\| \mathbf{W}_{M}\mathbf{W}_{M-1}\dots\mathbf{W}_{1}\overline{\mathbf{H}} \right\|_{F}} - \frac{1}{\sqrt{K}}\mathbf{I}_{K} \right\|_{F},$$
  
$$\mathcal{NC3}^{ETF} := \left\| \frac{\mathbf{W}_{M}\mathbf{W}_{M-1}\dots\mathbf{W}_{1}\overline{\mathbf{H}}}{\left\| \mathbf{W}_{M}\mathbf{W}_{M-1}\dots\mathbf{W}_{1}\overline{\mathbf{H}} \right\|_{F}} - \frac{1}{\sqrt{K-1}}\left(\mathbf{I}_{K} - \frac{1}{K}\mathbf{1}_{K}\mathbf{1}_{K}^{\top}\right) \right\|_{F},$$

where  $\overline{\mathbf{H}} = [\mathbf{h}_1, \dots, \mathbf{h}_K]$  is the class-means matrix.

#### C.1.2. ADDITIONAL NUMERICAL RESULTS FOR BALANCED DATA

This subsection expands upon the experiment results for balanced data in subsection 5.1 by the following points: i) For MLP experiment, we provide  $\mathcal{NC}$  metrics measured at the last epoch for the remaining depth-widths combinations mentioned in subsection 5.1 and ii) Empirically verify Theorem A.1 of the  $\mathcal{NC}$  existence for cross-entropy loss in deep linear network setting.

Last-epoch  $\mathcal{NC}$  metrics for multilayer perceptron and deep learning experiments. We include the full set of last-epoch  $\mathcal{NC}$  metrics for mentioned MLP depth-width combinations in Table 2 and 3. In which, Table 2 corresponds to the bias-free  $\mathcal{NC}$  metrics for mentioned MLP depth-width combinations in Table 2 and 3. In which, Table 2 corresponds to the bias-free



setting and Table 3 corresponds to the last-layer bias setting. Similarly, the full set of last-epoch  $\mathcal{NC}$  metrics for deep learning experiments with ResNet18 and VGG19 models are also presented in Table 4.

Verification of Theorem A.1 for CE loss: We run two experiments to verify neural collapse for CE loss described in Theorem A.1 in two settings: MLP backbone model and direct optimization. Our network training procedure is similar to multilayer perceptron experiment and direct optimization experiment for last-layer bias setting described in subsection 5.1. For MLP experiment, we only change the learning rate to 0.0002 and substitute cross entropy loss in place of MSE loss. We run the experiment with all depth-width combinations with linear layer depth  $\in \{1, 3\}$  and width  $\in \{512, 1024, 2048\}$ . For direct optimization experiment, we change learning rate to 0.02, width to 256 and keep other settings to be the same.

| Them al Conapse in Deep Linear Networks, From Datanceu to imparanceu Data | Neural | Collapse | in Deep | Linear N | etworks: | From | Balanced | to 1 | Imbalanced | Data |
|---------------------------------------------------------------------------|--------|----------|---------|----------|----------|------|----------|------|------------|------|
|---------------------------------------------------------------------------|--------|----------|---------|----------|----------|------|----------|------|------------|------|

| 70       | No. layer | Hidden dim          | $\mathcal{NC}1$                                                                                  | $\mathcal{NC}2_1^{OF}$                                                                           | $\mathcal{NC}2_2^{OF}$                                                                           | $NC2_3^{OF}$                                                                                     | $\mathcal{NC}2_4^{OF}$                                                                           | $\mathcal{NC}2_5^{OF}$                                                                           | $NC2_6^{OF}$                                                                                     | $\mathcal{NC}2_7^{OF}$                                                                           | $\mathcal{NC}2_8^{OF}$                                                                        | $\mathcal{NC}2_{9}^{OF}$                                                                         | $\mathcal{NC3}^{OF}$                                                                                |
|----------|-----------|---------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| 1 2      | 1         | 512<br>1024<br>2048 | $\begin{array}{c} 1.819\times 10^{-3} \\ 2.437\times 10^{-4} \\ 1.259\times 10^{-4} \end{array}$ | $\begin{array}{c} 5.856\times 10^{-2}\\ 3.024\times 10^{-2}\\ 1.467\times 10^{-2}\end{array}$    |                                                                                                  |                                                                                                  |                                                                                                  |                                                                                                  |                                                                                                  |                                                                                                  |                                                                                               |                                                                                                  | $\begin{array}{c} 1.769\times 10^{-2} \\ 1.528\times 10^{-2} \\ 1.712\times 10^{-2} \end{array}$    |
| '3<br>'4 | 3         | 512<br>1024<br>2048 | $\begin{array}{c} 8.992\times 10^{-3}\\ 2.843\times 10^{-3}\\ 5.165\times 10^{-4}\end{array}$    | $\begin{array}{c} 5.09\times 10^{-2} \\ 5.697\times 10^{-2} \\ 3.857\times 10^{-2} \end{array}$  | $\begin{array}{c} 1.057\times10^{-1}\\ 1.009\times10^{-1}\\ 5.799\times10^{-2} \end{array}$      | $\begin{array}{c} 1.486\times 10^{-1} \\ 1.731\times 10^{-1} \\ 8.648\times 10^{-2} \end{array}$ |                                                                                                  |                                                                                                  |                                                                                                  |                                                                                                  |                                                                                               |                                                                                                  | $\begin{array}{c} 2.958\times 10^{-2} \\ 2.368\times 10^{-2} \\ 2.797\times 10^{-2} \end{array}$    |
| 5        | 6         | 512<br>1024<br>2048 | $\begin{array}{c} 8.701\times 10^{-3}\\ 2.578\times 10^{-3}\\ 8.231\times 10^{-4}\end{array}$    | $\begin{array}{c} 7.833\times 10^{-2}\\ 8.356\times 10^{-2}\\ 7.187\times 10^{-2}\end{array}$    | $\begin{array}{c} 1.009\times 10^{-1}\\ 1.066\times 10^{-1}\\ 9.224\times 10^{-2} \end{array}$   | $\begin{array}{c} 1.186\times 10^{-1}\\ 1.283\times 10^{-1}\\ 1.078\times 10^{-1}\end{array}$    | $\begin{array}{c} 1.340\times 10^{-1}\\ 1.489\times 10^{-1}\\ 1.160\times 10^{-1}\end{array}$    | $\begin{array}{c} 1.511\times 10^{-1} \\ 1.725\times 10^{-1} \\ 1.214\times 10^{-1} \end{array}$ | $\begin{array}{c} 1.824\times 10^{-1}\\ 2.429\times 10^{-1}\\ 1.386\times 10^{-1}\end{array}$    |                                                                                                  |                                                                                               |                                                                                                  | $\begin{array}{c} 3.478 \times 10^{-2} \\ 1.928 \times 10^{-2} \\ 3.430 \times 10^{-2} \end{array}$ |
| '7<br>'0 | 9         | 512<br>1024<br>2048 | $\begin{array}{c} 9.359\times 10^{-3}\\ 2.615\times 10^{-3}\\ 7.694\times 10^{-4}\end{array}$    | $\begin{array}{c} 1.149\times 10^{-1} \\ 1.165\times 10^{-1} \\ 1.070\times 10^{-1} \end{array}$ | $\begin{array}{c} 1.480\times 10^{-1} \\ 1.488\times 10^{-1} \\ 1.402\times 10^{-1} \end{array}$ | $\begin{array}{c} 1.703\times 10^{-1} \\ 1.745\times 10^{-1} \\ 1.701\times 10^{-1} \end{array}$ | $\begin{array}{c} 1.824\times 10^{-1} \\ 1.893\times 10^{-1} \\ 1.864\times 10^{-1} \end{array}$ | $\begin{array}{c} 1.868\times 10^{-1} \\ 1.961\times 10^{-1} \\ 1.929\times 10^{-1} \end{array}$ | $\begin{array}{c} 1.855\times 10^{-1} \\ 1.975\times 10^{-1} \\ 1.892\times 10^{-1} \end{array}$ | $\begin{array}{c} 1.821\times 10^{-1} \\ 1.972\times 10^{-1} \\ 1.763\times 10^{-1} \end{array}$ | $\begin{array}{c} 1.823\times 10^{-1}\\ 2.013\times 10^{-1}\\ 1.592\times 10^{-1}\end{array}$ | $\begin{array}{c} 2.033\times 10^{-1} \\ 2.492\times 10^{-1} \\ 1.371\times 10^{-1} \end{array}$ | $\begin{array}{c} 3.074\times 10^{-2} \\ 2.089\times 10^{-2} \\ 2.141\times 10^{-2} \end{array}$    |

#### Table 2. Full set of metrics $\mathcal{NC}1$ , $\mathcal{NC}2$ , and $\mathcal{NC}3$ described in multilayer perceptron experiment in section 5.1 with bias-free setting.

| No. layer | Hidden dim | $\mathcal{NC}1$        | $\mathcal{NC2}_{1}^{ETF}$ | $\mathcal{NC}2_2^{ETF}$ | $\mathcal{NC2}_{3}^{ETF}$ | $\mathcal{NC}2_{4}^{ETF}$ | $\mathcal{NC2}_{5}^{ETF}$ | $\mathcal{NC2}_{6}^{ETF}$ | $\mathcal{NC}2_7^{ETF}$ | $\mathcal{NC}2_8^{ETF}$ | $\mathcal{NC}2_{9}^{ETF}$ | $\mathcal{NC3}^{ETF}$  |
|-----------|------------|------------------------|---------------------------|-------------------------|---------------------------|---------------------------|---------------------------|---------------------------|-------------------------|-------------------------|---------------------------|------------------------|
|           | 512        | $2.058\times 10^{-3}$  | $4.936\times 10^{-2}$     |                         |                           |                           |                           |                           |                         |                         |                           | $5.406 	imes 10^{-3}$  |
| 1         | 1024       | $2.791\times 10^{-4}$  | $2.540\times10^{-2}$      |                         |                           |                           |                           |                           |                         |                         |                           | $3.862 \times 10^{-3}$ |
|           | 2048       | $1.434\times 10^{-4}$  | $9.418\times10^{-3}$      |                         |                           |                           |                           |                           |                         |                         |                           | $1.750\times10^{-3}$   |
|           | 512        | $7.601\times 10^{-3}$  | $5.147\times 10^{-2}$     | $1.124\times 10^{-1}$   | $1.586\times 10^{-1}$     |                           |                           |                           |                         |                         |                           | $1.972\times 10^{-2}$  |
| 3         | 1024       | $2.194	imes10^{-3}$    | $5.967	imes10^{-2}$       | $1.071 \times 10^{-1}$  | $1.949 	imes 10^{-1}$     |                           |                           |                           |                         |                         |                           | $1.155\times 10^{-2}$  |
|           | 2048       | $6.397\times 10^{-4}$  | $3.447\times 10^{-2}$     | $5.795	imes10^{-2}$     | $9.811\times 10^{-2}$     |                           |                           |                           |                         |                         |                           | $5.311	imes10^{-3}$    |
|           | 512        | $8.308\times 10^{-3}$  | $2.006\times 10^{-2}$     | $5.110\times 10^{-2}$   | $8.624\times 10^{-2}$     | $1.221 \times 10^{-1}$    | $1.587 \times 10^{-1}$    | $1.997\times 10^{-1}$     |                         |                         |                           | $1.757\times 10^{-2}$  |
| 6         | 1024       | $2.258 \times 10^{-3}$ | $2.818\times 10^{-2}$     | $6.244 \times 10^{-1}$  | $9.861 \times 10^{-2}$    | $1.350 \times 10^{-1}$    | $1.710 \times 10^{-1}$    | $2.350 \times 10^{-1}$    |                         |                         |                           | $1.320 \times 10^{-2}$ |
|           | 2048       | $5.653 \times 10^{-4}$ | $1.848\times10^{-2}$      | $3.409\times10^{-2}$    | $5.134 \times 10^{-2}$    | $6.849 \times 10^{-2}$    | $8.570\times10^{-2}$      | $1.279 \times 10^{-1}$    |                         |                         |                           | $4.522 \times 10^{-3}$ |
|           | 512        | $9.745\times10^{-3}$   | $1.608\times 10^{-2}$     | $2.040\times 10^{-2}$   | $3.916\times 10^{-2}$     | $6.095\times 10^{-2}$     | $8.494 \times 10^{-2}$    | $1.107\times 10^{-1}$     | $1.383\times 10^{-1}$   | $1.679\times 10^{-1}$   | $2.102\times 10^{-1}$     | $1.772\times 10^{-2}$  |
| 9         | 1024       | $2.587 \times 10^{-3}$ | $1.522 \times 10^{-2}$    | $2.462 \times 10^{-2}$  | $4.350 \times 10^{-2}$    | $6.525 \times 10^{-2}$    | $8.910 \times 10^{-2}$    | $1.147 \times 10^{-1}$    | $1.422 \times 10^{-1}$  | $1.711 \times 10^{-1}$  | $2.370 \times 10^{-1}$    | $1.245 \times 10^{-2}$ |
|           | 2048       | $6.943 \times 10^{-4}$ | $1.217 \times 10^{-2}$    | $2.043 \times 10^{-2}$  | $3.218 \times 10^{-2}$    | $4.517 \times 10^{-2}$    | $5.899 \times 10^{-1}$    | $7.350 \times 10^{-2}$    | $8.881 \times 10^{-2}$  | $1.042 \times 10^{-1}$  | $1.414 \times 10^{-1}$    | $7.937 \times 10^{-3}$ |

Table 3. Full set of metrics  $\mathcal{NC}1$ ,  $\mathcal{NC}2$ , and  $\mathcal{NC}3$  in multilayer perceptron experiment in section 5.1 with last-layer bias setting.



Figure 10. Illustration of  $\mathcal{NC}$  with 6-layer MLP backbone on CIFAR10 for cross entropy loss, balanced data and last-layer bias setting. 

Theorem A.1 indicates that all the features of the same class converge to a single vector, and the alignment between the learned classifier  $\mathbf{W}_M \mathbf{W}_{M-1} \dots \mathbf{W}_1$  and the learned class-means  $\overline{\mathbf{H}}$  has ETF form. Therefore, we use the same  $\mathcal{NC}_1$ and  $\mathcal{NC}_3$  as in the balanced data, last-layer bias case. Theorem A.1 also indicates that  $\mathbf{W}_M \mathbf{W}_{M-1} \dots \mathbf{W}_1$  converges to ETF form. Hence, the metric used for CE loss to measure the convergence of  $\mathbf{W}_M \mathbf{W}_{M-1} \dots \mathbf{W}_1$  is defined as  $\mathcal{NC2}_{CE}^{ETF} := \mathcal{NC2}_M^{ETF}$ , where  $\mathcal{NC2}_M^{ETF}$  is defined in C.1.1. Fig. 10 and Fig. 11 demonstrate the convergence of  $\mathcal{NC}$  for MLP and direct optimization experiments, respectively. The convergence to 0 of the  $\mathcal{NC}$  metrics verifies theorem A.1. 

#### C.1.3. DETAILS OF NETWORK TRAINING AND HYPERPARAMETERS FOR BALANCED DATA EXPERIMENTS

Multilayer perceptron experiment: In this experiment, we use a 6-layer MLP model with ReLU activation as the backbone feature extractor. Hidden width of the backbone model and the deep linear network are set to be equal. We cover all 

Neural Collapse in Deep Linear Networks: From Balanced to Imbalanced Data

| Model name | No.layer         | NC1                                                                                                                     | $\mathcal{NC}2_{1}^{ETF}$                                                                                            | $\mathcal{NC}2_2^{ETF}$                                                                             | $\mathcal{NC}2_{3}^{ETF}$                                                                           | $\mathcal{NC}2_{4}^{ETF}$                                                   | $\mathcal{NC}2_{5}^{ETF}$                                                   | $\mathcal{NC}2_{6}^{ETF}$                                                 | $\mathcal{NC}2_7^{ETF}$ | $\mathcal{NC}2_8^{ETF}$ | $\mathcal{NC}2_{9}^{ETF}$ | $\mathcal{NC3}^{ETF}$                                                                                                   |
|------------|------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------|-------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------|
| ResNet18   | 1<br>3<br>6<br>9 | $\begin{array}{c} 1.556\times10^{-3}\\ 4.713\times10^{-4}\\ 1.824\times10^{-4}\\ 2.156\times10^{-4} \end{array}$        | $\begin{array}{c} 4.376\times10^{-2}\\ 2.191\times10^{-2}\\ 4.295\times10^{-3}\\ 3.609\times10^{-3} \end{array}$     | $\begin{array}{c} 4.714 \times 10^{-2} \\ 4.868 \times 10^{-3} \\ 6.459 \times 10^{-3} \end{array}$ | $\begin{array}{c} 7.813 \times 10^{-2} \\ 7.651 \times 10^{-3} \\ 7.835 \times 10^{-3} \end{array}$ | $\begin{array}{c} 1.156 \times 10^{-2} \\ 8.056 \times 10^{-3} \end{array}$ | $\begin{array}{c} 1.681 \times 10^{-2} \\ 8.096 \times 10^{-3} \end{array}$ | $2.459 \times 10^{-2}$<br>$8.362 \times 10^{-3}$                          | $9.400 \times 10^{-3}$  | $1.212 \times 10^{-2}$  | $1.683 \times 10^{-2}$    | $\begin{array}{c} 3.598\times 10^{-3} \\ 2.131\times 10^{-3} \\ 1.817\times 10^{-3} \\ 2.210\times 10^{-3} \end{array}$ |
| VGG16      | 1<br>3<br>6<br>9 | $\begin{array}{c} 2.447\times 10^{-2} \\ 1.347\times 10^{-3} \\ 5.959\times 10^{-4} \\ 6.893\times 10^{-4} \end{array}$ | $\begin{array}{c} 6.689\times 10^{-2}\\ 3.120\times 10^{-2}\\ 1.645\times 10^{-2}\\ 1.438\times 10^{-2} \end{array}$ | $\begin{array}{c} 3.035\times 10^{-2} \\ 1.266\times 10^{-2} \\ 9.511\times 10^{-3} \end{array}$    | $\begin{array}{c} 4.606\times10^{-2}\\ 1.703\times10^{-2}\\ 1.198\times10^{-2} \end{array}$         | $\begin{array}{c} 2.183 \times 10^{-2} \\ 1.314 \times 10^{-2} \end{array}$ | $\begin{array}{c} 2.473 \times 10^{-2} \\ 1.619 \times 10^{-2} \end{array}$ | $\begin{array}{c} 3.015\times 10^{-2} \\ 1.774\times 10^{-2} \end{array}$ | $2.030 \times 10^{-2}$  | $2.218\times 10^{-2}$   | $2.445\times 10^{-2}$     | $\begin{array}{c} 1.977\times 10^{-3}\\ 2.767\times 10^{-3}\\ 2.483\times 10^{-3}\\ 2.434\times 10^{-3} \end{array}$    |

Table 4. Full set of metrics  $\mathcal{NC}1$ ,  $\mathcal{NC}2$ , and  $\mathcal{NC}3$  described in deep learning experiment in section 5.1 for ResNet18 and VGG16 backbones with last-layer bias setting.



Figure 11. Illustration of  $\mathcal{NC}$  for direct optimization experiment with cross-entropy loss, balanced data and last-layer bias setting.

depth-width combinations with depth  $\in \{1, 3, 6, 9\}$  and width  $\in \{512, 1024, 2048\}$  for two settings, bias-free and last-layer bias. All models are trained with Adam optimizer with MSE loss for 200 epochs with batch size 128 and learning rate 0.0001 (divided by 10 every 50 epochs). Weight decay and feature decay are set to  $1 \times 10^{-4}$ .

Deep learning experiment: In deep learning experiment, we use ResNet18 and VGG16 as backbones feature extractors. We 850 train both models with SGD optimizer with batch size 128 for MSE loss. Data augmentation is not used in this experiment. 851 The learning rate decays 0.1 every 50 epochs for 200 epochs. Depth of the deep linear layers are selected from the set 852  $\{1, 3, 6, 9\}$ . Width of the deep linear layers are set to 512 to be equal to the last-layer dimension of the backbone model. 853 Weight decay in both models is enforced on all network parameters to align with the typical training protocol. For ResNet18 854 backbone models, we use the learning rate of 0.05 and weight decay of  $2 \times 10^{-4}$ . For VGG16 backbone, the learning rate is 855 0.02. Except for VGG16-backbone with 1 linear layer using weight decay of  $5 \times 10^{-4}$ , all other VGG16-backbone models 856 shares the weight decay of  $3 \times 10^{-4}$ . 857

**Direct optimization experiment:** In this experiment, we replicate the optimization problem (3).  $\mathbf{W}_M, \ldots, \mathbf{W}_1$  and  $\mathbf{H}_1$  are initialized with standard normal distribution scaled by 0.1. We set  $K = 4, n = 100, d_M = \ldots = d_1 = 64$  and all  $\lambda$ 's are set to be  $5 \times 10^{-4}$ . Depth of the linear layers are selected from the set  $\{1, 3, 6, 9\}$ .  $\mathbf{W}_M, \ldots, \mathbf{W}_1$  and  $\mathbf{H}_1$  are optimized by gradient descent for 30000 iterations with learning rate 0.1.

## 863864C.2. Imbalanced Data

865 C.2.1. Metric for measuring  $\mathcal{NC}$  in imbalanced data

For imbalanced setting,  $\mathcal{NC}1$  metric is identical to the balanced setting's. While for  $\mathcal{NC}2$  and  $\mathcal{NC}3$ , we measure the closeness of learned classifiers and features to GOF structure as follows:

$$\mathcal{NC2}^{GOF} := \left\| \frac{(\mathbf{W}_{M}\mathbf{W}_{M-1}\dots\mathbf{W}_{1})(\mathbf{W}_{M}\mathbf{W}_{M-1}\dots\mathbf{W}_{1})^{\top}}{\|(\mathbf{W}_{M}\mathbf{W}_{M-1}\dots\mathbf{W}_{1})(\mathbf{W}_{M}\mathbf{W}_{M-1}\dots\mathbf{W}_{1})^{\top}\|_{F}} - \frac{\operatorname{diag}\{cs_{k}^{2M}\}_{k=1}^{K}}{\|\operatorname{diag}\{cs_{k}^{2M}\}_{k=1}^{K}\|_{F}} \right\|_{F},$$
$$\mathcal{NC3}^{GOF} := \left\| \frac{\mathbf{W}_{M}\mathbf{W}_{M-1}\dots\mathbf{W}_{1}\overline{\mathbf{H}}}{\|\mathbf{W}_{M}\mathbf{W}_{M-1}\dots\mathbf{W}_{1}\overline{\mathbf{H}}\|_{F}} - \frac{\operatorname{diag}\left\{\frac{cs_{k}^{2M}}{cs_{k}^{2M}+N\lambda_{H_{1}}}\right\}_{k=1}^{K}}{\left\|\operatorname{diag}\left\{\frac{cs_{k}^{2M}}{cs_{k}^{2M}+N\lambda_{H_{1}}}\right\}_{k=1}^{K}} \right\|_{F},$$

876 877

832

833 834

835

836

837

838

839

840

841

842 843

844 845

where  $\overline{\mathbf{H}} = [\mathbf{h}_1, \dots, \mathbf{h}_K]$  is the class-means matrix, c and  $\{s_k\}_{k=1}^K$  are as defined in Theorem 4.4.

Neural Collapse in Deep Linear Networks: From Balanced to Imbalanced Data



Figure 12. Illustration of  $\mathcal{NC}$  for direct optimization experiment with MSE loss, imbalanced data and bias-free setting.

#### C.2.2. Additional numerical results for imbalanced data

Continue from subsection 5.2, to empirically validate the Minority Collapse of the problems (5) and (6), we run two direct optimization schemes similar as Section 5.2 with heavy imbalanced data of K = 4 and  $n_1 = 2000$ ,  $n_2 = n_3 = 495$  and  $n_4 = 10$  for M = 1 (d = 16) and M = 3 (d = 40). Both models are trained by gradient descent for 30000 iterations. The final weight matrices of these models are as following (results are rounded to 2 decimal places):

|                          | $\Gamma - 1.55$ | 1.50  | 2.19  | -1.36 | -0.65 | 3.08  | -0.81 | -1.76 | -0.96 | -0.48 | -1.21 | -1.06 | 1.01  | 1.72  | 0.30  | −1.73 J |   |
|--------------------------|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|---------|---|
| <b>W</b> .               | -1.26           | -0.56 | -0.94 | -1.24 | 0.11  | -1.46 | -0.51 | -1.75 | -0.69 | 0.11  | 1.09  | -0.89 | -0.56 | 0.57  | 0.48  | 0.27    |   |
| <b>vv</b> <sub>1</sub> — | 0.76            | -0.31 | 0.32  | -1.30 | -0.42 | 0.09  | 2.22  | -1.07 | 1.15  | -0.58 | -0.28 | -0.88 | -0.03 | -0.40 | -1.29 | 0.43    | , |
|                          | L 0.00          | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | L 00.0  |   |

for case M = 1. For case M = 3, we have:

| <b>W</b>                 | $\begin{bmatrix} 0.65 \\ -0.25 \end{bmatrix}$ | $-0.96 \\ 0.13$ | $0.49 \\ -0.40$ | $-0.15 \\ -0.33$  | $0.50 \\ 0.14$    | $\begin{array}{c}-0.11\\0.11\end{array}$ | $-0.14 \\ -0.32$  | $0.40 \\ 0.15$    | <br>$0.02 \\ 0.40$    | $0.05 \\ -0.10$ | $0.27 \\ -0.86$ | $\begin{array}{c} 0.13 \\ 0.34 \end{array}$ | $0.71 \\ 0.20$ | $-0.29 \\ 0.54$ | $\begin{array}{c} 0.14 \\ 0.66 \end{array}$ | -0.30 - 0.18    |   | (8) |
|--------------------------|-----------------------------------------------|-----------------|-----------------|-------------------|-------------------|------------------------------------------|-------------------|-------------------|-----------------------|-----------------|-----------------|---------------------------------------------|----------------|-----------------|---------------------------------------------|-----------------|---|-----|
| <b>vv</b> <sub>3</sub> — | 0.36                                          | $-0.15 \\ 0.00$ | $-0.04 \\ 0.00$ | $^{-0.23}_{0.00}$ | $^{-0.66}_{0.00}$ | $\substack{-0.04\\0.00}$                 | $^{-0.51}_{0.00}$ | $^{-0.33}_{0.00}$ | <br>$^{-0.07}_{0.00}$ | $-0.52 \\ 0.00$ | $0.15 \\ 0.00$  | $-0.03 \\ 0.00$                             | $0.04 \\ 0.00$ | $-0.36 \\ 0.00$ | $0.35 \\ 0.00$                              | $0.02 \\ 0.00 $ | • | (0) |

As can be seen from both cases, the classifier of the fourth class converges to zero vector (with the convergence error are less than 1e-8), due to the heavy imbalance level of the dataset, which align to Theorem 4.1 and Theorem 4.4.

#### C.2.3. DETAILS OF NETWORK TRAINING AND HYPERPARAMETERS FOR IMBALANCED DATA EXPERIMENTS

Multilayer perceptron experiment: In this experiment, we use a subset of CIFAR10 dataset with training samples of each class in the list {500, 500, 400, 400, 300, 300, 200, 200, 100, 100}. We use a 6-layer MLP model with ReLU activation with removed activation as the backbone feature extractor. Hidden width of both the backbone model and the deep linear networks are set to be 2048. Depth of the linear layers are selected from the set {1, 3, 6}. All models are trained with Adam optimizer and MSE loss for 12000 epochs, no data augmentation, full batch gradient descent, learning rate  $1 \times 10^{-4}$  (divided by 10 every 6000 epochs), feature decay and weight decay are set to be  $1 \times 10^{-5}$ .

**Direct optimization experiment:** In this experiment, we replicate the optimization problem (3) in imbalance data setting. We set K = 4 and  $n_1 = 200, n_2 = 100, n_3 = n_4 = 50, d_M = \ldots = d_1 = 64$ . Similar to the direct optimization experiment in balance case, all  $\lambda$ 's are set to be  $5 \times 10^{-4}$ .  $\mathbf{W}_M, \ldots, \mathbf{W}_1$  and  $\mathbf{H}_1$  are optimized by stochastic gradient descent for 30000 iterations, with learning rate 0.1.

#### D. Proof of Theorem 3.1

First we state the proof for UFM bias-free with three layers of weights with same width across layers, as a warm-up for our approach in the next proofs.

#### D.1. Warm-up Case: UFM with Three Layers of Weights

Consider the following bias-free optimization problem:

$$\min_{\mathbf{W}_{3},\mathbf{W}_{2},\mathbf{W}_{1},\mathbf{H}_{1}} \frac{1}{2N} \|\mathbf{W}_{3}\mathbf{W}_{2}\mathbf{W}_{1}\mathbf{H}_{1} - \mathbf{Y}\|_{F}^{2} + \frac{\lambda_{W_{3}}}{2} \|\mathbf{W}_{3}\|_{F}^{2} + \frac{\lambda_{W_{2}}}{2} \|\mathbf{W}_{2}\|_{F}^{2} + \frac{\lambda_{W_{1}}}{2} \|\mathbf{W}_{1}\|_{F}^{2} + \frac{\lambda_{H_{1}}}{2} \|\mathbf{H}_{1}\|_{F}^{2}$$
(9)

where  $\lambda_{W_3}, \lambda_{W_2}, \lambda_{W_1}, \lambda_{H_1}$  are regularization hyperparameters, and  $\mathbf{W}_3 \in \mathbb{R}^{K \times d}$ ,  $\mathbf{W}_2 \in \mathbb{R}^{d \times d}$ ,  $\mathbf{W}_1 \in \mathbb{R}^{d \times d}$ ,  $\mathbf{H}_1 \in \mathbb{R}^{d \times N}$ and  $\mathbf{Y} \in \mathbb{R}^{K \times N}$ . We assume  $d \ge K$  for this problem.

Proof of Theorem 3.1 with 3 layers of weight and  $d \ge K$ . By definition, any critical point  $(\mathbf{W}_3, \mathbf{W}_2, \mathbf{W}_1, \mathbf{H}_1)$  of the loss function (9) satisfies the following :

$$\frac{\partial f}{\partial \mathbf{W}_3} = \frac{1}{N} (\mathbf{W}_3 \mathbf{W}_2 \mathbf{W}_1 \mathbf{H}_1 - \mathbf{Y}) \mathbf{H}_1^{\top} \mathbf{W}_1^{\top} \mathbf{W}_2^{\top} + \lambda_{W_3} \mathbf{W}_3 = \mathbf{0},$$
(10)

$$\frac{\partial f}{\partial \mathbf{W}_2} = \frac{1}{N} \mathbf{W}_3^{\mathsf{T}} (\mathbf{W}_3 \mathbf{W}_2 \mathbf{W}_1 \mathbf{H}_1 - \mathbf{Y}) \mathbf{H}_1^{\mathsf{T}} \mathbf{W}_1^{\mathsf{T}} + \lambda_{W_2} \mathbf{W}_2 = \mathbf{0},$$
(11)

$$\frac{\partial f}{\partial \mathbf{W}_1} = \frac{1}{N} \mathbf{W}_2^\top \mathbf{W}_3^\top (\mathbf{W}_3 \mathbf{W}_2 \mathbf{W}_1 \mathbf{H}_1 - \mathbf{Y}) \mathbf{H}_1^\top + \lambda_{W_1} \mathbf{W}_1 = \mathbf{0},$$
(12)

$$\frac{\partial f}{\partial \mathbf{H}_1} = \frac{1}{N} \mathbf{W}_1^\top \mathbf{W}_2^\top \mathbf{W}_3^\top (\mathbf{W}_3 \mathbf{W}_2 \mathbf{W}_1 \mathbf{H}_1 - \mathbf{Y}) + \lambda_{H_1} \mathbf{H}_1 = \mathbf{0}.$$
(13)

948 Next, from  $\mathbf{W}_3^{\top} \frac{\partial f}{\partial \mathbf{W}_3} - \frac{\partial f}{\partial \mathbf{W}_2} \mathbf{W}_2^{\top} = \mathbf{0}$ , we have: 

$$\lambda_{W_3} \mathbf{W}_3^\top \mathbf{W}_3 = \lambda_{W_2} \mathbf{W}_2 \mathbf{W}_2^\top.$$
(14)

Similarly, we also have:

$$\mathbf{A}_{W_2} \mathbf{W}_2^\top \mathbf{W}_2 = \lambda_{W_1} \mathbf{W}_1 \mathbf{W}_1^\top, \tag{15}$$

$$\lambda_{W_1} \mathbf{W}_1^\top \mathbf{W}_1 = \lambda_{H_1} \mathbf{H}_1 \mathbf{H}_1^\top.$$
(16)

Also, from equation (13), by solving for  $H_1$ , we have:

$$\mathbf{H}_{1} = (\mathbf{W}_{1}^{\top} \mathbf{W}_{2}^{\top} \mathbf{W}_{3}^{\top} \mathbf{W}_{3} \mathbf{W}_{2} \mathbf{W}_{1} + N \lambda_{H_{1}} \mathbf{I})^{-1} \mathbf{W}_{1}^{\top} \mathbf{W}_{2}^{\top} \mathbf{W}_{3}^{\top} \mathbf{Y}$$

$$= \left(\frac{\lambda_{W_{2}}}{\lambda_{W_{3}}} \mathbf{W}_{1}^{\top} (\mathbf{W}_{2}^{\top} \mathbf{W}_{2})^{2} \mathbf{W}_{1} + N \lambda_{H_{1}} \mathbf{I}\right)^{-1} \mathbf{W}_{1}^{\top} \mathbf{W}_{2}^{\top} \mathbf{W}_{3}^{\top} \mathbf{Y}$$

$$= \left(\frac{\lambda_{W_{1}}^{2}}{\lambda_{W_{3}} \lambda_{W_{2}}} (\mathbf{W}_{1}^{\top} \mathbf{W}_{1})^{3} + N \lambda_{H_{1}} \mathbf{I}\right)^{-1} \mathbf{W}_{1}^{\top} \mathbf{W}_{2}^{\top} \mathbf{W}_{3}^{\top} \mathbf{Y}, \qquad (17)$$

where we use equations (14) and (15) for the derivation.

Now, let  $\mathbf{W}_1 = \mathbf{U}_{W_1} \mathbf{S}_{W_1} \mathbf{V}_{W_1}^{\top}$  be the SVD decomposition of  $\mathbf{W}_1$  with  $\mathbf{U}_{W_1}, \mathbf{V}_{W_1} \in \mathbb{R}^{d \times d}$  are orthonormal matrix and  $\mathbf{S}_{W_1} \in \mathbb{R}^{d \times d}$  is a diagonal matrix with **decreasing** non-negative singular values. We note that from equations (14)-(16), we have rank( $\mathbf{W}_3^{\top} \mathbf{W}_3$ ) = rank( $\mathbf{W}_3$ ) = rank( $\mathbf{W}_2$ ) = rank( $\mathbf{W}_1$ ) = rank( $\mathbf{H}_1$ ) and is at most K. We denote the K singular values (some of them can be 0's) of  $\mathbf{W}_1$  as  $\{s_k\}_{k=1}^K$ .

From equation (15), we have:

$$\mathbf{W}_2^{\top}\mathbf{W}_2 = \frac{\lambda_{W_1}}{\lambda_{W_2}}\mathbf{W}_1\mathbf{W}_1^{\top} = \frac{\lambda_{W_1}}{\lambda_{W_2}}\mathbf{U}_{W_1}\mathbf{S}_{W_1}^2\mathbf{U}_{W_1}^{\top} = \mathbf{U}_{W_1}\mathbf{S}_{W_2}^2\mathbf{U}_{W_1}^{\top},$$

where  $\mathbf{S}_{W_2} = \sqrt{\frac{\lambda_{W_1}}{\lambda_{W_2}}} \mathbf{S}_{W_1} \in \mathbb{R}^{d \times d}$ . This means that  $\mathbf{S}_{W_2}^2$  contains the eigenvalues and the columns of  $\mathbf{U}_{W_1}$  are the eigenvectors of  $\mathbf{W}_2^\top \mathbf{W}_2$ . Hence, we can write the SVD decomposition of  $\mathbf{W}_2$  as  $\mathbf{W}_2 = \mathbf{U}_{W_2} \mathbf{S}_{W_2} \mathbf{U}_{W_1}^\top$  with orthonormal matrix  $\mathbf{U}_{W_2} \in \mathbb{R}^{d \times d}$ .

By making similar arguments for  $W_3$ , from equation (14):

$$\mathbf{W}_3^{\top}\mathbf{W}_3 = \frac{\lambda_{W_2}}{\lambda_{W_3}}\mathbf{W}_2\mathbf{W}_2^{\top} = \frac{\lambda_{W_2}}{\lambda_{W_3}}\mathbf{U}_{W_2}\mathbf{S}_{W_2}^2\mathbf{U}_{W_2}^{\top} = \frac{\lambda_{W_1}}{\lambda_{W_3}}\mathbf{U}_{W_2}\mathbf{S}_{W_1}^2\mathbf{U}_{W_2}^{\top} = \mathbf{U}_{W_2}\mathbf{S}_{W_3}^{\top}\mathbf{S}_{W_3}\mathbf{U}_{W_2}^{\top},$$

with  $\mathbf{S}_{W_3} = \sqrt{\frac{\lambda_{W_1}}{\lambda_{W_3}}} \begin{bmatrix} \operatorname{diag}(s_1, s_2, \dots, s_K) & \mathbf{0}_{K \times (d-K)} \end{bmatrix} \in \mathbb{R}^{K \times d}$ , we can write SVD decomposition of  $\mathbf{W}_3$  as  $\mathbf{W}_3 = \mathbf{U}_{W_3} \mathbf{S}_{W_3} \mathbf{U}_{W_2}^{\top}$  with orthonormal matrix  $\mathbf{U}_{W_3} \in \mathbb{R}^{d \times d}$ . 990 991 992 993 994 Using these SVD in the RHS of equation (17) yields: 995  $\mathbf{H}_{1} = \left(\frac{\lambda_{W_{1}}^{2}}{\lambda_{W_{1}}\lambda_{W_{1}}} (\mathbf{W}_{1}^{\top}\mathbf{W}_{1})^{3} + N\lambda_{H_{1}}\mathbf{I}\right)^{-1} \mathbf{W}_{1}^{\top}\mathbf{W}_{2}^{\top}\mathbf{W}_{3}^{\top}\mathbf{Y}$ 996 997 998  $= \left(\frac{\lambda_{W_1}^2}{\lambda_{W_2}\lambda_{W_2}} \mathbf{V}_{W_1} \mathbf{S}_{W_1}^6 \mathbf{V}_{W_1}^\top + N\lambda_{H_1} \mathbf{I}\right)^{-1} \mathbf{W}_1^\top \mathbf{W}_2^\top \mathbf{W}_3^\top \mathbf{Y}$ 999 1000 $= \left(\frac{\lambda_{W_1}^2}{\lambda_{W_1}\lambda_{W}} \mathbf{V}_{W_1} \mathbf{S}_{W_1}^6 \mathbf{V}_{W_1}^\top + N\lambda_{H_1} \mathbf{I}\right)^{-1} \mathbf{V}_{W_1} \mathbf{S}_{W_1} \mathbf{S}_{W_2} \mathbf{S}_{W_3}^\top \mathbf{U}_{W_3}^\top \mathbf{Y}$ 1001 1002 $= \mathbf{V}_{W_1} \left( \frac{\lambda_{W_1}^2}{\lambda_{W_2} \lambda_{W_2}} \mathbf{S}_{W_1}^6 + N \lambda_{H_1} \mathbf{I} \right)^{-1} \mathbf{S}_{W_1} \mathbf{S}_{W_2} \mathbf{S}_{W_3}^\top \mathbf{U}_{W_3}^\top \mathbf{Y}$ 1005 $= \mathbf{V}_{W_1} \left( \frac{\lambda_{W_1}^2}{\lambda_{W_2} \lambda_{W_2}} \mathbf{S}_{W_1}^6 + N \lambda_{H_1} \mathbf{I} \right)^{-1} \sqrt{\frac{\lambda_{W_1}^2}{\lambda_{W_2} \lambda_{W_2}}} \begin{bmatrix} \operatorname{diag}(s_1^3, s_2^3, \dots, s_K^3) \\ \mathbf{0}_{(d-K) \times K} \end{bmatrix} \mathbf{U}_{W_3}^\top \mathbf{Y}$ 1007 $= \mathbf{V}_{W_1} \underbrace{\begin{bmatrix} \operatorname{diag}\left(\frac{\sqrt{cs_1^3}}{cs_1^6 + N\lambda_{H_1}}, \dots, \frac{\sqrt{cs_K^3}}{cs_K^6 + N\lambda_{H_1}}\right) \\ \mathbf{0} \end{bmatrix}}_{\mathbf{C} \in \mathbb{R}^{d \times K}} \mathbf{U}_{W_3}^{\top} \mathbf{Y}$ 1009 $= \mathbf{V}_{W_1} \mathbf{C} \mathbf{U}_{W_2}^\top \mathbf{Y},$ (18)with  $c := \frac{\lambda_{W_1}^2}{\lambda_{W_3}\lambda_{W_2}}$ . We further have: 1015  $\mathbf{W}_{3}\mathbf{W}_{2}\mathbf{W}_{1}\mathbf{H} = \mathbf{U}_{W_{3}}\mathbf{S}_{W_{3}}\mathbf{S}_{W_{2}}\mathbf{S}_{W_{1}}\mathbf{V}_{W_{1}}^{\top}\mathbf{V}_{W_{1}}\mathbf{C}\mathbf{U}_{W_{3}}^{\top}\mathbf{Y}$  $= \mathbf{U}_{W_3} \operatorname{diag} \left( \frac{cs_1^6}{cs_1^6 + N\lambda_{H_1}}, \dots, \frac{cs_K^6}{cs_K^6 + N\lambda_{H_1}} \right) \mathbf{U}_{W_3}^\top \mathbf{Y}$ (19) $\Rightarrow \mathbf{W}_{3}\mathbf{W}_{2}\mathbf{W}_{1}\mathbf{H} - \mathbf{Y} = \mathbf{U}_{W_{3}}\left(\operatorname{diag}\left(\frac{cs_{1}^{6}}{cs_{1}^{6} + N\lambda_{H_{1}}}, \dots, \frac{cs_{K}^{6}}{cs_{K}^{6} + N\lambda_{H_{1}}}\right) - \mathbf{I}_{K}\right)\mathbf{U}_{W_{3}}^{\top}\mathbf{Y}$  $= \mathbf{U}_{W_3} \underbrace{\operatorname{diag}\left(\frac{-N\lambda_{H_1}}{cs_1^6 + N\lambda_{H_1}}, \dots, \frac{-N\lambda_{H_1}}{cs_K^6 + N\lambda_{H_1}}\right) \mathbf{U}_{W_3}^{\top} \mathbf{Y}$  $= \mathbf{U}_{W_2} \mathbf{D} \mathbf{U}_{W_2}^\top \mathbf{Y}$ (20)Next, we will calculate the Frobenius norm of  $W_3W_2W_1H - Y$ : 1029  $\|\mathbf{W}_{3}\mathbf{W}_{2}\mathbf{W}_{1}\mathbf{H}_{1}-\mathbf{Y}\|_{F}^{2}=\|\mathbf{U}_{W_{3}}\mathbf{D}\mathbf{U}_{W_{2}}^{\top}\mathbf{Y}\|_{F}^{2}=\operatorname{trace}(\mathbf{U}_{W_{3}}\mathbf{D}\mathbf{U}_{W_{2}}^{\top}\mathbf{Y}(\mathbf{U}_{W_{3}}\mathbf{D}\mathbf{U}_{W_{2}}^{\top}\mathbf{Y})^{\top})$  $= \operatorname{trace}(\mathbf{U}_{W_3}\mathbf{D}\mathbf{U}_{W_2}^{\top}\mathbf{Y}\mathbf{Y}^{\top}\mathbf{U}_{W_3}\mathbf{D}\mathbf{U}_{W_2}^{\top}) = \operatorname{trace}(\mathbf{D}^2\mathbf{U}_{W_2}^{\top}\mathbf{Y}\mathbf{Y}^{\top}\mathbf{U}_{W_3})$  $= n \operatorname{trace}(\mathbf{D}^2) = n \sum_{k=1}^{K} \left( \frac{-N\lambda_{H_1}}{cs_1^6 + N\lambda_{H_1}} \right)^2.$ (21)where we use the fact  $\mathbf{Y}\mathbf{Y}^{\top} = n\mathbf{I}_K$  and  $\mathbf{U}_{W_3}$  is orthonormal matrix. Similarly, from the RHS of equation (18), we have: 1039

Now, we will plug equations (21), (22), and the SVD decomposition of  $W_2, W_1, H$  into the function (9) and note that 1045 1046 orthonormal matrix does not change the Frobenius form: 1047  $f(\mathbf{W}_{3}, \mathbf{W}_{2}, \mathbf{W}_{1}, \mathbf{H}_{1}) = \frac{1}{2N} \|\mathbf{W}_{3}\mathbf{W}_{2}\mathbf{W}_{1}\mathbf{H} - \mathbf{I}_{K}\|_{F}^{2} + \frac{\lambda_{W_{3}}}{2} \|\mathbf{W}_{3}\|_{F}^{2} + \frac{\lambda_{W_{2}}}{2} \|\mathbf{W}_{2}\|_{F}^{2} + \frac{\lambda_{W_{1}}}{2} \|\mathbf{W}_{1}\|_{F}^{2} + \frac{\lambda_{H_{1}}}{2} \|\mathbf{H}_{1}\|_{F}^{2}$ 1048 1049  $=\frac{1}{2K}\sum_{l=1}^{K}\left(\frac{-N\lambda_{H_{1}}}{cs_{k}^{6}+N\lambda_{H_{1}}}\right)^{2}+\frac{\lambda_{W_{3}}}{2}\sum_{l=1}^{K}\frac{\lambda_{W_{1}}}{\lambda_{W_{3}}}s_{k}^{2}+\frac{\lambda_{W_{2}}}{2}\sum_{l=1}^{K}\frac{\lambda_{W_{1}}}{\lambda_{W_{2}}}s_{k}^{2}+\frac{\lambda_{W_{1}}}{2}\sum_{l=1}^{K}s_{k}^{2}+\frac{n\lambda_{H_{1}}}{2}\sum_{l=1}^{K}\frac{cs_{k}^{6}}{(cs_{k}^{6}+N\lambda_{H_{1}})^{2}}$ 1050 1051  $= \frac{n\lambda_{H_1}}{2} \sum_{k=1}^{K} \frac{1}{cs_k^6 + N\lambda_{H_1}} + \frac{3\lambda_{W_1}}{2} \sum_{k=1}^{K} s_k^2$ 1054 1055  $=\frac{1}{2K}\sum_{k=1}^{K}\left(\frac{1}{\frac{cs_{k}^{6}}{N\lambda_{W}}+1}+3K\lambda_{W_{1}}\frac{\sqrt[3]{N\lambda_{H_{1}}}}{\sqrt[3]{c}}\frac{\sqrt[3]{c}s_{k}^{2}}{\sqrt[3]{N\lambda_{H_{1}}}}\right)$ 

$$\sum_{k=1}^{259} = \frac{1}{2K} \sum_{k=1}^{K} \left( \frac{1}{x_k^3 + 1} + bx_k \right),$$

$$\sum_{k=1}^{259} \left( \frac{1}{x_k^3 + 1} + bx_k \right),$$

$$(23)$$

1063 with 
$$x_k := \frac{\sqrt[3]{cs_k^2}}{\sqrt[3]{N\lambda_{H_1}}}$$
 and  $b := 3K\lambda_{W_1}\frac{\sqrt[3]{N\lambda_{H_1}}}{\sqrt[3]{c}} = 3K\sqrt[3]{N\lambda_{W_3}\lambda_{W_2}\lambda_{W_1}\lambda_{H_1}}.$   
1065

Next, we consider the function:

$$g(x) = \frac{1}{x^3 + 1} + bx \text{ with } x \ge 0, b > 0.$$
(24)

0.

Clearly, g(0) = 1. As in equation (23),  $f(\mathbf{W}_3, \mathbf{W}_2, \mathbf{W}_1, \mathbf{H})$  is the sum of  $g(x_k)$  (with separable  $x_k$ ). Hence, if we can minimize g(x), we will finish lower bounding  $f(\mathbf{W}_3, \mathbf{W}_2, \mathbf{W}_1, \mathbf{H})$ . We consider the following cases for g(x):

• If  $b > \frac{\sqrt[3]{4}}{3}$ : For x > 0, we always have  $g(x) > \frac{1}{x^3+1} + \frac{\sqrt[3]{4}}{3}x \ge 1 = g(0)$ . Indeed, the second inequality is equivalent

$$\frac{1}{x^{3}+1} + \frac{\sqrt[3]{4}}{3}x \ge 1$$
  

$$\Leftrightarrow \quad \frac{\sqrt[3]{4}}{3}x^{4} - x^{3} + \frac{\sqrt[3]{4}}{3}x \ge 0$$
  

$$\Leftrightarrow \quad x(x + \frac{1}{\sqrt[3]{4}})(x - \sqrt[3]{2})^{2} \ge 0$$

Therefore, in this case, g(x) is minimized at x = 0 with minimal value of 1.

• If  $b = \frac{\sqrt[3]{4}}{3}$ : Similar as above, we have:

$$g(x) \ge 1$$
  
$$\Leftrightarrow \quad x(x + \frac{1}{\sqrt[3]{4}})(x - \sqrt[3]{2})^2 \ge 0.$$

In this case, q(x) is minimized at x = 0 or  $x = \sqrt[3]{2}$ .

1092 • If  $b < \frac{\sqrt[3]{4}}{3}$ : We take the first and second derivatives of g(x): 1093

1094  
1095  
1096 
$$g'(x) = b - \frac{3x^2}{(x^3 + 1)^2}$$

$$g''(x) = \frac{12x^2 - 6x}{(x^3 + 1)^3}.$$

1007

1099

106 106

1079

1083

1087

1089 1090

1091

100/

We have:  $g''(x) = 0 \Leftrightarrow x = 0$  or  $x = \sqrt[3]{\frac{1}{2}}$ . Therefore, with  $x \ge 0$ , g'(x) = 0 has at most two solutions. We also have  $g'\left(\sqrt[3]{\frac{1}{2}}\right) = b - \frac{2\sqrt[3]{2}}{3} < 0$  (since  $b < \frac{\sqrt[3]{4}}{3}$ ). Thus, together with the fact that g'(0) = b > 0 and  $g(+\infty) > 0$ , g'(x) = 0 has exactly two solutions, we call it  $x_1$  and  $x_2$  ( $x_1 < \sqrt[3]{\frac{1}{2}} < x_2$ ). Next, we note that  $g'(x_2) = 0$  and g'(x) > 0  $\forall x > x_2$  (since g''(x) > 0  $\forall x > x_2$ ). In the meanwhile,  $g'(\sqrt[3]{2}) = b - \frac{\sqrt[3]{4}}{3} < 0$ . Hence, we must have  $x_2 > \sqrt[3]{2}.$ 

From the variation table, we can see that  $g(x_2) < g(\sqrt[3]{2}) = \frac{1}{3} + b\sqrt[3]{2} < \frac{1}{3} + \frac{2}{3} = 1 = g(0)$ . Hence, the minimizer in this case is the largest solution  $x > \sqrt[3]{2}$  of the equation g'(x) = 0.

| x   | 0 | $x_1$    | $\sqrt[3]{\frac{1}{2}}$               | $\sqrt[3]{2}$                | $x_2$    | $\infty$ |
|-----|---|----------|---------------------------------------|------------------------------|----------|----------|
| g'' | 0 | -        | 0                                     | +                            | +        | +        |
| g'  | + | 0        | -                                     | -                            | 0        | +        |
| g   | 1 | $g(x_1)$ | $g\left(\sqrt[3]{\frac{1}{2}}\right)$ | $\frac{1}{3} + b\sqrt[3]{2}$ | $g(x_2)$ | $\infty$ |

From the above result, we can summarize the original problem as follows:

- If  $b = 3K\sqrt[3]{Kn\lambda_{W_3}\lambda_{W_2}\lambda_{W_1}\lambda_{H_1}} > \frac{\sqrt[3]{4}}{3}$ : all the singular values of  $\mathbf{W}_1^*$  are 0's. Therefore, the singular values of  $\mathbf{W}_3^*, \mathbf{W}_1^*, \mathbf{H}^*$  are also all 0's. In this case,  $f(\mathbf{W}_3, \mathbf{W}_2, \mathbf{W}_1, \mathbf{H}_1)$  is minimized at  $(\mathbf{W}_3^*, \mathbf{W}_2^*, \mathbf{W}_1^*, \mathbf{H}_1^*) = (\mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{0})$ .
- If  $b = 3K\sqrt[3]{Kn\lambda_{W_3}\lambda_{W_2}\lambda_{W_1}\lambda_{H_1}} < \frac{\sqrt[3]{4}}{3}$ : In this case,  $\mathbf{W}_1^*$  has K singular values, all of which are multiplier of the largest positive solution of the equation  $b - \frac{3x^2}{(x^3+1)^2} = 0$ , denoted as s. Hence, we have the compact SVD form (with a bit of notation abuse) of  $\mathbf{W}_1^*$  as  $\mathbf{W}_1^* = s \mathbf{U}_{W_1} \mathbf{V}_{W_1}^\top$  with semi-orthonormal matrices  $\mathbf{U}_{W_1}, \mathbf{V}_{W_1} \in \mathbb{R}^{d \times K}$ . We also have  $\mathbf{U}_{W_1}^{\top}\mathbf{U}_{W_1} = \mathbf{I}_K$  and  $\mathbf{V}_{W_1}^{\top}\mathbf{V}_{W_1} = \mathbf{I}_K$ .

Similarly, since the singular matrices of  $W_3$ ,  $W_1$  are aligned to  $W_1$ 's, we also have:

$$\begin{split} \mathbf{W}_{3}^{*} &= \sqrt{\frac{\lambda_{W_{1}}}{\lambda_{W_{3}}}} s \mathbf{U}_{W_{3}} \mathbf{U}_{W_{2}}^{T}, \\ \mathbf{W}_{2}^{*} &= \sqrt{\frac{\lambda_{W_{1}}}{\lambda_{W_{2}}}} s \mathbf{U}_{W_{2}} \mathbf{U}_{W_{1}}^{\top}, \\ \mathbf{W}_{1}^{*} &= s \mathbf{U}_{W_{1}} \mathbf{V}_{W_{1}}^{\top}, \\ \mathbf{H}_{1}^{*} &= \frac{\sqrt{cs^{3}}}{cs^{6} + N\lambda_{H_{1}}} \mathbf{V}_{W_{1}} \mathbf{U}_{W_{3}}^{\top} \mathbf{Y}, \end{split}$$

with orthonormal matrices  $\mathbf{U}_{W_3} \in \mathbb{R}^{K \times K}$ , semi-orthonormal matrix  $\mathbf{U}_{W_2}, \mathbf{U}_{W_1}, \mathbf{V}_{W_1} \in \mathbb{R}^{d \times K}$ .  $\overline{\mathbf{H}}^* = \frac{\sqrt{c}s^3}{cs^6 + N\lambda_{H_1}} \mathbf{V}_{W_1} \mathbf{U}_{W_3}^{\top} \in \mathbb{R}^{K \times K}$ , we have:  $\mathbf{H}_1^* = \overline{\mathbf{H}}^* \mathbf{Y} = \overline{\mathbf{H}}^* \otimes \mathbf{1}_n^{\top}$ . Let

We have the geometry of the global solutions as follows:

$$\begin{aligned} \mathbf{W}_{3}^{*} \mathbf{W}_{3}^{\top *} \propto \mathbf{U}_{W_{3}} \mathbf{U}_{W_{2}}^{\top} \mathbf{U}_{W_{2}} \mathbf{U}_{W_{3}}^{\top} \propto \mathbf{I}_{K}, \\ \mathbf{H}^{*\top} \mathbf{H}^{*} \propto \mathbf{U}_{W_{3}} \mathbf{V}_{W_{1}}^{\top} \mathbf{V}_{W_{1}} \mathbf{U}_{W_{3}}^{\top} \propto \mathbf{I}_{K}, \\ \mathbf{H}^{*\top} \mathbf{H}^{*} \propto \mathbf{U}_{W_{3}} \mathbf{V}_{W_{1}}^{\top} \mathbf{V}_{W_{1}} \mathbf{U}_{W_{3}}^{\top} \propto \mathbf{I}_{K}, \\ \mathbf{W}_{3}^{*} \mathbf{W}_{2}^{*})(\mathbf{W}_{3}^{*} \mathbf{W}_{2}^{*})^{\top} \propto (\mathbf{U}_{W_{3}} \mathbf{U}_{W_{2}}^{T} \mathbf{U}_{W_{1}} \mathbf{U}_{W_{3}}^{T} \mathbf{U}_{W_{2}} \mathbf{U}_{W_{1}}^{\top})^{\top} \propto \mathbf{I}_{K}, \\ \mathbf{W}_{3}^{*} \mathbf{W}_{2}^{*})(\mathbf{W}_{3}^{*} \mathbf{W}_{2}^{*})^{\top} \propto (\mathbf{U}_{W_{3}} \mathbf{U}_{W_{1}}^{T})(\mathbf{U}_{W_{3}} \mathbf{U}_{W_{2}}^{T} \mathbf{U}_{W_{1}} \mathbf{U}_{W_{3}}^{\top}) \propto \mathbf{I}_{K}, \\ \mathbf{W}_{1}^{*} \mathbf{H}^{*})^{\top} (\mathbf{W}_{1}^{*} \mathbf{H}^{*}) \propto (\mathbf{U}_{W_{2}} \mathbf{V}_{W_{1}}^{\top})(\mathbf{U}_{W_{3}} \mathbf{V}_{W_{1}}^{\top})^{\top} \propto \mathbf{I}_{K}, \\ \mathbf{W}_{3}^{*} \mathbf{W}_{2}^{*} \mathbf{W}_{1}^{*})(\mathbf{W}_{3}^{*} \mathbf{W}_{2}^{*} \mathbf{W}_{1}^{*})^{\top} \propto (\mathbf{U}_{W_{2}} \mathbf{U}_{W_{3}}^{\top})^{\top} (\mathbf{U}_{W_{2}} \mathbf{U}_{W_{3}}^{\top}) \propto \mathbf{I}_{K}, \\ \mathbf{W}_{2}^{*} \mathbf{W}_{1}^{*} \mathbf{H}^{*})^{\top} (\mathbf{W}_{2}^{*} \mathbf{W}_{1}^{*} \mathbf{H}^{*}) \propto (\mathbf{U}_{W_{2}} \mathbf{U}_{W_{3}}^{\top})^{\top} (\mathbf{U}_{W_{2}} \mathbf{U}_{W_{3}}^{\top}) \propto \mathbf{I}_{K}, \end{aligned}$$

and,

$$\mathbf{W}_{3}^{*}\mathbf{W}_{2}^{*}\mathbf{W}_{1}^{*}\overline{\mathbf{H}}^{*} \propto \mathbf{U}_{W_{3}}\mathbf{U}_{W_{2}}^{\top}\mathbf{U}_{W_{2}}\mathbf{V}_{W_{2}}^{\top}\mathbf{V}_{W_{2}}\mathbf{V}_{W_{1}}^{\top}\mathbf{V}_{W_{1}}\mathbf{U}_{W_{3}}^{\top} \propto \mathbf{I}_{K}.$$
(26)

Next, we can derive the alignments between weights and features as following:

$$\mathbf{W}_{3}^{*}\mathbf{W}_{2}^{*}\mathbf{W}_{1}^{*} \propto \mathbf{U}_{W_{3}}\mathbf{V}_{W_{1}}^{\top} \propto \overline{\mathbf{H}}^{*+},$$
  

$$\mathbf{W}_{2}^{*}\mathbf{W}_{1}^{*}\overline{\mathbf{H}}^{*} \propto \mathbf{U}_{W_{2}}\mathbf{U}_{W_{3}}^{\top} \propto \mathbf{W}_{3}^{*\top},$$
  

$$\mathbf{W}_{3}^{*}\mathbf{W}_{2}^{*} \propto \mathbf{U}_{W_{3}}\mathbf{V}_{W_{2}}^{\top} \propto (\mathbf{W}_{1}^{*}\overline{\mathbf{H}}^{*})^{\top}.$$
(27)

• If  $b = 3K\sqrt[3]{Kn\lambda_{W_3}\lambda_{W_2}\lambda_{W_1}\lambda_{H_1}} = \frac{\sqrt[3]{4}}{3}$ : For this case,  $x_k^*$  can either be 0 or  $\sqrt[3]{2}$ , as long as  $\{x_k^*\}_{k=1}^K$  is a decreasing sequence. If all the singular values are 0's, we have the trivial global minima  $(\mathbf{W}_3^*, \mathbf{W}_2^*, \mathbf{W}_1^*, \mathbf{H}_1^*) = (\mathbf{0}, \mathbf{0}, \mathbf{0}, \mathbf{0})$ . If there are exactly  $r \leq K$  positive singular values  $s_1 = s_2 = \ldots = s_r := s > 0$  and  $s_{r+1} = \ldots = s_K = 0$ , then we can write the compact SVD form of weight matrices and  $\mathbf{H}_1^*$  as following:

$$\begin{split} \mathbf{W}_{3}^{*} &= \sqrt{\frac{\lambda_{W_{1}}}{\lambda_{W_{3}}}} s \mathbf{U}_{W_{3}} \mathbf{U}_{W_{2}}^{T}, \\ \mathbf{W}_{2}^{*} &= \sqrt{\frac{\lambda_{W_{1}}}{\lambda_{W_{2}}}} s \mathbf{U}_{W_{2}} \mathbf{U}_{W_{1}}^{\top}, \\ \mathbf{W}_{1}^{*} &= s \mathbf{U}_{W_{1}} \mathbf{V}_{W_{1}}^{\top}, \\ \mathbf{H}_{1}^{*} &= \frac{\sqrt{cs^{3}}}{cs^{6} + N\lambda_{H_{1}}} \mathbf{V}_{W_{1}} \mathbf{U}_{W_{3}}^{\top} \mathbf{Y} = \overline{\mathbf{H}}^{*} \mathbf{Y} \end{split}$$

where  $\mathbf{U}_{W_3}, \mathbf{U}_{W_2}, \mathbf{U}_{W_1}, \mathbf{V}_{W_1}$  are semi-orthonormal matrices consist r orthogonal columns. Additionally, we note that  $\mathbf{U}_{W_3} \in \mathbb{R}^{K \times r}$  are created from orthonormal matrices size  $K \times K$  with the removal of columns corresponding with singular values equal 0. Thus,  $\mathbf{U}_{W_3}\mathbf{U}_{W_3}^{\top}$  is the best rank-r approximation of  $\mathbf{I}_K$ . From here, we can deduce the geometry of the following:

$$\begin{split} \mathbf{W}_3^* \mathbf{W}_3^{*\top} \propto \overline{\mathbf{H}}^{*\top} \overline{\mathbf{H}}^* \propto \mathbf{W}_3^* \mathbf{W}_2^* \mathbf{W}_1^* \overline{\mathbf{H}}^* \\ \propto (\mathbf{W}_3^* \mathbf{W}_2^*) (\mathbf{W}_3^* \mathbf{W}_2^*)^\top \propto (\mathbf{W}_1^* \overline{\mathbf{H}})^\top (\mathbf{W}_1^* \overline{\mathbf{H}}) \\ \propto (\mathbf{W}_3^* \mathbf{W}_2^* \mathbf{W}_1^*) (\mathbf{W}_3^* \mathbf{W}_2^* \mathbf{W}_1^*)^\top \propto (\mathbf{W}_2^* \mathbf{W}_1^* \overline{\mathbf{H}})^\top (\mathbf{W}_2^* \mathbf{W}_1^* \overline{\mathbf{H}}) \propto \mathcal{P}_r(\mathbf{I}_K), \end{split}$$

where  $\mathcal{P}_r(\mathbf{I}_K)$  denotes the best rank-*r* approximation of  $\mathbf{I}_K$ . The collapse of features ( $\mathcal{NC}1$ ) and the alignments between weights and features ( $\mathcal{NC}3$ ) are identical as the case  $b < \frac{\sqrt[3]{4}}{3}$ .

#### **D.2.** Supporting Lemmas for UFM Deep Linear Networks with M Layers of Weights

<sup>8</sup> Before deriving the proof for M layers linear network, from the proof of three layers of weights, we generalize some useful results that support the main proof.

Consider MSE loss function with M layers linear network and arbitrary target matrix  $\mathbf{Y} \in \mathbb{R}^{K \times N}$ :

$$f(\mathbf{W}_{M}, \mathbf{W}_{M-1}, \dots, \mathbf{W}_{2}, \mathbf{W}_{1}, \mathbf{H}_{1}) = \frac{1}{2N} \|\mathbf{W}_{M}\mathbf{W}_{M-1} \dots \mathbf{W}_{2}\mathbf{W}_{1}\mathbf{H}_{1} - \mathbf{Y}\|_{F}^{2} + \frac{\lambda_{W_{M}}}{2} \|\mathbf{W}_{M}\|_{F}^{2} + \frac{\lambda_{W_{M-1}}}{2} \|\mathbf{W}_{M-1}\|_{F}^{2} + \dots + \frac{\lambda_{W_{2}}}{2} \|\mathbf{W}_{2}\|_{F}^{2} + \frac{\lambda_{W_{1}}}{2} \|\mathbf{W}_{1}\|_{F}^{2} + \frac{\lambda_{H_{1}}}{2} \|\mathbf{H}_{1}\|_{F}^{2},$$
(28)

 $\begin{array}{l} & \text{with } \mathbf{W}_M \in \mathbb{R}^{K \times d_M}, \mathbf{W}_{M-1} \in \mathbb{R}^{d_M \times d_{M-1}}, \mathbf{W}_{M-2} \in \mathbb{R}^{d_{M-1} \times d_{M-2}}, \dots, \mathbf{W}_2 \in \mathbb{R}^{d_3 \times d_2}, \mathbf{W}_1 \in \mathbb{R}^{d_2 \times d_1}, \mathbf{H}_1 \in \mathbb{R}^{d_1 \times K} \\ & \text{with } d_M, d_{M-1}, \dots, d_2, d_1 \text{ are arbitrary positive integers.} \end{array}$ 

| 1210 | <b>Lemma D.1.</b> The partial derivative of $\ \mathbf{W}_M \mathbf{W}_{M-1} \dots \mathbf{W}_2 \mathbf{W}_1 \mathbf{H}_1 - \mathbf{Y}\ _F^2$ w.r.t $\mathbf{W}_i$ $(i = 1, 2, \dots, M)$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1211 | 1 AUXI XI XI XI XI XI II XI   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1212 | $\frac{1}{2} \frac{\partial \ \mathbf{w}_{M}\mathbf{w}_{M-1}\dots\mathbf{w}_{1}\dots\mathbf{w}_{2}\mathbf{w}_{1}\mathbf{h}_{1}-\mathbf{f}\ _{F}}{\partial \mathbf{w}_{1}} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1213 | $2 \qquad \partial \mathbf{W}_i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1214 | $\mathbf{W}_{i+1}^{\top}\mathbf{W}_{i+2}^{\top}\ldots\mathbf{W}_{M}^{\top}(\mathbf{W}_{M}\mathbf{W}_{M-1}\ldots\mathbf{W}_{i}\ldots\mathbf{W}_{2}\mathbf{W}_{1}\mathbf{H}_{1}-\mathbf{Y})\mathbf{H}_{1}^{\top}\mathbf{W}_{1}^{\top}\ldots\mathbf{W}_{i-1}^{\top}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1216 | This result is common and the proof can be found in (Yun et al., 2017), for example.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1217 | Lemme D 2 For any articled point (W, W, W, W, H) of $f$ we have the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1218 | Lemma D.2. For any cruical point ( $\mathbf{w}_M, \mathbf{w}_{M-1}, \dots, \mathbf{w}_2, \mathbf{w}_1, \mathbf{n}_1$ ) of $f$ , we have the following.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1219 | $\lambda_{W_M} \mathbf{W}_M^\top \mathbf{W}_M = \lambda_{W_{M-1}} \mathbf{W}_{M-1} \mathbf{W}_{M-1}^\top,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1220 | $\lambda_{W_{i+1}} \mathbf{W}_{M-1}^{\top} \mathbf{W}_{M-1} = \lambda_{W_{i+1}} \mathbf{W}_{M-2} \mathbf{W}_{M-2}^{\top}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1221 | $\cdots w M - 1 \cdots M - 1 \cdots M - 1 \cdots w M - 2 \cdots M - 2 \cdots M - 2 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1222 | ····,<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1223 | $\lambda_{W_2} \mathbf{W}_2^{	op} \mathbf{W}_2 = \lambda_{W_1} \mathbf{W}_1 \mathbf{W}_1^{	op},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1224 | $\lambda_{W_1} \mathbf{W}_1^{	op} \mathbf{W}_1 = \lambda_{H_1} \mathbf{H}_1 \mathbf{H}_1^{	op},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1226 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1227 | and:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1228 | $\mathbf{H} = (\mathbf{v} (\mathbf{X} \mathbf{V}^{\top} \mathbf{X} \mathbf{V}) M + \mathbf{V}) = \mathbf{I} (\mathbf{v} (\mathbf{X} \mathbf{V}^{\top} \mathbf{X} \mathbf{V})^{T} \mathbf{V} $ (20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1229 | $\mathbf{H}_1 = (c(\mathbf{w}_1 \ \mathbf{w}_1) \ + N \lambda_{H_1} \mathbf{I}) \ \mathbf{w}_1 \ \mathbf{w}_2 \ \dots \ \mathbf{w}_M \mathbf{I}, $ (29)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1230 | $\lambda_{W_1}^{M-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1231 | with $c := \frac{1}{\lambda_{W_M} \lambda_{W_{M-1}} \dots \lambda_{W_2}}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1232 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1233 | <i>Proof of Lemma D.2.</i> By definition and using Lemma D.1, any critical point $(\mathbf{W}_M, \mathbf{W}_{M-1}, \dots, \mathbf{W}_2, \mathbf{W}_1, \mathbf{H}_1)$ satisfies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1234 | the following :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1235 | $\partial f = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1236 | $\frac{\partial J}{\partial \mathbf{W}_{M}} = \frac{1}{N} (\mathbf{W}_{M} \mathbf{W}_{M-1} \dots \mathbf{W}_{2} \mathbf{W}_{1} \mathbf{H}_{1} - \mathbf{Y}) \mathbf{H}_{1}^{\top} \mathbf{W}_{1}^{\top} \dots \mathbf{W}_{M-1}^{\top} + \lambda_{W_{M}} \mathbf{W}_{M} = 0,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1237 | $O \mathbf{W}_M = N$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1238 | $\frac{\partial f}{\partial t} = \frac{1}{2} \mathbf{W}_{M}^{\top} (\mathbf{W}_{M} \mathbf{W}_{M-1} \dots \mathbf{W}_{2} \mathbf{W}_{1} \mathbf{H}_{1} - \mathbf{Y}) \mathbf{H}_{1}^{\top} \mathbf{W}_{1}^{\top} \dots \mathbf{W}_{M-2}^{\top} + \lambda_{W, c} \mathbf{W}_{M-1} = 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1239 | $\partial \mathbf{W}_{M-1} = N$ is a set of the set of t |
| 1240 | $\cdots,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 12/1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

$$\frac{\partial f}{\partial \mathbf{W}_{1}} = \frac{1}{N} \mathbf{W}_{2}^{\top} \mathbf{W}_{3}^{\top} \dots \mathbf{W}_{M}^{\top} (\mathbf{W}_{M} \mathbf{W}_{M-1} \dots \mathbf{W}_{2} \mathbf{W}_{1} \mathbf{H}_{1} - \mathbf{Y}) \mathbf{H}_{1}^{\top} + \lambda_{W_{1}} \mathbf{W}_{1} = \mathbf{0},$$

$$\frac{\partial f}{\partial \mathbf{H}_{1}} = \frac{1}{N} \mathbf{W}_{1}^{\top} \mathbf{W}_{2}^{\top} \dots \mathbf{W}_{M}^{\top} (\mathbf{W}_{M} \mathbf{W}_{M-1} \dots \mathbf{W}_{2} \mathbf{W}_{1} \mathbf{H}_{1} - \mathbf{Y}) + \lambda_{H_{1}} \mathbf{H}_{1} = \mathbf{0}.$$

1247 Next, we have:

 $\mathbf{0} = \mathbf{W}_{M}^{\top} \frac{\partial f}{\partial \mathbf{W}_{M}} - \frac{\partial f}{\partial \mathbf{W}_{M-1}} \mathbf{W}_{M-1}^{\top} = \lambda_{W_{M}} \mathbf{W}_{M}^{\top} \mathbf{W}_{M} - \lambda_{W_{M-1}} \mathbf{W}_{M-1}^{\top} \mathbf{W}_{M-1} \mathbf{W}_{M-1}^{\top}$   $\Rightarrow \lambda_{W_{M}} \mathbf{W}_{M}^{\top} \mathbf{W}_{M} = \lambda_{W_{M-1}} \mathbf{W}_{M-1}^{\top} \mathbf{W}_{M-1}^{\top}.$   $\mathbf{0} = \mathbf{W}_{M-1}^{\top} \frac{\partial f}{\partial \mathbf{W}_{M-1}} - \frac{\partial f}{\partial \mathbf{W}_{M-2}} \mathbf{W}_{M-2}^{\top} = \lambda_{W_{M-1}} \mathbf{W}_{M-1}^{\top} \mathbf{W}_{M-1} - \lambda_{W_{M-2}} \mathbf{W}_{M-2} \mathbf{W}_{M-2}^{\top}.$   $\Rightarrow \lambda_{W_{M-1}} \mathbf{W}_{M-1}^{\top} \mathbf{W}_{M-1} = \lambda_{W_{M-2}} \mathbf{W}_{M-2} \mathbf{W}_{M-2}^{\top}.$ 

1256 Making similar argument for the other derivatives, we have:

| 1257 | ⊤                                                                                                 |
|------|---------------------------------------------------------------------------------------------------|
| 1258 | $\lambda_{W_M} \mathbf{W}_M' \mathbf{W}_M = \lambda_{W_{M-1}} \mathbf{W}_{M-1} \mathbf{W}_{M-1},$ |

 $\lambda_{W_{M-1}} \mathbf{W}_{M-1}^{\top} \mathbf{W}_{M-1} = \lambda_{W_{M-2}} \mathbf{W}_{M-2} \mathbf{W}_{M-2}^{\top},$ 

- $\lambda_{W_2} \mathbf{W}_2^\top \mathbf{W}_2 = \lambda_{W_1} \mathbf{W}_1 \mathbf{W}_1^\top,$
- 1264  $\lambda_{W_1} \mathbf{W}_1^\top \mathbf{W}_1 = \lambda_{H_1} \mathbf{H}_1 \mathbf{H}_1^\top.$

$$\begin{aligned} \begin{array}{l} \hline \mathbf{W}_{M} = \mathbf{U}_{M} \left[ \mathbf{W}_{M} = \mathbf{U}_{M} \left[ \mathbf{W}_{M} = \mathbf{W}_{M} \mathbf{W}_{M} \mathbf{W}_{M-1} \dots \mathbf{W}_{2} \mathbf{W}_{1} + N\lambda_{H_{1}} \mathbf{I}_{1}^{-1} \mathbf{W}_{1}^{\top} \mathbf{W}_{2}^{\top} \dots \mathbf{W}_{M}^{\top} \mathbf{Y} \right] \\ \mathbf{W}_{M}^{\top} = \mathbf{U}_{M_{M}^{-1}} \mathbf{W}_{M}^{\top} \mathbf{W}_{M}^{\top} \mathbf{W}_{M-1} \dots \mathbf{W}_{2} \mathbf{W}_{1} + N\lambda_{H_{1}} \mathbf{I}_{1}^{-1} \mathbf{W}_{1}^{\top} \mathbf{W}_{2}^{\top} \dots \mathbf{W}_{M}^{\top} \mathbf{Y} \\ = \left( \frac{\lambda_{W_{M}^{-1}}}{\lambda_{W_{M}^{-1}}} \mathbf{W}_{1}^{\top} \mathbf{W}_{2}^{\top} \dots \mathbf{W}_{M}^{\top} \mathbf{W}_{1}^{\top} \mathbf{W}_{2}^{\top} \dots \mathbf{W}_{M}^{\top} \mathbf{Y} \right) \\ = \left( \frac{\lambda_{W_{M}^{-1}}}{\lambda_{W_{M}^{-1}}} \mathbf{W}_{M}^{\top} \mathbf{W}_{1}^{\top} \mathbf{W}_{1}^{\top} \mathbf{W}_{1}^{\top} \mathbf{W}_{2}^{\top} \dots \mathbf{W}_{M}^{\top} \mathbf{Y} \right) \\ = \left( \mathbf{W}_{1}^{\top} \mathbf{W}_{1}^{\top} \mathbf{W}_{2}^{\top} \dots \mathbf{W}_{M}^{\top} \mathbf{W}_{1}^{\top} \mathbf{W}_{1}^{\top} \mathbf{W}_{2}^{\top} \dots \mathbf{W}_{M}^{\top} \mathbf{Y} \right) \\ = \left( \mathbf{W}_{1}^{\top} \mathbf{W}_{1}^{\top} \mathbf{W}_{2}^{\top} \dots \mathbf{W}_{M}^{\top} \mathbf{W}_{1}^{\top} \mathbf{W}_{1}^{\top} \mathbf{W}_{2}^{\top} \dots \mathbf{W}_{M}^{\top} \mathbf{W}_{1}^{\top} \mathbf{W}_{2}^{\top} \dots \mathbf{W}_{M}^{\top} \mathbf{W}_$$

$$\mathbf{W}_2^\top \mathbf{W}_2 = \frac{\lambda_{W_1}}{\lambda_{W_2}} \mathbf{W}_1 \mathbf{W}_1^\top = \frac{\lambda_{W_1}}{\lambda_{W_2}} \mathbf{U}_{W_1} \mathbf{S}_{W_1} \mathbf{S}_{W_1}^\top \mathbf{U}_{W_1}^\top = \mathbf{U}_{W_1} \mathbf{S}_{W_2}^\top \mathbf{S}_{W_2} \mathbf{U}_{W_1}^\top,$$

1315 where:

1316

1314

1316  
1317  
1318  

$$\mathbf{S}_{W_2} := \sqrt{\frac{\lambda_{W_1}}{\lambda_{W_2}}} \begin{bmatrix} \operatorname{diag}(s_1, \dots, s_r) & \mathbf{0}_{r \times (d_2 - r)} \\ \mathbf{0}_{(d_3 - r) \times r} & \mathbf{0}_{(d_3 - r) \times (d_2 - r)} \end{bmatrix} \in \mathbb{R}^{d_3 \times d_2}.$$

This means the diagonal matrix  $\mathbf{S}_{W_2}^{\top} \mathbf{S}_{W_2}$  contains the eigenvalues and the columns of  $\mathbf{U}_{W_1}$  are the eigenvectors of  $\mathbf{W}_2^{\top} \mathbf{W}_2$ . Hence, we can write the SVD decomposition of  $\mathbf{W}_2$  as  $\mathbf{W}_2 = \mathbf{U}_{W_2} \mathbf{S}_{W_2} \mathbf{U}_{W_1}^{\top}$  with orthonormal matrix  $\mathbf{U}_{W_2} \in \mathbb{R}^{d_3 \times d_3}$ . By making similar arguments as above for  $W_3$ , from:  $\mathbf{W}_3^{\top}\mathbf{W}_3 = \frac{\lambda_{W_2}}{\lambda_{W_2}}\mathbf{W}_2\mathbf{W}_2^{\top} = \frac{\lambda_{W_2}}{\lambda_{W_2}}\mathbf{U}_{W_2}\mathbf{S}_{W_2}\mathbf{S}_{W_2}^{\top}\mathbf{U}_{W_2}^{\top} = \mathbf{U}_{W_2}\mathbf{S}_{W_3}^{\top}\mathbf{S}_{W_3}\mathbf{U}_{W_2}^{\top},$ where:  $\mathbf{S}_{W_3} := \sqrt{\frac{\lambda_{W_1}}{\lambda_{W_3}}} \begin{bmatrix} \operatorname{diag}(s_1, \dots, s_r) & \mathbf{0}_{r \times (d_3 - r)} \\ \mathbf{0}_{(d_4 - r) \times r} & \mathbf{0}_{(d_4 - r) \times (d_3 - r)} \end{bmatrix} \in \mathbb{R}^{d_4 \times d_3},$ and thus, we can write SVD decomposition of  $\mathbf{W}_3$  as  $\mathbf{W}_3 = \mathbf{U}_{W_3} \mathbf{S}_{W_3} \mathbf{U}_{W_2}^{\top}$  with orthonormal matrix  $\mathbf{U}_{W_3} \in \mathbb{R}^{d_4 \times d_4}$ . Repeating the process for other weight matrices, we got the desired result. Lemma D.5. Continue from the setting and result of Lemma D.4, we have:  $\mathbf{H}_{1} = \mathbf{V}_{W_{1}} \underbrace{\begin{bmatrix} \operatorname{diag} \left( \frac{\sqrt{c}s_{1}^{M}}{cs_{1}^{2M} + N\lambda_{H_{1}}}, \dots, \frac{\sqrt{c}s_{r}^{M}}{cs_{r}^{2M} + N\lambda_{H_{1}}} \right) & \mathbf{0}_{r \times (K-r)} \\ \mathbf{0}_{(d_{1}-r) \times r} & \mathbf{0}_{(d_{1}-r) \times (K-r)} \end{bmatrix}}_{W_{M}} \mathbf{V}_{W_{M}}^{\top} \mathbf{Y},$  $\mathbf{W}_{M}\mathbf{W}_{M-1}\dots\mathbf{W}_{2}\mathbf{W}_{1}\mathbf{H}-\mathbf{Y}=\mathbf{U}_{W_{M}}\underbrace{\begin{bmatrix} \operatorname{diag}\left(\frac{-N\lambda_{H_{1}}}{cs_{1}^{2M}+N\lambda_{H_{1}}},\dots,\frac{-N\lambda_{H_{1}}}{cs_{r}^{2M}+N\lambda_{H_{1}}}\right) & \mathbf{0}_{r\times(K-r)}\\ \mathbf{0}_{(K-r)\times r} & -\mathbf{I}_{K-r} \end{bmatrix}}_{\mathbf{V}_{W_{M}}^{\top}\mathbf{Y},$ with  $c := \frac{\lambda_{W_1}^{M-1}}{\lambda_{W_1}, \lambda_{W_2}, \dots, \lambda_{W_2}}$ *Proof of Lemma D.5.* From Lemma D.2, together with the SVD of weight matrices and the form of singular matrix  $S_{W_i}$ derived in Lemma D.4, we have:  $\mathbf{H}_1 = (c(\mathbf{W}_1^{\top}\mathbf{W}_1)^M + N\lambda_{H_1}\mathbf{I})^{-1}\mathbf{W}_1^{\top}\mathbf{W}_2^{\top}\dots\mathbf{W}_M^{\top}\mathbf{Y}$  $= (c\mathbf{V}_{W_1}(\mathbf{S}_{W_1}^{\top}\mathbf{S}_{W_1})^M\mathbf{V}_{W_1}^{\top} + N\lambda_{H_1}\mathbf{I})^{-1}\mathbf{V}_{W_1}\mathbf{S}_{W_1}^{\top}\mathbf{S}_{W_2}^{\top}\dots\mathbf{S}_{W_M}^{\top}\mathbf{U}_{W_M}^{\top}\mathbf{Y}$  $= \mathbf{V}_{W_1} (c (\mathbf{S}_{W_1}^{\top} \mathbf{S}_{W_1})^M + N\lambda_{H_1} \mathbf{I})^{-1} \mathbf{S}_{W_1}^{\top} \mathbf{S}_{W_2}^{\top} \dots \mathbf{S}_{W_M}^{\top} \mathbf{U}_{W_M}^{\top} \mathbf{Y}$  $= \mathbf{V}_{W_1} (c(\mathbf{S}_{W_1}^{\top} \mathbf{S}_{W_1})^M + N\lambda_{H_1} \mathbf{I})^{-1} \sqrt{c} \begin{bmatrix} \operatorname{diag}(s_1^M, \dots, s_r^M) & \mathbf{0}_{r \times (K-r)} \\ \mathbf{0}_{(d_1 - r) \times r} & \mathbf{0}_{(d_1 - r) \times (K-r)} \end{bmatrix} \mathbf{U}_{W_M}^{\top} \mathbf{Y}$  $= \mathbf{V}_{W_1} \underbrace{\begin{bmatrix} \operatorname{diag}\left(\frac{\sqrt{c}s_1^M}{cs_1^{2M} + N\lambda_{H_1}}, \dots, \frac{\sqrt{c}s_r^M}{cs_r^{2M} + N\lambda_{H_1}}\right) & \mathbf{0}_{r \times (K-r)} \\ \mathbf{0}_{(d_1 - r) \times r} & \mathbf{0}_{(d_1 - r) \times (K-r)} \end{bmatrix}}_{\mathbf{U}_{W_M}^{\top} \mathbf{Y}$  $= \mathbf{V}_{W} \mathbf{C} \mathbf{U}_{W}^{\top} \mathbf{Y}$  $\Rightarrow \mathbf{W}_{M}\mathbf{W}_{M-1}\ldots\mathbf{W}_{2}\mathbf{W}_{1}\mathbf{H}_{1} = \mathbf{U}_{W_{M}}\mathbf{S}_{W_{M}}\mathbf{S}_{W_{M-1}}\ldots\mathbf{S}_{W_{1}}\mathbf{C}\mathbf{U}_{W_{M}}^{\top}\mathbf{Y}$  $= \sqrt{\frac{\lambda_{W_1}}{\lambda_{W_M}}} \mathbf{U}_{W_M} \begin{bmatrix} \operatorname{diag}(s_1, \dots, s_r) & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \mathbf{S}_{W_{M-1}} \dots \mathbf{S}_{W_1} \mathbf{C} \mathbf{U}_{W_M}^\top \mathbf{Y}$  $= \mathbf{U}_{W_M} \sqrt{c} \begin{bmatrix} \operatorname{diag}(s_1^M, \dots, s_r^M) & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \mathbf{C} \mathbf{U}_{W_M}^\top \mathbf{Y}$ 

$$\begin{array}{ll} 1375\\ 1376\\ 1377\\ 1378\\ 1379\\ 1379\\ 1379\\ 1379\\ 1379\\ 1379\\ 1379\\ 1379\\ 1379\\ 1379\\ 1379\\ 1380\\ 1381\\ 1381\\ 1381\\ 1381\\ 1382\\ 1382\\ 1383\\ 1384\\ 1384\\ 1384\\ 1385\\ 1387\\ 1385\\ 1387\\ 1388\\ 1388\\ 1388\\ 1387\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 1388\\ 138$$

Let 
$$h(x) = x^M - \frac{M}{(M-1)^{\frac{M-1}{M}}} x^{M-1} + 1$$
 with  $x \ge 0$ , we have:

$$h'(x) = M x^{M-1} - M (M-1)^{1/M} x^{M-2},$$
  

$$h'(x) = 0 \Leftrightarrow x = 0 \text{ or } x = (M-1)^{1/M}.$$
(31)

(30)

We also have: h(0) = 1 and  $h((M-1)^{1/M}) = M - 1 - M + 1 = 0$ . From the variation table, we clearly have  $h(x) \ge 0 \ \forall \ x \ge 0.$ 

 $\Leftrightarrow x(x^M - \frac{M}{(M-1)^{\frac{M-1}{M}}}x^{M-1} + 1) \ge 0$ 

 $\Leftrightarrow x^M - \frac{M}{(M-1)^{\frac{M-1}{M}}} x^{M-1} + 1 \ge 0.$ 

| x     | 0 | $(M-1)^{1/M}$ | $\infty$ |
|-------|---|---------------|----------|
| h'(x) | - | 0             | +        |
| h(x)  | 1 | 0             | $\infty$ |

Hence, in this case,  $g(x) > 1 \forall x > 0$ , therefore, g(x) is minimized at x = 0.

1427  
1428  
1429 • If 
$$b = \frac{(M-1)^{\frac{M-1}{M}}}{M}$$
: We have  $g(x) = \frac{1}{x^{M+1}} + \frac{(M-1)^{\frac{M-1}{M}}}{M}x \ge 1$ . Thus,  $g(x)$  is minimized at  $x = 0$  or  $x = (M-1)^{1/M}$ 



by using Lemma D.2,

we

have

for

any

critical

point

Proof of Theorem 3.1 (bias-free). First,

 $(\mathbf{W}_M, \mathbf{W}_{M-1}, \dots, \mathbf{W}_2, \mathbf{W}_1, \mathbf{H}_1)$  of f, we have the following: 1485 1486  $\lambda_{W_M} \mathbf{W}_M^{\top} \mathbf{W}_M = \lambda_{W_M} \mathbf{W}_{M-1} \mathbf{W}_{M-1}^{\top} \mathbf{W}_{M-1}^{\top},$ 1487  $\lambda_{W_{M-1}} \mathbf{W}_{M-1}^{\top} \mathbf{W}_{M-1} = \lambda_{W_{M-2}} \mathbf{W}_{M-2} \mathbf{W}_{M-2}^{\top},$ 1488 1489 1490  $\lambda_{W_2} \mathbf{W}_2^{\top} \mathbf{W}_2 = \lambda_{W_1} \mathbf{W}_1 \mathbf{W}_1^{\top},$ 1491  $\lambda_{W_1} \mathbf{W}_1^{\top} \mathbf{W}_1 = \lambda_{H_1} \mathbf{H}_1 \mathbf{H}_1^{\top}$ 1492 1493 Let  $\mathbf{W}_1 = \mathbf{U}_{W_1} \mathbf{S}_{W_1} \mathbf{V}_{W_1}^{\top}$  be the SVD decomposition of  $\mathbf{W}_1$  with  $\mathbf{U}_{W_1} \in \mathbb{R}^{d_2 \times d_2}, \mathbf{V}_{W_1} \in \mathbb{R}^{d_1 \times d_1}$  are orthonormal 1494 matrices and  $\mathbf{S}_{W_1} \in \mathbb{R}^{d_2 \times d_1}$  is a diagonal matrix with **decreasing** non-negative singular values. We denote the *r* singular 1495 1496 values of  $\mathbf{W}_1$  as  $\{s_k\}_{k=1}^r$   $(r \leq R := \min(K, d_M, \dots, d_1)$ , from Lemma D.3). From Lemma D.4, we have the SVD of 1497 other weight matrices as: 1498  $\mathbf{W}_M = \mathbf{U}_{W_M} \mathbf{S}_{W_M} \mathbf{U}_{W_M-1}^{\top},$ 1499  $\mathbf{W}_{M-1} = \mathbf{U}_{W_{M-1}} \mathbf{S}_{W_{M-1}} \mathbf{U}_{W_{M-2}}^{\top}$ 1500  $\mathbf{W}_{M-2} = \mathbf{U}_{W_{M-2}} \mathbf{S}_{W_{M-2}} \mathbf{U}_{W_{M-3}}^{\top},$  $\mathbf{W}_{M-3} = \mathbf{U}_{W_{M-3}} \mathbf{S}_{W_{M-3}} \mathbf{U}_{W_{M-4}}^{\top},$  $\mathbf{W}_2 = \mathbf{U}_{W_2} \mathbf{S}_{W_2} \mathbf{U}_{W_2}^{\top},$ 1506  $\mathbf{W}_1 = \mathbf{U}_{W_1} \mathbf{S}_{W_1} \mathbf{V}_{W_1}^{\top}$ 1507 1508 where: 1509  $\mathbf{S}_{W_j} = \sqrt{\frac{\lambda_{W_1}}{\lambda_{W_i}}} \begin{bmatrix} \operatorname{diag}(s_1, \dots, s_r) & \mathbf{0}_{r \times (d_j - r)} \\ \mathbf{0}_{(d_{j+1} - r) \times r} & \mathbf{0}_{(d_{j+1} - r) \times (d_j - r)} \end{bmatrix} \in \mathbb{R}^{d_{j+1} \times d_j}, \quad \forall j \in [M],$ 1510 1511 1512 and  $\mathbf{U}_{W_M}, \mathbf{U}_{W_{M-1}}, \mathbf{U}_{W_{M-2}}, \mathbf{U}_{W_{M-3}}, \dots, \mathbf{U}_{W_1}, \mathbf{V}_{W_1}$  are all orthonormal matrices. 1513 1514 From Lemma D.5, denote  $c := \frac{\lambda_{W_1}^{M-1}}{\lambda_{W_M} \lambda_{W_{M-1}} \dots \lambda_{W_2}}$ , we have: 1515 1516 1517  $\mathbf{H}_{1} = \mathbf{V}_{W_{1}} \underbrace{ \begin{bmatrix} \operatorname{diag} \left( \frac{\sqrt{c}s_{1}^{M}}{cs_{1}^{2M} + N\lambda_{H_{1}}}, \dots, \frac{\sqrt{c}s_{r}^{M}}{cs_{r}^{2M} + N\lambda_{H_{1}}} \right) & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}}_{\mathbf{0}} \mathbf{U}_{W_{M}}^{\top} \mathbf{Y}$ 1518 1519 (32) $= \mathbf{V}_{W_1} \mathbf{C} \mathbf{U}_{W_1}^{\top} \mathbf{Y},$ 1522  $\mathbf{W}_{M}\mathbf{W}_{M-1}\dots\mathbf{W}_{2}\mathbf{W}_{1}\mathbf{H}-\mathbf{Y}=\mathbf{U}_{W_{M}}\underbrace{\begin{bmatrix}\operatorname{diag}\left(\frac{-N\lambda_{H_{1}}}{cs_{1}^{2M}+N\lambda_{H_{1}}},\dots,\frac{-N\lambda_{H_{1}}}{cs_{r}^{2M}+N\lambda_{H_{1}}}\right) & \mathbf{0}\\ \mathbf{0} & -\mathbf{I}_{K-r}\end{bmatrix}}_{\mathbf{0}}\mathbf{U}_{W_{M}}^{\top}\mathbf{Y}$ 1523 1524 (33)1526 1527  $= \mathbf{U}_{W_M} \mathbf{D} \mathbf{U}_{W_M}^\top \mathbf{Y}.$ 1528 1529 Next, we will calculate the Frobenius norm of  $\mathbf{W}_{M}\mathbf{W}_{M-1}\ldots\mathbf{W}_{2}\mathbf{W}_{1}\mathbf{H}-\mathbf{Y}$ : 1530  $\|\mathbf{W}_{M}\mathbf{W}_{M-1}\dots\mathbf{W}_{2}\mathbf{W}_{1}\mathbf{H}_{1}-\mathbf{Y}\|_{F}^{2}=\|\mathbf{U}_{W_{M}}\mathbf{D}\mathbf{U}_{W_{M}}^{\top}\mathbf{Y}\|_{F}^{2}$ 1531  $= \operatorname{trace}(\mathbf{U}_{W_M} \mathbf{D} \mathbf{U}_{W_M}^{\top} \mathbf{Y} (\mathbf{U}_{W_M} \mathbf{D} \mathbf{U}_{W_M}^{\top} \mathbf{Y})^{\top})$ 1533 =trace( $\mathbf{U}_{W_M}\mathbf{D}\mathbf{U}_{W_M}^{\top}\mathbf{Y}\mathbf{Y}^{\top}\mathbf{U}_{W_M}\mathbf{D}\mathbf{U}_{W_M}^{\top}$ ) 1534 =trace( $\mathbf{D}^2 \mathbf{U}_{W_M}^\top \mathbf{Y} \mathbf{Y}^\top \mathbf{U}_{W_M}$ ) 1536  $= n \operatorname{trace}(\mathbf{D}^2) = n \left[ \sum_{r=1}^{r} \left( \frac{-N\lambda_{H_1}}{cs_1^{2M} + N\lambda_{H_1}} \right)^2 + K - r \right].$ 1537 (34)1538 1539

where we use the fact  $\mathbf{Y}\mathbf{Y}^{\top} = (\mathbf{I}_K \otimes \mathbf{1}_n^{\top})(\mathbf{I}_K \otimes \mathbf{1}_n^{\top})^{\top} = n\mathbf{I}_K$  and  $\mathbf{U}_{W_M}$  is an orthonormal matrix. 1540 1541 1542 Similarly, for  $H_1$ , we have: 1543 1544  $\|\mathbf{H}_1\|_F^2 = \operatorname{trace}(\mathbf{V}_{W_1}\mathbf{C}\mathbf{U}_{W_M}^{\top}\mathbf{Y}\mathbf{Y}^{\top}\mathbf{U}_{W_M}\mathbf{C}^{\top}\mathbf{V}_{W_1}^{\top}) = \operatorname{trace}(\mathbf{C}^{\top}\mathbf{C}\mathbf{U}_{W_M}^{\top}\mathbf{Y}\mathbf{Y}^{\top}\mathbf{U}_{W_M})$ 1545 1546  $= n \sum_{k=1}^{T} \frac{c s_k^{2M}}{c s_k^{2M} + N \lambda_{H_1}}.$ (35)1547 1548 1549 1550 Now, we plug equations (34), (35) and the SVD of weight matrices into the function f and note that orthonormal matrix 1551 does not change Frobenius norm, we got: 1552 1553 1554  $f(\mathbf{W}_{M},\ldots,\mathbf{W}_{1},\mathbf{H}_{1}) = \frac{1}{2N} \|\mathbf{W}_{M}\mathbf{W}_{M-1}\ldots\mathbf{W}_{2}\mathbf{W}_{1}\mathbf{H} - \mathbf{Y}\|_{F}^{2} + \frac{\lambda_{W_{M}}}{2} \|\mathbf{W}_{M}\|_{F}^{2} + \ldots + \frac{\lambda_{W_{1}}}{2} \|\mathbf{W}_{1}\|_{F}^{2} + \frac{\lambda_{H_{1}}}{2} \|\mathbf{H}_{1}\|_{F}^{2}$ 1555 1556  $=\frac{1}{2K}\sum_{r=1}^{r}\frac{(-N\lambda_{H_{1}})^{2}}{(cs_{\iota}^{2M}+N\lambda_{H_{1}})^{2}}+\frac{K-r}{2K}+\frac{\lambda_{W_{M}}}{2}\sum_{r=1}^{r}\frac{\lambda_{W_{1}}}{\lambda_{W_{M}}}s_{k}^{2}+\frac{\lambda_{W_{M-1}}}{2}\sum_{h=1}^{r}\frac{\lambda_{W_{1}}}{\lambda_{W_{M-1}}}s_{k}^{2}$ 1557 1558  $+\ldots+\frac{\lambda_{W_1}}{2}\sum_{k=1}^r s_k^2 + \frac{n\lambda_{H_1}}{2}\sum_{k=1}^r \frac{cs_k^{2M}}{(cs_k^{2M}+N\lambda_{H_1})^2}$ 1560  $=\frac{n\lambda_{H_1}}{2}\sum_{i=1}^{r}\frac{1}{cs_{k}^{2M}+N\lambda_{H_1}}+\frac{K-r}{2K}+\frac{M\lambda_{W_1}}{2}\sum_{i=1}^{r}s_{k}^{2}$  $=\frac{1}{2K}\sum_{k=1}^{r}\left(\frac{1}{\frac{cs_{k}^{2M}}{Nk_{k}}+1}+MN\lambda_{W_{1}}\sqrt[M]{\frac{N\lambda_{H_{1}}}{c}}\left(\sqrt[M]{\frac{cs_{k}^{2M}}{N\lambda_{H_{1}}}}\right)\right)+\frac{K-r}{2K}$ 1565 1566  $= \frac{1}{2K} \sum_{k=1}^{r} \left( \frac{1}{x_{k}^{M} + 1} + bx_{k} \right) + \frac{K - r}{2K},$ (36)1569 1570 1571

Recall that we have studied the minimizer of function  $g(x) = \frac{1}{x^{M+1}} + bx$  in Section D.2.1. From equation (36), f can be written as  $\frac{1}{2K} \sum_{k=1}^{r} g(x_k) + \frac{K-r}{2N}$ . By applying the result from Section D.2.1 for each  $g(x_k)$ , we finish bounding f and the equality conditions are as following:

• If  $b = MK \sqrt[M]{Kn\lambda_{W_M}\lambda_{W_{M-1}}\dots\lambda_{W_1}\lambda_{H_1}} > \frac{(M-1)^{\frac{M-1}{M}}}{M}$ : all the singular values of  $\mathbf{W}_1$  are zeros. Therefore, the singular values of  $\mathbf{W}_M, \mathbf{W}_{M-1}, \dots, \mathbf{H}_1$  are also all zeros. In this case,  $f(\mathbf{W}_M, \mathbf{W}_{M-1}, \dots, \mathbf{W}_2, \mathbf{W}_1, \mathbf{H}_1)$  is minimized at  $(\mathbf{W}_M^*, \mathbf{W}_{M-1}^*, \dots, \mathbf{W}_1^*, \mathbf{H}_1^*) = (\mathbf{0}, \mathbf{0}, \dots, \mathbf{0}, \mathbf{0}).$ 

- If  $b = MK \sqrt[M]{Kn\lambda_{W_M}\lambda_{W_{M-1}}\dots\lambda_{W_1}\lambda_{H_1}} < \frac{(M-1)^{\frac{M-1}{M}}}{M}$ : In this case,  $\mathbf{W}_1^*$  have r singular values, all of which are equal a multiplier of the largest positive solution of the equation  $b - \frac{Mx^{M-1}}{(x^M+1)^2} = 0$ , we denote that singular value as s. Hence, we can write the compact SVD form (with a bit of notation abuse) of  $\mathbf{W}_{M-1}^*$  as  $\mathbf{W}_1^* = s\mathbf{U}_{W_1}\mathbf{V}_{W_1}^\top$  with semi-orthonormal matrices  $\mathbf{U}_{W_1} \in \mathbb{R}^{d_2 \times r}, \mathbf{V}_{W_1} \in \mathbb{R}^{d_1 \times r}$ . (note that  $\mathbf{U}_{W_1}^\top \mathbf{U}_{W_1} = \mathbf{I}$  and  $\mathbf{V}_{W_1}^\top \mathbf{V}_{W_1} = \mathbf{I}$ ). Since  $\frac{1}{x^{*M}+1} + bx^* < 1$ , we have  $r = R = \min(K, d_M, \dots, d_1)$  in this case.
- 1594

1580 1581

1582 1583 1584

Similarly, we also have the compact SVD form of other weight matrices and feature matrix as:

$$\begin{split} \mathbf{W}_{M}^{*} &= \sqrt{\frac{\lambda_{W_{1}}}{\lambda_{W_{M}}}} s \mathbf{U}_{W_{M}} \mathbf{U}_{W_{M-1}}^{T}, \\ \mathbf{W}_{M-1}^{*} &= \sqrt{\frac{\lambda_{W_{1}}}{\lambda_{W_{M-1}}}} s \mathbf{U}_{W_{M-1}} \mathbf{U}_{W_{M-2}}^{\top}, \end{split}$$

$$\mathbf{W}_{1}^{*} = s \mathbf{U}_{W_{1}} \mathbf{V}_{W_{1}}^{\top},$$
  
$$\mathbf{H}_{1}^{*} = \frac{\sqrt{c} s^{M}}{c s^{2M} + N \lambda_{H_{1}}} \mathbf{V}_{W_{1}} \mathbf{U}_{W_{M}}^{\top} \mathbf{Y} \quad \text{(from equation (35))},$$

with semi-orthonormal matrices  $\mathbf{U}_{W_M}, \mathbf{U}_{W_{M-1}}, \mathbf{U}_{W_{M-2}}, \dots, \mathbf{U}_{W_1}, \mathbf{V}_{W_1}$  that each has R orthogonal columns, i.e.  $\mathbf{U}_{W_M}^{\top} \mathbf{U}_{W_M} = \mathbf{U}_{W_{M-1}}^{\top} \mathbf{U}_{W_{M-1}} = \dots = \mathbf{U}_{W_1}^{\top} \mathbf{U}_{W_1} = \mathbf{V}_{W_1}^{\top} \mathbf{V}_{W_1} = \mathbf{I}_R$ . Furthermore,  $\mathbf{U}_{W_M}, \mathbf{U}_{W_{M-1}}, \dots, \mathbf{U}_{W_1}, \mathbf{V}_{W_1}$  are truncated matrices from orthonormal matrices (remove columns that do not correspond with non-zero singular values), hence  $\mathbf{U}_{W_M} \mathbf{U}_{W_M}^{\top}, \mathbf{U}_{W_{M-1}} \mathbf{U}_{W_{M-1}}^{\top}, \dots, \mathbf{U}_{W_1} \mathbf{U}_{W_1}^{\top}, \mathbf{V}_{W_1} \mathbf{V}_{W_1}^{\top}$  are the best rank-R approximations of the identity matrix of the same size.

Let  $\overline{\mathbf{H}}^* = \frac{\sqrt{cs^M}}{cs^{2M} + N\lambda_{H_1}} \mathbf{V}_{W_1} \mathbf{U}_{W_M}^{\top} \in \mathbb{R}^{d_1 \times K}$ , then we have  $(\mathcal{NC}1) \mathbf{H}_1^* = \overline{\mathbf{H}}^* \mathbf{Y} = \overline{\mathbf{H}}^* \otimes \mathbf{1}_n^{\top}$ , thus we conclude the features within the same class collapse to their class-mean and  $\overline{\mathbf{H}}^*$  is the class-means matrix.

From above arguments, we can deduce the geometry of the following ( $\mathcal{NC2}$ ):

$$\mathbf{W}_{M}^{*}\mathbf{W}_{M}^{\top *} \propto \mathbf{U}_{W_{M}}\mathbf{U}_{W_{M}}^{\top} \propto \mathcal{P}_{R}(\mathbf{I}_{K}),$$

$$\overline{\mathbf{H}}^{*\top}\overline{\mathbf{H}}^{*} \propto \mathbf{U}_{W_{M}}\mathbf{U}_{W_{M}}^{\top} \propto \mathcal{P}_{R}(\mathbf{I}_{K}),$$

$$\mathbf{W}_{M}^{*}\mathbf{W}_{M-1}^{*}\mathbf{W}_{M-2}^{*}\dots\mathbf{W}_{2}^{*}\mathbf{W}_{1}^{*}\overline{\mathbf{H}}^{*} \propto \mathbf{U}_{W_{M}}\mathbf{U}_{W_{M}}^{\top} \propto \mathcal{P}_{R}(\mathbf{I}_{K}),$$

$$(\mathbf{W}_{M}^{*}\mathbf{W}_{M-1}^{*}\dots\mathbf{W}_{i}^{*})(\mathbf{W}_{M}^{*}\mathbf{W}_{M-1}^{*}\dots\mathbf{W}_{i}^{*})^{\top} \propto \mathbf{U}_{W_{M}}\mathbf{U}_{W_{M}}^{\top} \propto \mathcal{P}_{R}(\mathbf{I}_{K}), \quad \forall j \in [M].$$

$$(37)$$

Note that if R = K, we have  $\mathcal{P}_R(\mathbf{I}_K) = \mathbf{I}_K$ .

Also, the product of each weight matrix or features with its transpose will be the multiplier of one of the best rank-*r* approximations of the identity matrix of the same size. For example,  $\mathbf{W}_{M-1}^{*\top}\mathbf{W}_{M-1}^{*} \propto \mathbf{U}_{W_{M-2}}\mathbf{U}_{W_{M-2}}^{\top}$  and  $\mathbf{W}_{M-1}^{*}\mathbf{W}_{M-1}^{*\top} \propto \mathbf{U}_{W_{M-1}}\mathbf{U}_{W_{M-1}}^{\top}$  are two best rank-*R* approximations of  $\mathbf{I}_{d_{M-1}}$  and  $\mathbf{I}_{d_M}$ , respectively.

Next, we can derive the alignments between weights and features as following ( $\mathcal{NC3}$ ):

$$\mathbf{W}_{M}^{*}\mathbf{W}_{M-1}^{*}\dots\mathbf{W}_{1}^{*} \propto \mathbf{U}_{W_{M}}\mathbf{V}_{W_{1}}^{\top} \propto \overline{\mathbf{H}}^{*\top},$$
  
$$\mathbf{W}_{M-1}^{*}\mathbf{W}_{M-2}^{*}\dots\mathbf{W}_{1}^{*}\overline{\mathbf{H}}^{*} \propto \mathbf{U}_{W_{M-1}}\mathbf{U}_{W_{M}}^{\top} \propto \mathbf{W}_{M}^{*\top},$$
  
$$\mathbf{W}_{M}^{*}\mathbf{W}_{M-1}^{*}\dots\mathbf{W}_{j}^{*} \propto \mathbf{U}_{W_{M}}\mathbf{U}_{W_{j-1}}^{\top} \propto (\mathbf{W}_{j-1}^{*}\dots\mathbf{W}_{1}^{*}\overline{\mathbf{H}}^{*})^{\top}.$$
(38)

• If  $b = MK \sqrt[M]{Kn\lambda_{W_M}\lambda_{W_{M-1}}\dots\lambda_{W_1}\lambda_{H_1}} = \frac{(M-1)^{\frac{M-1}{M}}}{M}$ : In this case,  $x_k^*$  can either be 0 or the largest positive solution of the equation  $b - \frac{Mx^{M-1}}{(x^M+1)^2} = 0$ . If all the singular values are 0's, we have the trivial global minima  $(\mathbf{W}_M^*,\dots,\mathbf{W}_1^*,\mathbf{H}_1^*) = (\mathbf{0},\dots,\mathbf{0},\mathbf{0}).$ 

If there are exactly  $0 < r \le R$  positive singular values  $s_1 = s_2 = \ldots = s_r := s > 0$  and  $s_{r+1} = \ldots = s_R = 0$ , then similar as the case  $b < \frac{(M-1)^{\frac{M-1}{M}}}{M}$ , we also have similar compact SVD form (with exactly *r* singular vectors, instead of *R* as the above case). Thus, the nontrivial solutions exhibit ( $\mathcal{NC}1$ ) and ( $\mathcal{NC}3$ ) property similarly as the case

 $b < \frac{(M-1)^{\frac{M-1}{M}}}{M}$  above. For  $(\mathcal{NC}2)$  property, for  $j = 1, \ldots, M$ , we have:  $\mathbf{W}_{\mathcal{M}}^{*}\mathbf{W}_{\mathcal{M}}^{*\top}\propto\overline{\mathbf{H}}^{*\top}\overline{\mathbf{H}}^{*}\propto\mathbf{W}_{\mathcal{M}}^{*}\mathbf{W}_{\mathcal{M}-1}^{*}\mathbf{W}_{\mathcal{M}-2}^{*}\ldots\mathbf{W}_{2}^{*}\mathbf{W}_{1}^{*}\overline{\mathbf{H}}^{*}$  $\propto (\mathbf{W}_M^* \mathbf{W}_{M-1}^* \dots \mathbf{W}_i^*) (\mathbf{W}_M^* \mathbf{W}_{M-1}^* \dots \mathbf{W}_i^*)^\top \propto \mathcal{P}_r(\mathbf{I}_K).$ We finish the proof of Theorem 3.1 for bias-free case. D.4. Full Proof of Theorem 3.1 with Last-layer Unregularized Bias Now, we state the proof of Theorem 3.1 for general setting with M layers of weight with last-layer bias (i.e., including b) with arbitrary widths  $d_M, d_{M-1}, \ldots, d_1$ . *Proof of Theorem 3.1 (last-layer bias).* First, we have that the objective function f is convex w.r.t b. Hence, we can derive the optimal  $\mathbf{b}^*$  through its derivative w.r.t  $\mathbf{b}$  (note that N = Kn):  $\frac{1}{N} (\mathbf{W}_M \mathbf{W}_{M-1} \dots \mathbf{W}_2 \mathbf{W}_1 \mathbf{H}_1 + \mathbf{b}^* \mathbf{1}_N^\top - \mathbf{Y}) \mathbf{1}_N = \mathbf{0}$  $\Rightarrow \mathbf{b}^* = \frac{1}{N} (\mathbf{Y} - \mathbf{W}_M \mathbf{W}_{M-1} \dots \mathbf{W}_2 \mathbf{W}_1 \mathbf{H}_1) \mathbf{1}_N = \frac{1}{N} \sum_{i=1}^{K} \sum_{j=1}^{n} (\mathbf{y}_k - \mathbf{W}_M \mathbf{W}_{M-1} \dots \mathbf{W}_2 \mathbf{W}_1 \mathbf{h}_{k,i}).$ (39)Since  $\{\mathbf{y}_k\}$  are one-hot vectors, we have:  $\mathbf{b}_{k'}^* = \frac{n}{N} - \frac{1}{N} \sum_{k=1}^{K} \sum_{k=1}^{n} (\mathbf{W}_M \mathbf{W}_{M-1} \dots \mathbf{W}_2 \mathbf{W}_1)_{k'}^{\top} \mathbf{h}_{k,i} = \frac{1}{K} - (\mathbf{W}_M \mathbf{W}_{M-1} \dots \mathbf{W}_2 \mathbf{W}_1)_{k'}^{\top} \mathbf{h}_{\mathbf{G}},$ (40)where  $\mathbf{h}_G := \frac{1}{N} \sum_{k=1}^K \sum_{i=1}^n \mathbf{h}_{k,i}$  is the features' global-mean and  $(\mathbf{W}_M \mathbf{W}_{M-1} \dots \mathbf{W}_2 \mathbf{W}_1)_{k'}$  is k'-th row of  $\mathbf{W}_M \mathbf{W}_{M-1} \dots \mathbf{W}_2 \mathbf{W}_1$ . Next, we plug  $\mathbf{b}^*$  into f:  $f = \frac{1}{2K_{n}} \|\mathbf{W}_{M}\mathbf{W}_{M-1}\dots\mathbf{W}_{2}\mathbf{W}_{1}\mathbf{H}_{1} + \mathbf{b}^{*}\mathbf{1}_{N}^{\top} - \mathbf{Y}\|_{F}^{2} + \frac{\lambda_{W_{M}}}{2} \|\mathbf{W}_{M}\|_{F}^{2} + \dots + \frac{\lambda_{W_{2}}}{2} \|\mathbf{W}_{2}\|_{F}^{2} + \frac{\lambda_{W_{1}}}{2} \|\mathbf{W}_{1}\|_{F}^{2}$  $+ \frac{\lambda_{H_1}}{2} \|\mathbf{H}_1\|_F^2$  $=\frac{1}{2Kn}\sum_{k=1}^{K}\sum_{k=1}^{n}\|\mathbf{W}_{M}\mathbf{W}_{M-1}\dots\mathbf{W}_{2}\mathbf{W}_{1}\mathbf{h}_{k,i}+\mathbf{b}^{*}-\mathbf{y}_{k}\|_{2}^{2}+\frac{\lambda_{W_{M}}}{2}\|\mathbf{W}_{M}\|_{F}^{2}+\ldots+\frac{\lambda_{W_{2}}}{2}\|\mathbf{W}_{2}\|_{F}^{2}+\frac{\lambda_{W_{1}}}{2}\|\mathbf{W}_{1}\|_{F}^{2}$  $+\sum_{i=1}^{K}\sum_{j=1}^{n}\|\mathbf{h}_{k,i}\|_{2}^{2}$  $=\frac{1}{2Kn}\sum_{i=1}^{K}\sum_{j=1}^{n}\sum_{i=1}^{K}\left(\left(\mathbf{W}_{M}\mathbf{W}_{M-1}\dots\mathbf{W}_{2}\mathbf{W}_{1}\right)_{k'}^{\top}(\mathbf{h}_{k,i}-\mathbf{h}_{G})+\frac{1}{K}-\mathbf{1}_{k=k'}\right)^{2}+\frac{\lambda_{W_{M}}}{2}\|\mathbf{W}_{M}\|_{F}^{2}+\dots$ +  $\frac{\lambda_{W_1}}{2} \|\mathbf{W}_1\|_F^2 + \sum_{k=1}^{K} \sum_{k=1}^{n} \|\mathbf{h}_{k,i}\|_2^2$ 

$$\begin{array}{ll}
\begin{aligned}
& 1706 \\
& 1707 \\
& 1708 \\
& 1708 \\
& 1709 \\
& 1709 \\
& 1709 \\
& 1709 \\
& 1710 \\
& 1711 \\
& 1712 \\
& 1712 \\
& 1713 \\
& 1714 \\
& 1715 
\end{aligned}$$

$$\begin{aligned}
& \geq \frac{1}{2Kn} \sum_{k=1}^{K} \sum_{i=1}^{n} \sum_{k'=1}^{K} \left( (\mathbf{W}_{M} \mathbf{W}_{M-1} \dots \mathbf{W}_{2} \mathbf{W}_{1})_{k'}^{\top} (\mathbf{h}_{k,i} - \mathbf{h}_{G}) + \frac{1}{K} - \mathbf{1}_{k=k'} \right)^{2} + \frac{\lambda_{W_{M}}}{2} \|\mathbf{W}_{M}\|_{F}^{2} + \dots \\
& + \frac{\lambda_{W_{1}}}{2} \|\mathbf{W}_{1}\|_{F}^{2} + \sum_{k=1}^{K} \sum_{i=1}^{n} \|\mathbf{h}_{k,i} - \mathbf{h}_{G}\|_{2}^{2} \\
& = \frac{1}{2Kn} \|\mathbf{W}_{M} \mathbf{W}_{M-1} \dots \mathbf{W}_{2} \mathbf{W}_{1} \mathbf{H}_{1}^{'} - (\mathbf{Y} - \frac{1}{K} \mathbf{1}_{K} \mathbf{1}_{N}^{\top})\|_{F}^{2} + \frac{\lambda_{W_{M}}}{2} \|\mathbf{W}_{M}\|_{F}^{2} + \dots + \frac{\lambda_{W_{2}}}{2} \|\mathbf{W}_{2}\|_{F}^{2} \\
& + \frac{\lambda_{W_{1}}}{2} \|\mathbf{W}_{1}\|_{F}^{2} + \frac{\lambda_{H_{1}}}{2} \|\mathbf{H}_{1}^{'}\|_{F}^{2} \coloneqq f^{'}(\mathbf{W}_{M}, \mathbf{W}_{M-1}, \dots, \mathbf{W}_{2}, \mathbf{W}_{1}, \mathbf{H}_{1}^{'}),
\end{aligned}$$

where  $\mathbf{H}'_1 = [\mathbf{h}_{1,1} - \mathbf{h}_G, \dots, \mathbf{h}_{K,n} - \mathbf{h}_G] \in \mathbb{R}^{d \times N}$  and the inequality is from: 

where the equality happens when  $h_G = 0$ . 

Noting that f' has similar form as function f for bias-free case (except the difference of the target matrix Y), we can use the lemmas derived at Section D.2 for f'. First, by using Lemma D.2, we have for any critical point  $(\mathbf{W}_{M}, \mathbf{W}_{M-1}, \dots, \mathbf{W}_{2}, \mathbf{W}_{1}, \mathbf{H}_{1}')$  of f', we have the following: 

$$\lambda_{W_M} \mathbf{W}_M^{\mathsf{T}} \mathbf{W}_M = \lambda_{W_{M-1}} \mathbf{W}_{M-1} \mathbf{W}_{M-1}^{\mathsf{T}},$$

$$\lambda_{W_M} \mathbf{W}_M^{\mathsf{T}} \mathbf{W}_M = \lambda_{W_{M-1}} \mathbf{W}_{M-1} \mathbf{W}_{M-1}^{\mathsf{T}},$$

$$\lambda_{W_{M-1}} \mathbf{W}_{M-1}^{\mathsf{T}} = \lambda_{W_{M-2}} \mathbf{W}_{M-2} \mathbf{W}_{M-2}^{\mathsf{T}},$$

$$\dots,$$

$$\sum_{\substack{1737\\1738\\1739}} \lambda_{W_2} \mathbf{W}_2^{\mathsf{T}} \mathbf{W}_2 = \lambda_{W_1} \mathbf{W}_1 \mathbf{W}_1^{\mathsf{T}},$$

$$\lambda_{W_1} \mathbf{W}_1^{\mathsf{T}} \mathbf{W}_1 = \lambda_{H_1} \mathbf{H}_1^{\mathsf{T}} \mathbf{H}_1^{\mathsf{T}}.$$

Let  $\mathbf{W}_1 = \mathbf{U}_{W_1} \mathbf{S}_{W_1} \mathbf{V}_{W_1}^{\top}$  be the SVD decomposition of  $\mathbf{W}_1$  with  $\mathbf{U}_{W_1} \in \mathbb{R}^{d_2 \times d_2}$ ,  $\mathbf{V}_{W_1} \in \mathbb{R}^{d_1 \times d_1}$  are orthonormal matrices and  $\mathbf{S}_{W_1} \in \mathbb{R}^{d_2 \times d_1}$  is a diagonal matrix with **decreasing** non-negative singular values. We denote the *r* singular values of  $\mathbf{W}_1$  as  $\{s_k\}_{k=1}^r$  ( $r \leq R := \min(K, d_M, \dots, d_1)$ ), from Lemma D.3). From Lemma D.4, we have the SVD of other weight matrices as: 

| 1746 |        | $\mathbf{W}_M = \mathbf{U}_{W_M} \mathbf{S}_{W_M} \mathbf{U}_{W_{M-1}}^	op,$                                                                                                              |
|------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1747 |        | $\mathbf{W}_{M-1} = \mathbf{U}_{W_{M-1}} \mathbf{S}_{W_{M-1}} \mathbf{U}_{W_{M-2}}^{\top},$                                                                                               |
| 1748 |        | $\mathbf{W}_{M-2} = \mathbf{U}_{W_{M-2}} \mathbf{S}_{W_{M-2}} \mathbf{U}_{W_{M-2}}^{	op},$                                                                                                |
| 1749 |        | $\mathbf{W}_{M-3} = \mathbf{U}_{W_M-2} \mathbf{S}_{W_M-2} \mathbf{U}_{W_{M-1}}^\top,$                                                                                                     |
| 1751 |        | M = 5 $M = 5$ $M = 5$ $M = 4$                                                                                                                                                             |
| 1752 |        | $\mathbf{W}_{\mathbf{a}} = \mathbf{U}_{\mathbf{W}} \mathbf{S}_{\mathbf{W}} \mathbf{U}_{\mathbf{w}}^{T}$                                                                                   |
| 1754 |        | $\mathbf{W}_2 = \mathbf{U}_{\mathbf{W}_2} \mathbf{U}_{\mathbf{W}_2} \mathbf{U}_{\mathbf{W}_1},$<br>$\mathbf{W}_2 = \mathbf{U}_{\mathbf{W}_2} \mathbf{S}_{\mathbf{W}_2} \mathbf{V}^{\top}$ |
| 1755 | 1      | $\mathbf{v}_1 = \mathbf{v}_{W_1} \mathbf{v}_{W_1} \mathbf{v}_{W_1},$                                                                                                                      |
| 1756 | wnere: |                                                                                                                                                                                           |

$$\mathbf{S}_{W_j} = \sqrt{\frac{\lambda_{W_1}}{\lambda_{W_j}}} \begin{bmatrix} \operatorname{diag}(s_1, \dots, s_r) & \mathbf{0}_{r \times (d_j - r)} \\ \mathbf{0}_{(d_{j+1} - r) \times r} & \mathbf{0}_{(d_{j+1} - r) \times (d_j - r)} \end{bmatrix} \in \mathbb{R}^{d_{j+1} \times d_j}, \quad \forall j \in [M],$$

and  $\mathbf{U}_{W_M}, \mathbf{U}_{W_{M-1}}, \mathbf{U}_{W_{M-2}}, \mathbf{U}_{W_{M-3}}, \dots, \mathbf{U}_{W_1}, \mathbf{V}_{W_1}$  are all orthonormal matrices. 1760 1761 1762 From Lemma D.5, denote  $c := \frac{\lambda_{W_1}^{M-1}}{\lambda_{W_M} \lambda_{W_{M-1}} \dots \lambda_{W_2}}$ , we have: 1763 1764  $\mathbf{H}_{1}^{'} = \mathbf{V}_{W_{1}} \underbrace{\begin{bmatrix} \operatorname{diag}\left(\frac{\sqrt{c}s_{1}^{M}}{cs_{1}^{2M} + N\lambda_{H_{1}}}, \dots, \frac{\sqrt{c}s_{r}^{M}}{cs_{r}^{2M} + N\lambda_{H_{1}}}\right) & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}}_{\mathbf{C} \in \mathbb{R}^{d_{1} \times K}} \mathbf{U}_{W_{M}}^{\top} \left(\mathbf{Y} - \frac{1}{K} \mathbf{1}_{K} \mathbf{1}_{N}^{\top}\right)$ 1765 1766 (42) $= \mathbf{V}_{W_1} \mathbf{C} \mathbf{U}_{W_M}^{ op} \left( \mathbf{Y} - \frac{1}{K} \mathbf{1}_K \mathbf{1}_N^{ op} 
ight).$ 1769  $\mathbf{W}_{M}\mathbf{W}_{M-1}\ldots\mathbf{W}_{2}\mathbf{W}_{1}\mathbf{H}_{1}^{'}-\mathbf{Y}$  $= \mathbf{U}_{W_{M}} \underbrace{ \begin{bmatrix} \operatorname{diag} \left( \frac{-N\lambda_{H_{1}}}{cs_{1}^{2M} + N\lambda_{H_{1}}}, \dots, \frac{-N\lambda_{H_{1}}}{cs_{r}^{2M} + N\lambda_{H_{1}}} \right) & \mathbf{0} \\ \mathbf{0} & -\mathbf{I}_{K-r} \end{bmatrix}}_{\mathbf{D} \in \mathbb{R}^{K \times K}} \mathbf{U}_{W_{M}}^{\top} \left( \mathbf{Y} - \frac{1}{K} \mathbf{1}_{K} \mathbf{1}_{N}^{\top} \right)$  $= \mathbf{U}_{W_M} \mathbf{D} \mathbf{U}_{W_M}^{ op} \left( \mathbf{Y} - rac{1}{K} \mathbf{1}_K \mathbf{1}_N^{ op} 
ight).$ 1779 1780 1781 Next, we will calculate the Frobenius norm of  $\mathbf{W}_M \mathbf{W}_{M-1} \dots \mathbf{W}_2 \mathbf{W}_1 \mathbf{H}_1^{'} - \mathbf{Y}$ : 1782 1783  $\left\|\mathbf{W}_{M}\mathbf{W}_{M-1}\ldots\mathbf{W}_{2}\mathbf{W}_{1}\mathbf{H}_{1}^{'}-\mathbf{Y}\right\|_{F}^{2}=\left\|\mathbf{U}_{W_{M}}\mathbf{D}\mathbf{U}_{W_{M}}^{\top}\left(\mathbf{Y}-\frac{1}{\kappa}\mathbf{1}_{K}\mathbf{1}_{N}^{\top}\right)\right\|^{2}$ 1784 1785  $= \operatorname{trace}\left(\mathbf{U}_{W_M}\mathbf{D}\mathbf{U}_{W_M}^{\top}\left(\mathbf{Y} - \frac{1}{K}\mathbf{1}_K\mathbf{1}_N^{\top}\right)\left(\mathbf{U}_{W_M}\mathbf{D}\mathbf{U}_{W_M}^{\top}\left(\mathbf{Y} - \frac{1}{K}\mathbf{1}_K\mathbf{1}_N^{\top}\right)\right)^{\top}\right)$ 1786 1787 1788  $= \operatorname{trace} \left( \mathbf{U}_{W_M} \mathbf{D} \mathbf{U}_{W_M}^\top \left( \mathbf{Y} - \frac{1}{K} \mathbf{1}_K \mathbf{1}_N^\top \right) \left( \mathbf{Y} - \frac{1}{K} \mathbf{1}_K \mathbf{1}_N^\top \right)^\top \mathbf{U}_{W_M} \mathbf{D} \mathbf{U}_{W_M}^\top \right)$ 1789 1791  $= \operatorname{trace} \left( \mathbf{D}^{2} \mathbf{U}_{W_{M}}^{\top} \left( \mathbf{Y} - \frac{1}{K} \mathbf{1}_{K} \mathbf{1}_{N}^{\top} \right) \left( \mathbf{Y} - \frac{1}{K} \mathbf{1}_{K} \mathbf{1}_{N}^{\top} \right)^{\top} \mathbf{U}_{W_{M}} \right).$ (43)1793 Note that: 1796  $\mathbf{Y} - \frac{1}{K} \mathbf{1}_K \mathbf{1}_N^\top = \left( \mathbf{I}_K - \frac{1}{K} \mathbf{1}_K \mathbf{1}_K^\top \right) \otimes \mathbf{1}_n^\top,$ 1797  $\left(\mathbf{Y} - \frac{1}{K} \mathbf{1}_{K} \mathbf{1}_{N}^{\top}\right) \left(\mathbf{Y} - \frac{1}{K} \mathbf{1}_{K} \mathbf{1}_{N}^{\top}\right)^{\top} = \left(\left(\mathbf{I}_{K} - \frac{1}{K} \mathbf{1}_{K} \mathbf{1}_{K}^{\top}\right) \otimes \mathbf{1}_{n}^{\top}\right) \left(\left(\mathbf{I}_{K} - \frac{1}{K} \mathbf{1}_{K} \mathbf{1}_{K}^{\top}\right) \otimes \mathbf{1}_{n}^{\top}\right)^{\top}$ 1799 1800  $= \left( \left( \mathbf{I}_K - \frac{1}{K} \mathbf{1}_K \mathbf{1}_K^\top \right) \otimes \mathbf{1}_n^\top \right) \left( \left( \mathbf{I}_K - \frac{1}{K} \mathbf{1}_K \mathbf{1}_K^\top \right) \otimes \mathbf{1}_n \right)$ 

1802

1804

1805

1806 1807

since  $\mathbf{I}_K - \frac{1}{K} \mathbf{1}_K \mathbf{1}_K^\top$  is an idempotent matrix.

1808 1809 1810

Next, we have: 1811

1812  
1813  
1814
$$\mathbf{U}_{W_M}^{\top} \left( \mathbf{Y} - \frac{1}{K} \mathbf{1}_K \mathbf{1}_N^{\top} \right) \left( \mathbf{Y} - \frac{1}{K} \mathbf{1}_K \mathbf{1}_N^{\top} \right)^{\top} \mathbf{U}_{W_M} = n \mathbf{U}_{W_M}^{\top} \left( \mathbf{I}_K - \frac{1}{K} \mathbf{1}_K \mathbf{1}_K^{\top} \right) \mathbf{U}_{W_M}$$

 $= n \left( \mathbf{I}_K - \frac{1}{K} \mathbf{1}_K \mathbf{1}_K^\top \right),$ 

 $\mathbf{I} = \left( \left( \mathbf{I}_K - \frac{1}{K} \mathbf{1}_K \mathbf{1}_K^\top \right) \left( \mathbf{I}_K - \frac{1}{K} \mathbf{1}_K \mathbf{1}_K^\top \right) \right) \otimes \left( \mathbf{1}_n^\top \mathbf{1}_n \right)$ 

 $= n \left( \mathbf{I}_K - \frac{1}{K} \mathbf{U}_{W_M}^\top \mathbf{1}_K \mathbf{1}_K^\top \mathbf{U}_{W_M} \right).$ 

We denote  $\mathbf{q} = \mathbf{U}_{W_M}^{\top} \mathbf{1}_K = [q_1, \dots, q_K]^{\top} \in \mathbb{R}^K$ , then  $q_k$  will equal the sum of entries of the *k*-th column of  $\mathbf{U}_{W_M}$ . Hence,  $\mathbf{U}_{W_M}^{\top} \mathbf{1}_K \mathbf{1}_K^{\top} \mathbf{U}_{W_M} = \mathbf{q} \mathbf{q}^{\top} = (q_i q_j)_{i,j}$ . Note that from the orthonormality of  $\mathbf{U}_{W_M}$ , we can deduce  $\sum_{k=1}^K q_k^2 = K$ . Thus, continue from equation (43):

$$\|\mathbf{W}_{M}\mathbf{W}_{M-1}\dots\mathbf{W}_{2}\mathbf{W}_{1}\mathbf{H}_{1}^{'}-\mathbf{Y}\|_{F}^{2} = n \operatorname{trace}\left(\mathbf{D}^{2}\left(\mathbf{I}_{K}-\frac{1}{K}\mathbf{q}\mathbf{q}^{\top}\right)\right)$$
$$= n\left(\sum_{k=1}^{r}\left(1-\frac{1}{K}q_{k}^{2}\right)\frac{(-N\lambda_{H_{1}})^{2}}{(cs_{k}^{2M}+N\lambda_{H_{1}})^{2}} + \sum_{h=r+1}^{K}\left(1-\frac{1}{K}q_{h}^{2}\right)\right).$$
(44)

Similarly, we calculate the Frobenius norm for  $\mathbf{H}_{1}^{'}$ , continue from the RHS of equation (42):

$$\|\mathbf{H}_{1}^{'}\|_{F}^{2} = \operatorname{trace}\left(\mathbf{V}_{W_{1}}\mathbf{C}\mathbf{U}_{W_{M}}^{\top}\left(\mathbf{Y}-\frac{1}{K}\mathbf{1}_{K}\mathbf{1}_{N}^{\top}\right)\left(\mathbf{Y}-\frac{1}{K}\mathbf{1}_{K}\mathbf{1}_{N}^{\top}\right)^{\top}\mathbf{U}_{W_{M}}\mathbf{C}^{\top}\mathbf{V}_{W_{1}}^{\top}\right)$$
$$= n\operatorname{trace}\left(\mathbf{C}^{\top}\mathbf{C}\left(\mathbf{I}_{K}-\frac{1}{K}\mathbf{q}\mathbf{q}^{\top}\right)\right)$$
$$= n\sum_{k=1}^{r}\left(1-\frac{1}{K}q_{k}^{2}\right)\frac{cs_{k}^{2M}}{(cs_{k}^{2M}+N\lambda_{H_{1}})^{2}}.$$
(45)

<sup>1839</sup> Plug the equations (44), (45) and the SVD of weight matrices into f' yields:

1870 Before continue optimizing the RHS of equation (46), we first simplify it by proving if  $s_k > 0$  then  $q_k = 0$ , i.e. sum of 1871 entries of k-th column of  $\mathbf{U}_{W_M}$  equals 0. To prove this, we will utilize a property of  $\mathbf{H}'_1 = [\mathbf{h}_{1,1} - \mathbf{h}_G, \dots, \mathbf{h}_{K,n} - \mathbf{h}_G]$ , 1872 which is the sum of entries on every row equals 0. First, we connect  $\mathbf{W}_M$  and  $\mathbf{H}'_1$  through: 1873

$$\frac{\partial f'}{\partial \mathbf{W}_{M}} = \frac{1}{N} \left( \mathbf{W}_{M} \mathbf{W}_{M-1} \dots \mathbf{W}_{1} \mathbf{H}_{1}' - \left( \mathbf{Y} - \frac{1}{K} \mathbf{1}_{K} \mathbf{1}_{N}^{\mathsf{T}} \right) \right) \mathbf{H}_{1}^{\mathsf{T}} \mathbf{W}_{1}^{\mathsf{T}} \dots \mathbf{W}_{M-1}^{\mathsf{T}} + \lambda_{W_{M}} \mathbf{W}_{M} = \mathbf{0}$$

$$\Rightarrow \mathbf{W}_{M} = \left( \mathbf{Y} - \frac{1}{K} \mathbf{1}_{K} \mathbf{1}_{N}^{\mathsf{T}} \right) \mathbf{H}_{1}^{\mathsf{T}} \underbrace{\mathbf{W}_{1}^{\mathsf{T}} \dots \mathbf{W}_{M-1}^{\mathsf{T}} \left( \mathbf{W}_{M-1} \dots \mathbf{W}_{1} \mathbf{H}_{1}^{\mathsf{T}} \mathbf{W}_{1}^{\mathsf{T}} \dots \mathbf{W}_{M-1}^{\mathsf{T}} + N \lambda_{W_{M}} \mathbf{I}_{K} \right)^{-1}}_{\mathbf{G}}. \quad (47)$$

From the definition of  $\mathbf{H}_{1}^{'}$ , we know that the sum of entries of every column of  $\mathbf{H}_{1}^{'\top}$  is 0. Recall the class-mean definition  $\mathbf{h}_{k} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{h}_{k,i}$ , we have:

$$\begin{pmatrix} \mathbf{Y} - \frac{1}{K} \mathbf{1}_{K} \mathbf{1}_{N}^{\top} \end{pmatrix} \mathbf{H}_{1}^{\top \top} = \mathbf{Y} \mathbf{H}_{1}^{\top \top} = n \begin{bmatrix} (\mathbf{h}_{1} - \mathbf{h}_{G})^{\top} \\ (\mathbf{h}_{2} - \mathbf{h}_{G})^{\top} \\ \vdots \\ (\mathbf{h}_{K} - \mathbf{h}_{G})^{\top} \end{bmatrix}$$

$$\Rightarrow \mathbf{W}_{M} = n \begin{bmatrix} (\mathbf{h}_{1} - \mathbf{h}_{G})^{\top} \\ (\mathbf{h}_{2} - \mathbf{h}_{G})^{\top} \\ (\mathbf{h}_{K} - \mathbf{h}_{G})^{\top} \end{bmatrix} \mathbf{G},$$

$$\mathbf{W}_{M} = n \begin{bmatrix} (\mathbf{h}_{1} - \mathbf{h}_{G})^{\top} \\ (\mathbf{h}_{K} - \mathbf{h}_{G})^{\top} \\ \vdots \\ (\mathbf{h}_{K} - \mathbf{h}_{G})^{\top} \end{bmatrix}$$

1892

1896

1900

and thus, the sum of entries of every column of  $\mathbf{W}_M$  equals 0. From the SVD  $\mathbf{W}_M = \mathbf{U}_{W_M} \mathbf{S}_{W_M} \mathbf{V}_{W_M}^{\top}$ , denote  $\mathbf{u}_j$  and  $\mathbf{v}_j$ the *j*-th column of  $\mathbf{U}_{W_M}$  and  $\mathbf{V}_{W_M}$ , respectively. We have from the definition of left and right singular vectors:

$$\mathbf{W}_M \mathbf{v}_j = s_j \mathbf{u}_j,\tag{48}$$

and since the sum of entries of every column of  $\mathbf{W}_M$  equals 0, we have the sum of entries of vector  $\mathbf{W}_M \mathbf{v}_j$  equals 0. Thus, if  $s_j > 0$ , we have  $q_j = 0$ .

1901 Return to the expression of f' as the RHS of equation (46), notice that it is separable w.r.t each singular value  $s_j$ , we will analyze how each singular value contribute to the value of the expression (46). For every singular value  $s_j$  with j = 1, ..., r, 1902 if  $s_j > 0$ , then  $q_j = 0$ , and its contribution to the expression (46) will be  $\frac{1}{2K}(\frac{1}{x_j^M + 1} + bx_j) = \frac{1}{2K}g(x_j)$  (with the minimizer 1903 1904 of g(x) has been studied in Section D.2.1). Otherwise, if  $s_j = 0$  (hence  $x_j = 0$ ), its contribution to the value of the 1905 expression (46) will be  $\frac{1-\frac{1}{K}q_j^2}{2K}$ , and it eventually be  $\frac{1}{2K}$  because  $\sum_{k=1}^{K} \frac{1}{K}q_j^2$  always equal 1, thus  $\frac{1}{K}q_j^2$  has no additional contribution to the expression (46). Therefore, it is a comparison between  $\frac{1}{2K}$  and  $\frac{1}{2K}\min_{x_j>0} g(x_j)$  to decide whether 1906 1907  $s_j^* = 0$  or  $s_j^* = \sqrt[2M]{\frac{N\lambda_{H_1}}{c}} \sqrt{x_j^*}$  with  $x_j^* = \arg\min_{x>0} g(x)$ . Therefore, we consider three cases: 1908 1909 1910

- If  $b > \frac{(M-1)\frac{M-1}{M}}{M}$ : In this case, g(x) is minimized at x = 0 and g(0) = 1. Hence,  $\frac{1}{2K} < \frac{1}{2K} \min_{x_j > 0} g(x_j)$  and thus,  $s_j^* = 0 \forall j = 1, \dots, r$ .
- 1914 1915 1916 • If  $b < \frac{(M-1)^{\frac{M-1}{M}}}{M}$ : In this case, g(x) is minimized at some  $x_0 > \sqrt[M]{M-1}$  and  $g(x_0) < 1$ . Hence, 1917 1917 1917 We also note that in this case, we have  $q_j = 0 \forall j = 1, ..., r$  (meaning the sum of entries of every column in the first r1918 1919 1919
- If  $b = \frac{(M-1)^{\frac{M-1}{M}}}{M}$ : In this case, g(x) is minimized at x = 0 or some  $x = x_0 > \sqrt[M]{M-1}$  with  $g(0) = g(x_0) = 1$ . 1922 Therefore,  $s_j^*$  can either be 0 or  $x_0$  as long as  $\{s_k\}_{k=1}^r$  is a decreasing sequence.

To help for the conclusion of the geometry properties of weight matrices and features, we state a lemma as following: 1924

**Lemma D.6.** Let  $\mathbf{W} \in \mathbb{R}^{K \times d_M}$  be a matrix with  $r \leq K - 1$  singular values equal a positive constant s > 0. If there exists 1925 a compact SVD form of  $\mathbf{W}$  as  $\mathbf{W} = s\mathbf{U}\mathbf{V}^{\top}$  with semi-orthonormal matrices  $\mathbf{U} \in \mathbb{R}^{K \times r}$ ,  $\mathbf{V} \in \mathbb{R}^{d_M \times r}$  such that the sum of 1926 1927 entries of every column of U equals 0. Then,  $WW^{\top} \propto UU^{\top}$  and  $UU^{\top}$  is a best rank-r approximation of the simplex ETF  $(\mathbf{I}_K - \frac{1}{K} \mathbf{1}_K \mathbf{1}_K^\top).$ 1928 1930 *Proof.* Let's denote  $\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_r]$  with  $\mathbf{u}_1, \dots, \mathbf{u}_r$  are r orthonormal vectors. Since the sum of entries in each  $\mathbf{u}_i$  equals 1931 0,  $\frac{1}{\sqrt{K}}\mathbf{1}_K$  can be added to the set  $\{\mathbf{u}_1, \ldots, \mathbf{u}_r\}$  to form r+1 orthonormal vectors. Let  $\hat{\mathbf{U}} = [\mathbf{u}_1, \ldots, \mathbf{u}_r, \frac{1}{\sqrt{K}}\mathbf{1}_K]$ , we have  $\dim(\operatorname{Col} \hat{\mathbf{U}}) = r + 1$ . Hence,  $\dim(\operatorname{Null} \hat{\mathbf{U}}^{\top}) = K - r - 1$  and thus, we can choose an orthonormal basis of  $\operatorname{Null} \hat{\mathbf{U}}^{\top}$ including K - r - 1 orthonormal vectors  $\{\mathbf{u}_{r+1}, \mathbf{u}_{r+2}, \dots, \mathbf{u}_{K-1}\}$ . And because these K - r - 1 orthonormal vectors are in 1934 Null  $\hat{\mathbf{U}}^{\top}$ , we can add these vectors to the set  $\{\mathbf{u}_1, \dots, \mathbf{u}_r, \frac{1}{\sqrt{K}}\mathbf{1}_K\}$  to form a basis of  $\mathbb{R}^K$  including K orthonormal vectors  $\{\mathbf{u}_1, \dots, \mathbf{u}_r, \mathbf{u}_{r+1}, \mathbf{u}_{r+2}, \dots, \mathbf{u}_{K-1}, \frac{1}{\sqrt{K}}\mathbf{1}_K\}$ . We denote  $\overline{\mathbf{U}} = [\mathbf{u}_1, \dots, \mathbf{u}_r, \mathbf{u}_{r+1}, \mathbf{u}_{r+2}, \dots, \mathbf{u}_{K-1}, \frac{1}{\sqrt{K}}\mathbf{1}_K] \in \mathbb{R}^{K \times K}$ . 1935 1936 We have  $\overline{\mathbf{U}}^{\top}\overline{\mathbf{U}} = \mathbf{I}_K$ . From the Inverse Matrix Theorem, we deduce that  $\overline{\mathbf{U}}^{-1} = \overline{\mathbf{U}}^{\top}$  and thus,  $\overline{\mathbf{U}}$  is an orthonormal matrix. We have  $\overline{\mathbf{U}}$  is an orthonormal matrix with the last column  $\frac{1}{\sqrt{K}}\mathbf{1}_K$ , hence by simple matrix multiplication, we have: 1937 1939 1940  $[\mathbf{u}_{1}, \dots, \mathbf{u}_{r}, \mathbf{u}_{r+1}, \mathbf{u}_{r+2}, \dots, \mathbf{u}_{K-1}] [\mathbf{u}_{1}, \dots, \mathbf{u}_{r}, \mathbf{u}_{r+1}, \mathbf{u}_{r+2}, \dots, \mathbf{u}_{K-1}]^{\top} = \mathbf{I}_{K} - \frac{1}{K} \mathbf{1}_{K} \mathbf{1}_{K}^{\top}$ 1941 1942  $\Rightarrow \overline{\mathbf{U}} \begin{bmatrix} \mathbf{I}_{K-1} & \mathbf{0} \\ \mathbf{0} & 0 \end{bmatrix} \overline{\mathbf{U}}^{\top} = \mathbf{I}_K - \frac{1}{K} \mathbf{1}_K \mathbf{1}_K^{\top}.$ 1943 (49)1944 1945 Therefore,  $\mathbf{U}\mathbf{U}^{\top}$  is the best rank-*r* approximation of  $\mathbf{I}_{K} - \frac{1}{K}\mathbf{1}_{K}\mathbf{1}_{K}^{\top}$ , and the proof for the lemma is finished. 1946 1947 Thus, we finish bounding f and the equality conditions are as following: 1948 1949 • If  $b = MK \sqrt[M]{Kn\lambda_{W_M}\lambda_{W_{M-1}}\dots\lambda_{W_1}\lambda_{H_1}} > \frac{(M-1)^{\frac{M-1}{M}}}{M}$ : all the singular values of  $\mathbf{W}_1$  are zeros. Therefore, the singular values of  $\mathbf{W}_M, \mathbf{W}_{M-1}, \dots, \mathbf{H}'_1$  are also all zeros. In this case,  $f(\mathbf{W}_M, \mathbf{W}_{M-1}, \dots, \mathbf{W}_2, \mathbf{W}_1, \mathbf{H}_1, \mathbf{b})$  is minimized at  $(\mathbf{W}_M^*, \mathbf{W}_{M-1}^*, \dots, \mathbf{W}_1^*, \mathbf{H}_1^*, \mathbf{b}^*) = (\mathbf{0}, \mathbf{0}, \dots, \mathbf{0}, \mathbf{0}, \frac{1}{K} \mathbf{1}_K)$ . 1951 • If  $b = MK \sqrt[M]{Kn\lambda_{W_M}\lambda_{W_{M-1}}\dots\lambda_{W_1}\lambda_{H_1}} < \frac{(M-1)^{\frac{M-1}{M}}}{M}$ : In this case,  $\mathbf{W}_1^*$  will have the its r (r will be specified 1954 1955 later) singular values all equal a multiplier of the largest positive solution of the equation  $b - \frac{Mx^{M-1}}{(x^M+1)^2} = 0$ , denoted as 1956 s. Hence, we can write the compact SVD form (with a bit of notation abuse) of  $\mathbf{W}_{M-1}^*$  as  $\mathbf{W}_1^* = s \mathbf{U}_{W_1} \mathbf{V}_{W_1}^\top$  with semi-orthonormal matrices  $\mathbf{U}_{W_1} \in \mathbb{R}^{d_2 \times r}$ ,  $\mathbf{V}_{W_1} \in \mathbb{R}^{d_1 \times r}$  (note that  $\mathbf{U}_{W_1}^\top \mathbf{U}_{W_1} = \mathbf{I}$  and  $\mathbf{V}_{W_1}^\top \mathbf{V}_{W_1} = \mathbf{I}$ ). 1958 1960 Similarly, we also have the compact SVD form of other weight matrices and feature matrix as: 1961 1962  $\mathbf{W}_{M}^{*} = \sqrt{\frac{\lambda_{W_{1}}}{\lambda_{W_{M}}}} s \mathbf{U}_{W_{M}} \mathbf{U}_{W_{M-1}}^{\top},$ 1963 1964  $\mathbf{W}_{M-1}^* = \sqrt{\frac{\lambda_{W_1}}{\lambda_{W_{M-1}}}} s \mathbf{U}_{W_{M-1}} \mathbf{U}_{W_{M-2}}^{\top},$ 1965 1966 1967 1968 
$$\begin{split} \mathbf{W}_{1}^{*} &= s \mathbf{U}_{W_{1}} \mathbf{V}_{W_{1}}^{\top}, \\ \mathbf{H}_{1}^{'*} &= \frac{\sqrt{c} s^{M}}{c s^{2M} + N \lambda_{H}} \mathbf{V}_{W_{1}} \mathbf{U}_{W_{M}}^{\top} \left( \mathbf{Y} - \frac{1}{K} \mathbf{1}_{K} \mathbf{1}_{N}^{\top} \right), \end{split}$$
1969 1970

with semi-orthonormal matrices  $\mathbf{U}_{W_M}, \mathbf{U}_{W_{M-1}}, \dots, \mathbf{U}_{W_1}, \mathbf{V}_{W_1}$  that each has r orthogonal columns, i.e.,  $\mathbf{U}_{W_M}^{\top} \mathbf{U}_{W_M} = \mathbf{U}_{W_{M-1}}^{\top} \mathbf{U}_{W_{M-1}} = \dots = \mathbf{U}_{W_1}^{\top} \mathbf{U}_{W_1} = \mathbf{V}_{W_1}^{T} \mathbf{V}_{W_1} = \mathbf{I}_r$ . Furthermore,  $\mathbf{U}_{W_M}, \mathbf{U}_{W_{M-1}}, \dots, \mathbf{U}_{W_1}, \mathbf{V}_{W_1}$  are truncated matrices from orthonormal matrices (remove columns that does not correspond with non-zero singular values), hence  $\mathbf{U}_{W_M} \mathbf{U}_{W_M}^{\top}, \mathbf{U}_{W_{M-1}} \mathbf{U}_{W_{M-1}}^{\top}, \dots, \mathbf{U}_{W_1} \mathbf{U}_{W_1}^{\top}, \mathbf{V}_{W_1} \mathbf{V}_{W_1}^{\top}$ are the best rank-r approximations of the identity matrix of the same size.

Since  $(\mathbf{Y} - \frac{1}{K} \mathbf{1}_K \mathbf{1}_N^{\top}) = (\mathbf{I}_K - \frac{1}{K} \mathbf{1}_K \mathbf{1}_K^{\top}) \mathbf{Y} = (\mathbf{I}_K - \frac{1}{K} \mathbf{1}_K \mathbf{1}_K^{\top}) \otimes \mathbf{1}_n^{\top}$ , let  $\overline{\mathbf{H}}^* = \frac{\sqrt{cs^M}}{cs^{2M} + N\lambda_{H_1}} \mathbf{V}_{W_1} \mathbf{U}_{W_M}^{\top} (\mathbf{I}_K - \frac{1}{K} \mathbf{1}_K \mathbf{1}_K^{\top}) \in \mathbb{R}^{d_1 \times K}$ , then we have  $(\mathcal{NC}1) \mathbf{H}_1'^* = \overline{\mathbf{H}}^* \mathbf{Y} = \overline{\mathbf{H}}^* \otimes \mathbf{1}_n^{\top}$ , thus we conclude the features within the same class collapse to their class-mean and  $\overline{\mathbf{H}}^*$  is the class-means matrix. We also have  $\mathbf{h}_G = \mathbf{0}$  (the equality condition of inequality (41)), hence  $\mathbf{H}_1^* = \mathbf{H}_1'^*$ . Furthermore, clearly we have  $\operatorname{rank}(\mathbf{H}_1'^*) = \operatorname{rank}(\overline{\mathbf{H}}^*)$  and since  $\mathbf{h}_G = 0$ , we have  $r = \operatorname{rank}(\mathbf{H}_1'^*) = \operatorname{rank}(\overline{\mathbf{H}}^*) \leq K - 1$ . Hence,  $r = \min(R, K - 1)$ .

By using Lemma D.6 for  $\mathbf{W}_M$  with the note  $q_j = 0 \forall j \leq r$ , we have  $\mathbf{U}_W \mathbf{U}_W^{\top}$  is a best rank-*r* approximation of the simplex ETF  $\mathbf{I}_K - \frac{1}{K} \mathbf{1}_K \mathbf{1}_K^{\top}$ . Thus, we can deduce the geometry of the following ( $\mathcal{NC}2$ ):

$$\mathbf{W}_{M}^{*}\mathbf{W}_{M}^{\top *} \propto \mathbf{U}_{W_{M}}\mathbf{U}_{W_{M}}^{\top} \propto \mathcal{P}_{r}(\mathbf{I}_{K} - \frac{1}{K}\mathbf{1}_{K}\mathbf{1}_{K}^{\top}),$$

$$\overline{\mathbf{H}}^{*\top}\overline{\mathbf{H}}^{*} \propto (\mathbf{I}_{K} - \frac{1}{K}\mathbf{1}_{K}\mathbf{1}_{K}^{\top})\mathbf{U}_{W_{M}}\mathbf{U}_{W_{M}}^{\top}(\mathbf{I}_{K} - \frac{1}{K}\mathbf{1}_{K}\mathbf{1}_{K}^{\top}) \propto \mathbf{U}_{W_{M}}\mathbf{U}_{W_{M}}^{\top} \propto \mathcal{P}_{r}(\mathbf{I}_{K} - \frac{1}{K}\mathbf{1}_{K}\mathbf{1}_{K}^{\top}),$$

$$\mathbf{W}_{M}^{*}\mathbf{W}_{M-1}^{*} \dots \mathbf{W}_{2}^{*}\mathbf{W}_{1}^{*}\overline{\mathbf{H}}^{*} \propto \mathbf{U}_{W_{M}}\mathbf{U}_{W_{M}}^{\top}(\mathbf{I}_{K} - \frac{1}{K}\mathbf{1}_{K}\mathbf{1}_{K}^{\top}) \propto \mathbf{U}_{W_{M}}\mathbf{U}_{W_{M}}^{\top} \propto \mathcal{P}_{r}(\mathbf{I}_{K} - \frac{1}{K}\mathbf{1}_{K}\mathbf{1}_{K}^{\top}),$$

$$(\mathbf{W}_{M}^{*}\mathbf{W}_{M-1}^{*} \dots \mathbf{W}_{j}^{*})(\mathbf{W}_{M}^{*}\mathbf{W}_{M-1}^{*} \dots \mathbf{W}_{j}^{*})^{\top} \propto \mathbf{U}_{W_{M}}\mathbf{U}_{W_{M}}^{\top} \propto \mathcal{P}_{r}(\mathbf{I}_{K} - \frac{1}{K}\mathbf{1}_{K}\mathbf{1}_{K}^{\top}) \quad \forall j \in [M].$$

$$(50)$$

Note that if r = K - 1, we have  $\mathcal{P}_r(\mathbf{I}_K - \frac{1}{K}\mathbf{1}_K\mathbf{1}_K^{\top}) = \mathbf{I}_K - \frac{1}{K}\mathbf{1}_K\mathbf{1}_K^{\top}$ .

Also, the product of each weight matrix or features with its transpose will be the multiplier of one of the best rank-*r* approximations of the identity matrix of the same size. For example,  $\mathbf{W}_{M-1}^{*\top}\mathbf{W}_{M-1}^{*} \propto \mathbf{U}_{W_{M-2}}\mathbf{U}_{W_{M-2}}^{\top}$  and  $\mathbf{W}_{M-1}^{*}\mathbf{W}_{M-1}^{*\top} \propto \mathbf{U}_{W_{M-1}}\mathbf{U}_{W_{M-1}}^{\top}$  are two best rank-*r* approximations of  $\mathbf{I}_{d_{M-1}}$  and  $\mathbf{I}_{d_M}$ , respectively.

Next, we can derive the alignments between weights and features as following ( $\mathcal{NC3}$ ):

$$\mathbf{W}_{M}^{*}\mathbf{W}_{M-1}^{*}\dots\mathbf{W}_{1}^{*} \propto \mathbf{U}_{W_{M}}\mathbf{V}_{W_{1}}^{\top} \propto \overline{\mathbf{H}}^{*\top},$$
  
$$\mathbf{W}_{M-1}^{*}\mathbf{W}_{M-2}^{*}\dots\mathbf{W}_{1}^{*}\overline{\mathbf{H}}^{*} \propto \mathbf{U}_{W_{M-1}}\mathbf{U}_{W_{M}}^{\top} \propto \mathbf{W}_{M}^{*\top},$$
  
$$\mathbf{W}_{M}^{*}\mathbf{W}_{M-1}^{*}\dots\mathbf{W}_{j}^{*} \propto \mathbf{U}_{W_{M}}\mathbf{U}_{W_{j-1}}^{\top} \propto (\mathbf{W}_{j-1}^{*}\dots\mathbf{W}_{1}^{*}\overline{\mathbf{H}}^{*})^{\top}.$$
(51)

• If  $b = MK \sqrt[M]{Kn\lambda_{W_M}\lambda_{W_{M-1}}\dots\lambda_{W_1}\lambda_{H_1}} = \frac{(M-1)^{\frac{M-1}{M}}}{M}$ : In this case,  $x_k^*$  can either be 0 or the largest positive solution of the equation  $b - \frac{Mx^{M-1}}{(x^M+1)^2} = 0$ . If all the singular values are 0's, we have the trivial global minima  $(\mathbf{W}_M^*,\dots,\mathbf{W}_1^*,\mathbf{H}_1^*,\mathbf{b}^*) = (\mathbf{0},\dots,\mathbf{0},\mathbf{0},\frac{1}{K}\mathbf{1}_K)$ .

If there are exactly  $0 < t \le r = \min(R, K - 1)$  positive singular values  $s_1 = s_2 = \ldots = s_t := s > 0$  and  $s_{t+1} = \ldots = s_r = 0$ , we also have compact SVD form similar as the case  $b < \frac{(M-1)\frac{M-1}{M}}{M}$ , (with exactly t singular vectors, instead of r as the above case). Thus, the nontrivial solutions exhibit ( $\mathcal{NC1}$ ) and ( $\mathcal{NC3}$ ) property similarly as the case  $b < \frac{(M-1)\frac{M-1}{M}}{M}$  above.

For  $(\mathcal{NC}2)$  property, for  $j = 1, \ldots, M$ , we have:

$$\mathbf{W}_{M}^{*}\mathbf{W}_{M}^{*\top} \propto \overline{\mathbf{H}}^{*\top}\overline{\mathbf{H}}^{*} \propto \mathbf{W}_{M}^{*}\mathbf{W}_{M-1}^{*}\mathbf{W}_{M-2}^{*} \dots \mathbf{W}_{2}^{*}\mathbf{W}_{1}^{*}\overline{\mathbf{H}}^{*}$$
$$\propto (\mathbf{W}_{M}^{*}\mathbf{W}_{M-1}^{*} \dots \mathbf{W}_{j}^{*})(\mathbf{W}_{M}^{*}\mathbf{W}_{M-1}^{*} \dots \mathbf{W}_{j}^{*})^{\top} \propto \mathcal{P}_{t}(\mathbf{I}_{K} - \frac{1}{K}\mathbf{1}_{K}\mathbf{1}_{K}^{\top}).$$

 $\frac{2033}{2034}$  We finish the proof.

| 2035         | E. Proof of Theorem 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2036         | <b>Theorem E.1.</b> Let $d > K$ and $(\mathbf{W}^*, \mathbf{H}^*)$ be any global minimizer of problem (5). Then, we have:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2037         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2039         | $(\mathcal{NC}1)$ $\mathbf{H}^* = \overline{\mathbf{H}}^* \mathbf{Y} \Leftrightarrow \mathbf{h}^*_{i,i} = \mathbf{h}^*_i \forall k \in [K] \ i \in [n_i] \ where \overline{\mathbf{H}}^* = [\mathbf{h}^*_{i,i} + \mathbf{h}^*_{i,i}] \in \mathbb{R}^{d \times K}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2040         | $(\mathbf{v},\mathbf{v})  \mathbf{i}  $ |
| 2041         | $(\Lambda(C2)) = \sqrt{n_k \lambda_H} \mathbf{h}^*  \forall \ \mathbf{h} \in [V]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2042         | $(\mathcal{N}C3)  \mathbf{w}_{k} = \sqrt{\frac{\kappa}{\lambda_{W}}} \mathbf{n}_{k}  \forall \ k \in [\mathbf{K}].$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2045<br>2044 | $(\mathcal{N} C2)$ Let $a := N^2 \lambda_W \lambda_H$ , we have:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2045         | $\mathbf{W}^{*}\mathbf{W}^{*	op} = 	ext{diag}\left\{s_{k}^{2} ight\}_{k=1}^{K},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2046         | $-*^{\top}-*$ $\left( s_{1}^{2} \right)^{K}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2047         | $\mathbf{H}^{-}\mathbf{H}^{-} = \operatorname{diag}\left\{\frac{\kappa}{(s_{L}^{2}+N\lambda_{H})^{2}}\right\}_{L=1},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2048         | $(k_k + k_{k-1}) \neq k = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2049         | $(s_{L}^{2})^{K}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2050         | $\mathbf{W}^* \mathbf{H}^* = \operatorname{diag} \left\{ \frac{\kappa}{s_L^2 + N \lambda_H} \right\}_{L=1} \mathbf{Y}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2052         | $\begin{bmatrix} s_1^2 & 1^\top & 0 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2053         | $\frac{1}{s_1^2 + \lambda_H} 1_{n_1} \dots 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2054         | $=$ $\vdots$ $\cdot$ $\vdots$ $ $ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2055         | $0 \qquad \dots  \frac{s_K^2}{s^2 + N\lambda_H} 1_{n_K}^{\top}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2050         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2058         | where:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2059         | • If $\frac{a}{n_1} \leq \frac{a}{n_2} \leq \ldots \leq \frac{a}{n_K} \leq 1$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2060         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2001         | $s_{L} = \sqrt{\sqrt{\frac{n_{k}\lambda_{H}}{N} - N\lambda_{H}}}  \forall k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2062         | $\vee$ $\vee$ $\vee$ $\vee$ $\lambda_W$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2064         | • If there exists a $j \in [K-1]$ s.t. $\frac{a}{2} < \frac{a}{2} < \ldots < \frac{a}{2} < 1 < \frac{a}{2} < \ldots < \frac{a}{2}$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2065         | $J = 1$ $J = n_1 - n_2 - n_j - n_{j+1} - n_K$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2066         | $\int \sqrt{\sqrt{\frac{n_k \lambda_H}{N} - N \lambda_H}}  \forall k < j$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2007         | $s_k = \begin{cases} \bigvee \bigvee \chi_W & \cdots & - \Im \\ 0 & & \forall k > i \end{cases}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2069         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2070         | • If $1 < \frac{a}{n_1} \le \frac{a}{n_2} \le \ldots \le \frac{a}{n_K}$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2071         | $(s_1, s_2, \dots, s_K) = (0, 0, \dots, 0),$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2072         | and $(\mathbf{W}^* \mathbf{H}^*) - (0 0)$ in this case                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2074         | $(\mathbf{v},\mathbf{u}) = (0,0)$ is this case.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2075         | And, for any k such that $s_k = 0$ , we have:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2076         | $\mathbf{w}_{\scriptscriptstyle L}^* = \mathbf{h}_{\scriptscriptstyle L}^* = 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2077         | $\kappa \sim \kappa$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2079         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2080         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2081         | <b>Theorem E.2.</b> Let $d < K$ , thus $R = \min(d, K) = d$ and $(\mathbf{W}^*, \mathbf{H}^*)$ be any global minimizer of problem (5). Then, we have:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2082         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2083         | $(\mathcal{NC1})  \mathbf{H}^* = \mathbf{H}  \mathbf{Y} \Leftrightarrow \mathbf{h}^*_{k,i} = \mathbf{h}^*_k \; \forall \; k \in [K], i \in [n_k], \text{ where } \mathbf{H} = [\mathbf{h}^*_1, \dots, \mathbf{h}^*_K] \in \mathbb{R}^{d \times K}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2085         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2086         | $(\mathcal{NC3})  \mathbf{w}_k^* = \sqrt{\frac{n_k \lambda_H}{\lambda_W}} \mathbf{h}_k^*  \forall \ k \in [K].$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2087         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2088         | $(\mathcal{NC}2)$ Let $a := N^2 \lambda_W \lambda_H$ , we define $\{s_k\}_{k=1}^n$ as follows:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

2090 • If  $\frac{a}{n_1} \le \frac{a}{n_2} \le \ldots \le \frac{a}{n_R} \le 1$ : 

 $s_k = \begin{cases} \sqrt{\sqrt{\frac{n_k \lambda_H}{\lambda_W}} - N \lambda_H} & \forall k \le R \\ 0 & \forall k > R \end{cases}$ (52)

Then, if  $b/n_R = 1$  or  $n_R > n_{R+1}$ , we have:

$$\mathbf{W}^* \mathbf{W}^{*\top} = \operatorname{diag} \left\{ s_k^2 \right\}_{k=1}^K,$$
$$\overline{\mathbf{H}}^{*\top} \overline{\mathbf{H}}^* = \operatorname{diag} \left\{ \frac{s_k^2}{(s_k^2 + N\lambda_H)^2} \right\}_{k=1}^K,$$
$$\mathbf{W}^* \overline{\mathbf{H}}^* = \operatorname{diag} \left\{ \frac{s_k^2}{s_k^2 + N\lambda_H} \right\}_{k=1}^K,$$

and for any k > R, we have  $\mathbf{w}_k^* = \mathbf{h}_k^* = \mathbf{0}$ .

If  $b/n_R < 1$  and there exists  $k \le R$ , l > R such that  $n_{k-1} > n_k = n_{k+1} = ... = n_R = ... = n_l > n_{l+1}$ , then:

$$\mathbf{W}^{*}\mathbf{W}^{*\top} = \begin{bmatrix} s_{1}^{2} \dots 0 & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 \dots & s_{k-1}^{2} & 0 & 0 \\ 0 \dots & 0 & s_{k}^{2}\mathcal{P}_{R-k+1}(\mathbf{I}_{l-k+1}) & 0 \\ 0 \dots & 0 & 0 & 0_{(K-l)\times(K-l)} \end{bmatrix},$$
(53)  
$$\mathbf{\overline{H}}^{*\top}\mathbf{\overline{H}}^{*} = \begin{bmatrix} \frac{s_{1}^{2}}{(s_{1}^{2}+N\lambda_{H})^{2}} & \cdots & 0 & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & \frac{s_{k-1}^{2}}{(s_{k-1}^{2}+N\lambda_{H})^{2}} & 0 & 0 & 0 \\ 0 & \dots & 0 & \frac{s_{k}^{2}}{(s_{k}^{2}+N\lambda_{H})^{2}}\mathcal{P}_{R-k+1}(\mathbf{I}_{l-k+1}) & 0 \\ 0 & \dots & 0 & 0 & 0_{(K-l)\times(K-l)} \end{bmatrix},$$
(54)  
$$\mathbf{W}^{*}\mathbf{\overline{H}}^{*} = \begin{bmatrix} \frac{s_{1}^{2}}{s_{1}^{2}+N\lambda_{H}} & \cdots & 0 & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & \frac{s_{k-1}^{2}}{s_{k-1}^{2}+N\lambda_{H}} & 0 & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & \frac{s_{k-1}^{2}+N\lambda_{H}}{s_{k-1}^{2}+N\lambda_{H}} & 0 & 0 & 0 \\ 0 & \dots & 0 & \frac{s_{k}^{2}+N\lambda_{H}}{s_{k}^{2}+N\lambda_{H}}\mathcal{P}_{R-k+1}(\mathbf{I}_{l-k+1}) & 0 \\ 0 & \dots & 0 & 0 & 0_{(K-l)\times(K-l)} \end{bmatrix},$$
(54)

and for any k > l > R, we have  $\mathbf{w}_k^* = \mathbf{h}_k^* = \mathbf{0}$ .

• If there exists a 
$$j \in [R-1]$$
 s.t.  $\frac{a}{n_1} \le \frac{a}{n_2} \le \ldots \le \frac{a}{n_j} \le 1 < \frac{a}{n_{j+1}} \le \ldots \le \frac{a}{n_R}$ :  
$$s_k = \begin{cases} \sqrt{\sqrt{\frac{n_k \lambda_H}{\lambda_W} - N\lambda_H}} & \forall k \le j \\ 0 & \forall k > j \end{cases}.$$

Then, we have:

$$\begin{split} \mathbf{W}^* \mathbf{W}^{*\top} &= \operatorname{diag} \left\{ s_k^2 \right\}_{k=1}^K, \\ \overline{\mathbf{H}}^{*\top} \overline{\mathbf{H}}^* &= \operatorname{diag} \left\{ \frac{s_k^2}{(s_k^2 + N\lambda_H)^2} \right\}_{k=1}^K, \\ \mathbf{W}^* \overline{\mathbf{H}}^* &= \operatorname{diag} \left\{ \frac{s_k^2}{s_k^2 + N\lambda_H} \right\}_{k=1}^K, \end{split}$$

and for any k>j, we have  $\mathbf{w}_k^*=\mathbf{h}_k^*=\mathbf{0}$ 

• If  $1 < \frac{a}{n_1} \le \frac{a}{n_2} \le \ldots \le \frac{a}{n_B}$ : 2145 2146  $(s_1, s_2, \ldots, s_K) = (0, 0, \ldots, 0),$ 2147 2148 and  $(\mathbf{W}^*, \mathbf{H}^*) = (\mathbf{0}, \mathbf{0})$  in this case. 2149 2150 *Proof of Theorem E.1 and E.2.* By definition, any critical point  $(\mathbf{W}, \mathbf{H})$  of  $f(\mathbf{W}, \mathbf{H})$  satisfies the following: 2151 2152  $\frac{\partial f}{\partial \mathbf{W}} = \frac{1}{N} (\mathbf{W} \mathbf{H} - \mathbf{Y}) \mathbf{H}^{\top} + \lambda_W \mathbf{W} = \mathbf{0},$ (56)2153 2154  $\frac{\partial f}{\partial \mathbf{H}} = \frac{1}{N} \mathbf{W}^{\top} (\mathbf{W} \mathbf{H} - \mathbf{Y}) + \lambda_H \mathbf{H} = \mathbf{0}.$ (57)2155 2156 From  $\mathbf{0} = \mathbf{W}^{\top} \frac{\partial f}{\partial \mathbf{W}} - \frac{\partial f}{\partial \mathbf{H}} \mathbf{H}^{\top}$ , we have: 2157 2158  $\lambda_W \mathbf{W}^\top \mathbf{W} = \lambda_H \mathbf{H} \mathbf{H}^\top.$ (58)2159 2160 Also, from  $\frac{\partial f}{\partial \mathbf{H}} = \mathbf{0}$ , solving for **H** yields: 2161 2162  $\mathbf{H} = (\mathbf{W}^{\top}\mathbf{W} + N\lambda_{\mathbf{H}}\mathbf{I})^{-1}\mathbf{W}^{\top}\mathbf{Y}.$ (59) 2163 2164 Let  $\mathbf{W} = \mathbf{U}_W \mathbf{S}_W \mathbf{V}_W^{\top}$  be the SVD decomposition of  $\mathbf{W}$  with orthonormal matrices  $\mathbf{U}_W \in \mathbb{R}^{K \times K}$ ,  $\mathbf{V}_W \in \mathbb{R}^{d \times d}$  and diagonal matrix  $\mathbf{S}_W \in \mathbb{R}^{K \times d}$  with non-decreasing singular values. We denote r singular values of  $\mathbf{W}$  as  $\{s_k\}_{k=1}^r$  (we have 2165 2166  $r \le R := \min(K, d)).$ 2167 2168 From equation (59) and the SVD of W: 2169  $\mathbf{H} = (\mathbf{W}^{\top}\mathbf{W} + N\lambda_{H}\mathbf{I})^{-1}\mathbf{W}^{\top}\mathbf{Y}$ 2170  $= (\mathbf{V}_W \mathbf{S}_W^\top \mathbf{S}_W \mathbf{V}_W^\top + N\lambda_H \mathbf{I})^{-1} \mathbf{V}_W \mathbf{S}_W^\top \mathbf{U}_W^\top \mathbf{Y}.$ 2171  $= \mathbf{V}_W (\mathbf{S}_W^{\top} \mathbf{S}_W + N \lambda_H \mathbf{I})^{-1} \mathbf{S}_W^{\top} \mathbf{U}_W^{\top} \mathbf{Y}$ 2173  $= \mathbf{V}_{W} \underbrace{ \begin{bmatrix} \operatorname{diag} \left( \frac{s_{1}}{s_{1}^{2} + N\lambda_{H_{1}}}, \dots, \frac{s_{r}}{s_{r}^{2} + N\lambda_{H_{1}}} \right) & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}}_{\mathbf{0}} \mathbf{U}_{W}^{\top} \mathbf{Y}$ (60)2174 2175 2176  $= \mathbf{V}_W \mathbf{C} \mathbf{U}_W^\top \mathbf{Y}.$ 2178 2179 2180  $\mathbf{W}\mathbf{H} = \mathbf{U}_{W}\mathbf{S}_{W} \begin{bmatrix} \operatorname{diag}\left(\frac{s_{1}}{s_{1}^{2} + N\lambda_{H_{1}}}, \dots, \frac{s_{r}}{s_{r}^{2} + N\lambda_{H_{1}}}\right) & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \mathbf{U}_{W}^{\top}\mathbf{Y}$ 2181 2182 (61) $= \mathbf{U}_{W} \operatorname{diag} \left( \frac{s_{1}^{2}}{s_{1}^{2} + N\lambda_{H}}, \dots, \frac{s_{r}^{2}}{s_{r}^{2} + N\lambda_{H}}, 0, \dots, 0 \right) \mathbf{U}_{W}^{\mathsf{T}} \mathbf{Y}$ 2183 2184 2185 2186  $\Rightarrow \mathbf{W}\mathbf{H} - \mathbf{Y} = \mathbf{U}_W \left[ \operatorname{diag} \left( \frac{s_1^2}{s_1^2 + N\lambda_H}, \dots, \frac{s_r^2}{s_r^2 + N\lambda_H}, 0, \dots, 0 \right) - \mathbf{I}_K \right] \mathbf{U}_W^\top \mathbf{Y}$ 2187 2188 2189  $= \mathbf{U}_{W} \underbrace{\operatorname{diag}\left(\frac{-N\lambda_{H}}{s_{1}^{2} + N\lambda_{H}}, \dots, \frac{-N\lambda_{H}}{s_{r}^{2} + N\lambda_{H}}, -1, \dots, -1\right)}_{\mathbf{D} \in \mathbb{R}^{K \times K}} \mathbf{U}_{W}^{\top} \mathbf{Y}$ 2190 (62)2192  $= \mathbf{U}_W \mathbf{D} \mathbf{U}_W^\top \mathbf{Y}.$ 2193 2194 2195 Based on this result, we now calculate the Frobenius norm of WH - Y: 2196  $\|\mathbf{W}\mathbf{H} - \mathbf{Y}\|_{F}^{2} = \|\mathbf{U}_{W}\mathbf{D}\mathbf{U}_{W}^{\top}\mathbf{Y}\|_{F}^{2} = \operatorname{trace}(\mathbf{U}_{W}\mathbf{D}\mathbf{U}_{W}^{\top}\mathbf{Y}(\mathbf{U}_{W}\mathbf{D}\mathbf{U}_{W}^{\top}\mathbf{Y})^{\top})$ 2197  $= \operatorname{trace}(\mathbf{U}_W \mathbf{D} \mathbf{U}_W^\top \mathbf{Y} \mathbf{Y}^\top \mathbf{U}_W \mathbf{D} \mathbf{U}_W^\top) = \operatorname{trace}(\mathbf{D}^2 \mathbf{U}_W^\top \mathbf{Y} \mathbf{Y}^\top \mathbf{U}_W).$ 2198 (63) 2199

| 2200                         | We denote $\mathbf{u}^k$ and $\mathbf{u}_k$ are the k-th row and column of $\mathbf{U}_W$ , respectively. Let $\mathbf{n} = (n_1, \ldots, n_K)$ , we have the following                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ng:                 |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| 2201                         | $\begin{bmatrix} -\mathbf{u}^1 - \end{bmatrix} \begin{bmatrix}   &   &   \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |
| 2202                         | $\mathbf{U}_{W} = \begin{bmatrix} \mathbf{u} & \mathbf{u} \\ \mathbf{u}_{1} & \mathbf{u}_{K} \end{bmatrix} = \begin{bmatrix} \mathbf{u} & \mathbf{u} \\ \mathbf{u}_{1} & \mathbf{u}_{K} \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |
| 2203                         | $ -\mathbf{u}^{K}- $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |
| 2204                         | $\mathbf{V}\mathbf{V}^{\top} - \operatorname{diag}(n_1, n_2, \dots, n_K) \in \mathbb{R}^{K \times K}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
| 2205                         | $\mathbf{I} = \operatorname{diag}(n_1, n_2, \dots, n_K) \subset \mathbb{R}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |
| 2200                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |
| 2207                         | $\Rightarrow \mathbf{U}_W^{\prime} \mathbf{Y}^{\prime} \mathbf{U}_W = \left[ (\mathbf{u}^{\prime})^{\prime} \dots (\mathbf{u}^{\prime \prime})^{\prime} \right] \operatorname{diag}(n_1, n_2, \dots, n_K) \left[ \dots \right]_{-K}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |
| 2200                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (64)                |
| 2210                         | $\begin{vmatrix} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |
| 2211                         | $=  (\mathbf{u}^{\scriptscriptstyle 1})^{\scriptscriptstyle \top} \dots  (\mathbf{u}^{\scriptscriptstyle K})^{\scriptscriptstyle \top}    \dots  _{V}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |
| 2212                         | $\begin{bmatrix} & & & \\ & & & \end{bmatrix} \begin{bmatrix} -n_k \mathbf{u}^{\mathbf{r}} - \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |
| 2213                         | $\Rightarrow (\mathbf{U}_W^{\top} \mathbf{Y} \mathbf{Y}^{\top} \mathbf{U}_W)_{kk} = n_1 u_{1k}^2 + n_2 u_{2k}^2 + \ldots + n_k u_{Kk}^2 = (\mathbf{u}_k \odot \mathbf{u}_k)^{\top} \mathbf{n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                     |
| 2214                         | $r$ $(-N)$ $x$ $)^2$ $K$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                     |
| 2215                         | $\Rightarrow \ \mathbf{W}\mathbf{H} - \mathbf{Y}\ _F^2 = \operatorname{trace}(\mathbf{D}^2\mathbf{U}_W^\top\mathbf{Y}\mathbf{Y}^\top\mathbf{U}_W) = \sum (\mathbf{u}_k \odot \mathbf{u}_k)^\top \mathbf{n} \frac{(-1\sqrt{H})}{(-2+M)-\sqrt{2}} + \sum (\mathbf{u}_h \odot \mathbf{u}_h)^\top \mathbf{n},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 2216                         | $\frac{1}{k=1} \qquad (s_k + N \lambda_H)^2 \qquad \frac{1}{h=r+1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |
| 2217                         | where the last equality is from the fact that $\mathbf{D}^2$ is a diagonal matrix, so the diagonal of $\mathbf{D}^2 \mathbf{U}_W^\top \mathbf{Y} \mathbf{Y}^\top \mathbf{U}_W$ is the element                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -wise               |
| 2218                         | product between the diagonal of $\mathbf{D}^2$ and $\mathbf{U}_W^{\top} \mathbf{Y} \mathbf{Y}^{\top} \mathbf{U}_W$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |
| 2219                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |
| 2220                         | Similarly we calculate the Each mine norm of <b>II</b> from constinu ((0)) we have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                     |
| 2221                         | Similarly, we calculate the Frobenius norm of <b>H</b> , from equation (60), we have:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
| 2222                         | $\ \mathbf{H}\ _F^2 = \mathrm{trace}(\mathbf{V}_W \mathbf{C} \mathbf{U}_W^\top \mathbf{Y} \mathbf{Y}^\top \mathbf{U}_W \mathbf{C}^\top \mathbf{V}_W^\top) = \mathrm{trace}(\mathbf{C}^\top \mathbf{C} \mathbf{U}_W^\top \mathbf{Y} \mathbf{Y}^\top \mathbf{U}_W)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |
| 2223                         | $K$ $_{a}2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     |
| 2224                         | $=\sum (\mathbf{u}_k\odot\mathbf{u}_k)^{	op}\mathbf{n}rac{s_k}{(s^2+N)-s^2}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (65)                |
| 2225                         | $\frac{1}{k=1} \qquad (S_k + N \lambda_H)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |
| 2227                         | Now, we plug the equations (64) and (65) into the function $f$ we get:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |
| 2228                         | Now, we plug the equations (64) and (65) into the function <i>J</i> ; we get.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |
| 2229                         | $f(\mathbf{W},\mathbf{H}) = \frac{1}{2} \sum_{k=1}^{r} (\mathbf{u}_{k} \circ \mathbf{u}_{k})^{\top} \mathbf{u}_{k} = (-N\lambda_{H})^{2} + \frac{1}{2} \sum_{k=1}^{K} (\mathbf{u}_{k} \circ \mathbf{u}_{k})^{\top} \mathbf{u}_{k} + \lambda_{W} \sum_{k=1}^{r} \lambda_{W}^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                     |
| 2230                         | $f(\mathbf{w},\mathbf{h}) = \frac{1}{2N} \sum_{k=1}^{N} (\mathbf{u}_k \odot \mathbf{u}_k)  \mathbf{h} \frac{1}{(s_k^2 + N\lambda_H)^2} + \frac{1}{2N} \sum_{k=1}^{N} (\mathbf{u}_h \odot \mathbf{u}_h)  \mathbf{h} + \frac{1}{2N} \sum_{k=1}^{N} s_k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
| 2231                         | $\kappa = 1$ $n = r + 1$ $\kappa = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
| 2232                         | $+ \frac{\lambda_H}{\sum} \sum_{k=1}^{H} (\mathbf{u}_k \odot \mathbf{u}_k)^{\top} \mathbf{n} \frac{s_k^2}{1-s_k^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |
| 2233                         | $2 \sum_{k=1}^{(\alpha_k \cup \alpha_k)} (s_k^2 + N\lambda_H)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |
| 2234                         | $(\mathbf{u} \cap \mathbf{u})^{\top}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
| 2233                         | $=rac{\lambda_H}{2}\sum_{k}rac{(\mathbf{u}_k\odot\mathbf{u}_k)\cdot\mathbf{n}}{(\mathbf{u}_k\odot\mathbf{u}_k)}+rac{\lambda_W}{2}\sum_{k}s_k^2+rac{1}{2N}\sum_{k}(\mathbf{u}_h\odot\mathbf{u}_h)^{	op}\mathbf{n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     |
| 2230                         | $2 \frac{1}{k=1} s_{\overline{k}} + N \lambda_{H} \qquad 2 \frac{1}{k=1} \frac{1}{k=1}$ | $\langle C \rangle$ |
| 2237                         | $1 \frac{r}{r} \left( (\mathbf{u} \circ \mathbf{u})^{\top} \mathbf{u} \right) = \left( \frac{r}{r} \right)^{\top} \mathbf{u}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (66)                |
| 2230                         | $= \frac{1}{2N} \sum_{k} \left( \frac{(\mathbf{u}_{k} \odot \mathbf{u}_{k})^{\top} \mathbf{n}}{r^{2}} + N^{2} \lambda_{W} \lambda_{H} \left( \frac{s_{k}}{N} \right) \right) + \frac{1}{2N} \sum_{k} (\mathbf{u}_{h} \odot \mathbf{u}_{h})^{\top} \mathbf{n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                     |
| 2240                         | $\frac{2N}{k=1} \left( \frac{\sigma_k}{N\lambda_H} + 1 \right) \frac{2N}{h=r+1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |
| 2241                         | - <i>V</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 2242                         | $1 \frac{r}{r} \left( (\mathbf{u} \odot \mathbf{u})^{\dagger} \mathbf{n} \right) > 1 \frac{\kappa}{r}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                     |
| <i>LL</i> <b>H</b> <i>L</i>  | $=\frac{1}{2N}\sum_{k=1}^{r}\left(\frac{(\mathbf{u}_{k}\odot\mathbf{u}_{k})^{\top}\mathbf{n}}{x_{k}+1}+bx_{k}\right)+\frac{1}{2N}\sum_{k=1}^{K}(\mathbf{u}_{h}\odot\mathbf{u}_{h})^{\top}\mathbf{n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                     |
| 2242                         | $= \frac{1}{2N} \sum_{k=1}^{r} \left( \frac{(\mathbf{u}_k \odot \mathbf{u}_k)^\top \mathbf{n}}{x_k + 1} + bx_k \right) + \frac{1}{2N} \sum_{h=r+1}^{K} (\mathbf{u}_h \odot \mathbf{u}_h)^\top \mathbf{n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     |
| 2242<br>2243<br>2244         | $= \frac{1}{2N} \sum_{k=1}^{r} \left( \frac{(\mathbf{u}_k \odot \mathbf{u}_k)^{\top} \mathbf{n}}{x_k + 1} + bx_k \right) + \frac{1}{2N} \sum_{h=r+1}^{K} (\mathbf{u}_h \odot \mathbf{u}_h)^{\top} \mathbf{n}$ $= \frac{1}{2N} \sum_{k=1}^{r} \left( a_k - c_k \right) = \frac{1}{2N} \sum_{h=r+1}^{K} (\mathbf{u}_h \odot \mathbf{u}_h)^{\top} \mathbf{n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |
| 2242<br>2243<br>2244<br>2245 | $= \frac{1}{2N} \sum_{k=1}^{r} \left( \frac{(\mathbf{u}_k \odot \mathbf{u}_k)^{\top} \mathbf{n}}{x_k + 1} + bx_k \right) + \frac{1}{2N} \sum_{h=r+1}^{K} (\mathbf{u}_h \odot \mathbf{u}_h)^{\top} \mathbf{n}$ $= \frac{1}{2N} \sum_{k=1}^{r} \left( \frac{a_k}{x_k + 1} + bx_k \right) + \frac{1}{2N} \sum_{k=1}^{K} a_k,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |

with 
$$x_k := \frac{s_k^2}{N\lambda_H}$$
,  $a_k := (\mathbf{u}_k \odot \mathbf{u}_k)^\top \mathbf{n}$  and  $b := N^2 \lambda_W \lambda_H$ .  
2249  
2250 From the fact that  $\mathbf{U}_W$  is an orthonormal matrix, we have:

2252

$$\sum_{k=1}^{K} a_k = \sum_{k=1}^{K} \left( \mathbf{u}_k \odot \mathbf{u}_k \right)^\top \mathbf{n} = \left( \sum_{k=1}^{K} \mathbf{u}_k \odot \mathbf{u}_k \right)^\top \mathbf{n} = \mathbf{1}^\top \mathbf{n} = \sum_{k=1}^{K} n_k = N,$$
(67)

2255 and, for any  $j \in [K]$ , denote  $p_{i,j} := u_{i1}^2 + u_{i2}^2 + \ldots + u_{ij}^2 \ \forall i \in [K]$ , we have:

$$\sum_{k=1}^{j} a_{k} = \sum_{k=1}^{j} (\mathbf{u}_{k} \odot \mathbf{u}_{k})^{\mathsf{T}} \mathbf{n} = n_{1}(u_{11}^{2} + u_{12}^{2} + \ldots + u_{1j}^{2}) + n_{2}(u_{21}^{2} + u_{22}^{2} + \ldots + u_{2j}^{2}) + \ldots + n_{K}(u_{K1}^{2} + u_{K2}^{2} + \ldots + u_{Kj}^{2})$$

$$= \sum_{k=1}^{K} p_{k,j} n_{k} \leq p_{1,j} n_{1} + p_{2,j} n_{2} + \ldots + p_{j,j} n_{j} + (p_{j+1,j} + p_{j+2,j} + \ldots + p_{K,j}) n_{j}$$

$$= p_{1,j} n_{1} + p_{2,j} n_{2} + \ldots + p_{j-1,j} n_{j-1} + (j - p_{1,j} - \ldots - p_{j-1}, j) n_{j}$$

$$= \sum_{k=1}^{j} n_{k} + \sum_{h=1}^{j-1} (n_{h} - n_{j})(p_{h,j} - 1) \leq \sum_{k=1}^{j} n_{k}$$

$$\Rightarrow \sum_{k=j+1}^{K} a_{k} \geq N - \sum_{k=1}^{j} n_{k} = \sum_{k=j+1}^{K} n_{k} \quad \forall j \in [K],$$
(68)

where we used the fact that  $\sum_{k=1}^{K} p_{k,j} = j$  since it is the sum of squares of all entries of the first *j* columns of an orthonormal matrix, and  $p_{i,j} \leq 1 \forall i$  because it is the sum of squares of some entries on the *i*-th row of  $\mathbf{U}_W$ .

We state a lemma regarding minimizing a weighted sum as following.

**Lemma E.3.** Consider a weighted sum  $\sum_{k=1}^{K} a_k z_k$  with  $\{a_k\}_{k=1}^{K}$  satisfies (67) and (68) and  $0 < z_1 \le z_2 \le \ldots \le z_K$ . Then, we have:

$$\min_{a_1,...,a_K} \sum_{k=1}^K a_k z_k = \sum_{k=1}^K n_k z_k.$$

The equality happens when for any  $k \ge 1$ ,  $z_{k+1} = z_k$  or  $a_{k+1} + a_{k+2} + \ldots + a_K = n_{k+1} + n_{k+2} + \ldots + n_K$  (equivalently,  $a_1 + a_2 + \ldots + a_k = n_1 + n_2 + \ldots + n_k$ ).

*Proof of Lemma E.3.* We have:

$$\sum_{k=1}^{K} a_k z_k = (a_1 + a_2 + \dots + a_K) z_1 + (a_2 + \dots + a_K) (z_2 - z_1) + \dots + (a_{K-1} + a_K) (z_{K-1} - z_{K-2}) + a_K (z_K - z_{K-1}) \\ \ge (n_1 + n_2 + \dots + n_K) z_1 + (n_2 + \dots + n_K) (z_2 - z_1) + \dots + (n_{K-1} + n_K) (z_{K-1} - z_{K-2}) + n_K (z_K - z_{K-1}) \\ = \sum_{k=1}^{K} n_k z_k.$$

By applying Lemma E.3 to the RHS of equation (66) with  $z_k = \frac{1}{x_k+1} \forall k \le r$  and  $z_k = 1$  otherwise, we obtain:

$$f(\mathbf{W}, \mathbf{H}) \ge \frac{1}{2N} \sum_{k=1}^{r} \left( \frac{n_k}{x_k + 1} + bx_k \right) + \frac{1}{2N} \sum_{h=r+1}^{K} n_h$$
(69)

$$= \frac{1}{2N} \sum_{k=1}^{r} n_k \left( \frac{1}{x_k + 1} + \frac{b}{n_k} x_k \right) + \frac{1}{2N} \sum_{h=r+1}^{K} n_h.$$
(70)

Consider the function:

$$g(x) = \frac{1}{x+1} + ax \text{ with } x \ge 0, a > 0.$$
(71)

We consider two cases:

| 2310                                 | • If $a > 1$ , $g(0) = 1$ and $g(x) > g(0) \forall x > 0$ . Hence, $g(x)$ is minimized at $x = 0$ in this case.                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2311<br>2312                         | • If $a \le 1$ , by using AM-GM, we have $g(x) = \frac{1}{x+1} + a(x+1) - a \ge 2\sqrt{a} - a$ with the equality holds iff $x = \sqrt{\frac{1}{a}} - 1$                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2313<br>2314<br>2315                 | By applying this result to each term in the lower bound (70), we finish bounding $f(\mathbf{W}, \mathbf{H})$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2316<br>2317<br>2318                 | Now, we study the equality conditions. In the lower bound (70), by letting $x_k^*$ be the minimizer of $\frac{1}{x_k+1} + \frac{b}{n_k}x_k$ for all $k \le r$ and $x_k^* = 0$ for all $k > r$ , there are only four possibilities as following:                                                                                                                                                                                                                                                                                                                                              |
| 2319<br>2320<br>2321                 | • Case A: If $x_1^* > 0$ and $n_1 > n_2$ : we have $x_1^* = \sqrt{\frac{n_1}{b}} - 1 > \max(0, \sqrt{\frac{n_2}{b}} - 1) \ge x_2^*$ and therefore from the equality condition of Lemma E.3, we have $a_1 = n_1$ . From the orthonormal property of $\mathbf{u}_k$ , we have:                                                                                                                                                                                                                                                                                                                 |
| 2322                                 | $a_1 = (\mathbf{u}_1 \odot \mathbf{u}_1)^\top \mathbf{n} = n_1 u_{11}^2 + n_2 u_{21}^2 + \ldots + n_k u_{K1}^2 \le n_1 (u_{11}^2 + u_{21}^2 + \ldots + u_{K1}^2) = n_1.$                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2323<br>2324                         | The equality holds when and only when $u_{11}^2 = 1$ and $u_{21} = \ldots = u_{K1} = 0$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2325                                 | • Case B: If $x_1^* > 0$ and there exists $1 < j < r$ such that $n_1 = n_2 = \ldots = n_i > n_{i+1}$ , we have:                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2326                                 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2328                                 | $\frac{1}{x+1} + \frac{1}{n_1}x = \frac{1}{x+1} + \frac{1}{n_2}x = \dots = \frac{1}{x+1} + \frac{1}{n_j}x,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2329<br>2330<br>2331                 | and thus, $x_1^* = x_2^* = \ldots = x_j^* > x_{j+1}^*$ . Hence, from the equality condition of Lemma E.3, we have $a_1 + a_2 + \ldots + a_j = n_1 + \ldots + n_j$ . We have:                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2332<br>2333<br>2334                 | $\sum_{k=1}^{j} (\mathbf{u}_k \odot \mathbf{u}_k)^\top \mathbf{n} = n_1 (u_{11}^2 + u_{12}^2 + \ldots + u_{1j}^2) + n_2 (u_{21}^2 + u_{22}^2 + \ldots + u_{2j}^2)$                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2335<br>2336<br>2337                 | ++ $n_K(u_{K1}^2 + u_{K2}^2 + \ldots + u_{Kj}^2) \le \sum_{k=1}^j n_k,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2338<br>2339<br>2340<br>2341<br>2342 | where the inequality is from the fact that for any $k \in [K]$ , $(u_{k1}^2 + u_{k2}^2 + \ldots + u_{kj}^2) \le 1$ and $\sum_{k=1}^K (u_{k1}^2 + u_{k2}^2 + \ldots + u_{kj}^2) = j$ and $n_j > n_{j+1}$ . The equality holds iff $u_{k1}^2 + u_{k2}^2 + \ldots + u_{kj}^2 = 1 \forall k = 1, 2, \ldots, j$ and $u_{k1} = u_{k2} = \ldots = u_{kj} = 0 \forall k = j+1, \ldots, K$ , i.e. the upper left sub-matrix size $j \times j$ of $\mathbf{U}_W$ is an orthonormal matrix and other entries of $\mathbf{U}_W$ lie on the same rows or columns with this sub-matrix must all equal 0's. |
| 2343<br>2344<br>2345<br>2346         | • Case C: If $x_1^* > 0$ , $r < K$ and there exists $r < j \le K$ such that $n_1 = n_2 = \ldots = n_r = \ldots = n_j > n_{j+1}$ , thus we have $x_1^* = x_2^* = \ldots = x_r^* > 0$ and $x_{r+1}^* = \ldots = x_K^* = 0$ . Hence, from the equality condition of Lemma E.3, we have $a_1 + a_2 + \ldots + a_r = n_1 + \ldots + n_r$ . We have:                                                                                                                                                                                                                                               |
| 2340<br>2347<br>2348                 | $\sum_{k=1}^{r} (\mathbf{u}_k \odot \mathbf{u}_k)^\top \mathbf{n} = n_1 (u_{11}^2 + u_{12}^2 + \ldots + u_{1r}^2) + n_2 (u_{21}^2 + u_{22}^2 + \ldots + u_{2r}^2)$                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2350<br>2351                         | ++ $n_K(u_{K1}^2 + u_{K2}^2 + \ldots + u_{Kr}^2) \le \sum_{k=1}^r n_k,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2352<br>2353<br>2354<br>2355<br>2356 | where the inequality is from the fact that for any $k \in [K]$ , $(u_{k1}^2 + u_{k2}^2 + \ldots + u_{kr}^2) \le 1$ and $\sum_{k=1}^{K} (u_{k1}^2 + u_{k2}^2 + \ldots + u_{kr}^2) = r$ . The equality holds iff $u_{k1} = u_{k2} = \ldots = u_{kr} = 0 \forall k = j + 1, \ldots, K$ , i.e., the upper left sub-matrix size $j \times r$ of $\mathbf{U}_W$ includes $r$ orthonormal vectors in $\mathbb{R}^j$ and the bottom left sub-matrix size $(K - j) \times r$ are all zeros. The other $K - r$ columns of $\mathbf{U}_W$ does not matter because $\mathbf{W}^*$ can be written as:     |
| 2357<br>2358<br>2359                 | $\mathbf{W}^* = \sum_{k=1}^r s_k^* \mathbf{u}_k \mathbf{v}_k^	op$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2360<br>2361<br>2362                 | with $\mathbf{v}_k$ is the right singular vector that satisfies $\mathbf{W}^{*\top}\mathbf{u}_k = s_k^*\mathbf{v}_k$ . Note that since $s_1^* = s_2^* = \ldots = s_r^* := s^*$ , we have the compact SVD form as follows:                                                                                                                                                                                                                                                                                                                                                                    |
| 2363<br>2364                         | $\mathbf{W}^* = s^* \mathbf{U}_W' \mathbf{V}_W'^\top,\tag{72}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

where  $\mathbf{U}'_{W} \in \mathbb{R}^{K \times r}$  and  $\mathbf{V}'_{W} \in \mathbb{R}^{d \times r}$ . Especially, the last K - j rows of  $\mathbf{W}^{*}$  will be zeros since the last K - j rows of  $\mathbf{U}'_{W}$  are zeros. Furthermore, the matrix  $\mathbf{U}'_{W}\mathbf{U}'^{\top}_{W}$  after removing the last K - j zero rows and the last K - j zero columns is the best rank-r approximation of  $I_i$ . 

We note that if **Case C** happens, then the number of positive singular values are limited by the matrix rank r (e.g., by  $r \leq R = \min(d, K) = d$  when d < K), and  $n_r = n_{r+1}$ , thus  $x_r^* > 0$  and  $x_{r+1}^* = 0$  ( $x_{r+1}^*$  should equal  $x_r^* > 0$  if it is not forced to be zero).

• Case D: If  $x_1^* = 0$ , we must have  $x_2^* = \ldots = x_K^* = 0$ ,  $\sum_{k=1}^K (\mathbf{u}_k \odot \mathbf{u}_k)^\top \mathbf{n}$  always equal N and thus,  $\mathbf{U}_W$  can be an arbitrary size  $K \times K$  orthonormal matrix.

We perform similar arguments as above for all subsequent  $x_k^*$ 's, after we finish reasoning for prior ones. Before going to the conclusion, we first study the matrix  $U_W$ . If Case C does not happen for any  $x_k^*$ 's, we have:

$$\mathbf{U}_{W} = \begin{bmatrix} \mathbf{A}_{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_{2} & \mathbf{0} & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{A}_{l} \end{bmatrix},$$
(73)

where each  $A_i$  is an orthonormal block which corresponds with one or a group of classes that have the same number of training samples and their  $x^* > 0$  (Case A and Case B) or corresponds with all classes with  $x^* = 0$  (Case D). If Case C happens, we have: 

$$\mathbf{U}_{W} = \begin{bmatrix} \mathbf{A}_{1} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_{2} & \mathbf{0} & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{A}_{l} \end{bmatrix},$$
(74)

where each  $A_i, i \in [l-1]$  is an orthonormal block which corresponds with one or a group of classes that have the same number of training samples and their  $x^* > 0$  (Case A and Case B). A<sub>l</sub> is the orthonormal block has the same property as  $\mathbf{U}_W$  in Case C. 

We consider the case  $d \ge K$  from now on. By using arguments about the minimizer of g(x) applied to the lower bound (70), we consider three cases as following: 

• Case 1a:  $\frac{b}{n_1} \leq \frac{b}{n_2} \leq \ldots \leq \frac{b}{n_K} \leq 1$ .

Then, the lower bound (70) is minimized at  $(x_1^*, x_2^*, \dots, x_K^*) = \left(\sqrt{\frac{n_1}{b}} - 1, \sqrt{\frac{n_2}{b}} - 1, \dots, \sqrt{\frac{n_K}{b}} - 1\right)$ . Therefore:

$$(s_1^*, s_2^*, \dots, s_K^*) = \left(\sqrt{\sqrt{\frac{n_1\lambda_H}{\lambda_W}} - N\lambda_H}, \sqrt{\sqrt{\frac{n_2\lambda_H}{\lambda_W}} - N\lambda_H}, \dots, \sqrt{\sqrt{\frac{n_K\lambda_H}{\lambda_W}} - N\lambda_H}\right).$$
(75)

First, we have the property that the features in each class  $\mathbf{h}_{k,i}^*$  collapsed to their class-mean  $\mathbf{h}_k^*$  ( $\mathcal{NC1}$ ). Let  $\overline{\mathbf{H}}^*$  =  $\mathbf{V}_W \mathbf{C} \mathbf{U}_W^{\top}$ , we know that  $\mathbf{H}^* = \overline{\mathbf{H}}^* \mathbf{Y}$  from equation (60). Then, columns from the  $(n_{k-1} + 1)$ -th until  $(n_k)$ -th of  $\mathbf{H}$ will all equals the k-th column of  $\overline{\mathbf{H}}^*$ , thus the features in class k are collapsed to their class-mean  $\mathbf{h}_k^*$  (which is the *k*-th column of  $\overline{\mathbf{H}}^*$ ), i.e.,  $\mathbf{h}_{k,1}^* = \mathbf{h}_{k,2}^* = \ldots = \mathbf{h}_{k,n_k}^* \forall k \in [K]$ .

**Case C** never happens because if we assume we have r < K positive singular values, meaning  $s_r^* > 0$ . Then, if  $n_{r+1} = n_r$ , we must have  $s_{r+1}^* > 0$  (contradiction!). Hence,  $\mathbf{U}_W$  must have the form as in equation (73), thus we can 

conclude the geometry of the following :

$$\mathbf{W}^* \mathbf{W}^{*\top} = \mathbf{U}_W \mathbf{S}_W \mathbf{S}_W^\top \mathbf{U}_W^\top = \operatorname{diag} \left\{ \sqrt{\frac{n_1 \lambda_H}{\lambda_W}} - N \lambda_H, \sqrt{\frac{n_2 \lambda_H}{\lambda_W}} - N \lambda_H, \dots, \sqrt{\frac{n_K \lambda_H}{\lambda_W}} - N \lambda_H \right\} \in \mathbb{R}^{K \times K},$$

(76)

$$\mathbf{W}^{*}\mathbf{H}^{*} = \mathbf{U}_{W} \operatorname{diag} \left\{ \frac{s_{1}^{2}}{s_{1}^{2} + N\lambda_{H}}, \dots, \frac{s_{K}^{2}}{s_{K}^{2} + N\lambda_{H}} \right\} \mathbf{U}_{W}^{\mathsf{T}} \mathbf{Y} \\
= \begin{bmatrix} \frac{s_{1}^{2}}{s_{1}^{2} + N\lambda_{H}} & 0 & \cdots & 0 \\ 0 & \frac{s_{2}^{2}}{s_{2}^{2} + N\lambda_{H}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{s_{K}^{2}}{s_{K}^{2} + N\lambda_{H}} \end{bmatrix} \begin{bmatrix} 1 & \cdots & 1 & 0 & \cdots & 0 & \cdots & 0 \\ 0 & \cdots & 0 & 1 & \cdots & 1 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & 0 & \cdots & 1 & \cdots & 1 \end{bmatrix} \\
= \begin{bmatrix} \frac{s_{1}^{2}}{s_{1}^{2} + N\lambda_{H}} \mathbf{1}_{n}^{\mathsf{T}} & \cdots & \mathbf{0} \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \frac{s_{K}^{2}}{s_{K}^{2} + N\lambda_{H}} \mathbf{1}_{n_{K}}^{\mathsf{T}} \end{bmatrix}, \\
\mathbf{H}^{*\mathsf{T}}\mathbf{H}^{*} = \mathbf{Y}^{\mathsf{T}}\mathbf{U}_{W}\mathbf{C}^{T}\mathbf{C}\mathbf{U}_{W}^{\mathsf{T}}\mathbf{Y} \\
= \mathbf{Y}^{\mathsf{T}} \begin{bmatrix} \frac{s_{1}^{2}}{(s_{1}^{2} + N\lambda_{H})^{2}} & 0 & \cdots & 0 \\ 0 & \frac{s_{2}^{2}}{(s_{2}^{2} + N\lambda_{H})^{2}} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \frac{s_{K}^{2}}{(s_{K}^{2} + N\lambda_{H})^{2}} \mathbf{1}_{n_{K}}\mathbf{1}_{n_{K}}^{\mathsf{T}} \end{bmatrix} \mathbf{Y} \\
= \begin{bmatrix} \frac{s_{1}^{2}}{(s_{1}^{2} + N\lambda_{H})^{2}} \mathbf{1}_{n_{1}}\mathbf{1}_{n_{1}}^{\mathsf{T}} & \mathbf{0} & \cdots & \mathbf{0} \\ 0 & \frac{s_{2}^{2}}{(s_{2}^{2} + N\lambda_{H})^{2}} \mathbf{1}_{n_{2}}\mathbf{1}_{n_{2}}^{\mathsf{T}} & \cdots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \mathbf{0} & \cdots & \frac{s_{K}^{2}}{(s_{K}^{2} + N\lambda_{H})^{2}} \mathbf{1}_{n_{K}}\mathbf{1}_{n_{K}}^{\mathsf{T}} \end{bmatrix} \in \mathbb{R}^{N \times N}, \quad (77)$$

where  $\mathbf{1}_{n_k} \mathbf{1}_{n_k}^{\top}$  is a  $n_k \times n_k$  matrix will all entries are 1's.

We additionally have the structure of the class-means matrix:

$$\overline{\mathbf{H}}^{*\top}\overline{\mathbf{H}}^{*} = \mathbf{U}_{W}^{\top}\mathbf{C}^{\top}\mathbf{C}\mathbf{U}_{W} = \begin{bmatrix} \frac{s_{1}^{2}}{(s_{1}^{2}+N\lambda_{H})^{2}} & 0 & \cdots & 0\\ 0 & \frac{s_{2}^{2}}{(s_{2}^{2}+N\lambda_{H})^{2}} & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & \frac{s_{K}^{2}}{(s_{K}^{2}+N\lambda_{H})^{2}} \end{bmatrix} \in \mathbb{R}^{K \times K},$$
(78)  
$$\mathbf{W}^{*}\overline{\mathbf{H}}^{*} = \mathbf{U}_{W}\mathbf{S}_{W}\mathbf{C}\mathbf{U}_{W}^{\top} = \begin{bmatrix} \frac{s_{1}^{2}}{s_{1}^{2}+N\lambda_{H}} & 0 & \cdots & 0\\ 0 & \frac{s_{2}^{2}}{s_{2}^{2}+N\lambda_{H}} & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & \frac{s_{K}^{2}}{s_{K}^{2}+N\lambda_{H}} \end{bmatrix} \in \mathbb{R}^{K \times K}.$$
(79)

And the alignment between the linear classifier and features are as following. For any  $k \in [K]$ , denote  $\mathbf{w}_k$  the k-th row

of W\*:

$$\mathbf{W}^{*} = \mathbf{U}_{W} \mathbf{S}_{W} \mathbf{V}_{W}^{\top},$$
  

$$\overline{\mathbf{H}}^{*} = \mathbf{V}_{W} \mathbf{C} \mathbf{U}_{W}^{\top}$$
  

$$\Rightarrow \mathbf{w}_{k}^{*} = (s_{k}^{2} + N\lambda_{H}) \mathbf{h}_{k}^{*} = \sqrt{\frac{n_{k}\lambda_{H}}{\lambda_{W}}} \mathbf{h}_{k}^{*}.$$
(80)

• Case 2a: There exists  $j \in [K-1]$  s.t.  $\frac{b}{n_1} \le \frac{b}{n_2} \le \ldots \le \frac{b}{n_j} \le 1 < \frac{b}{n_{j+1}} \le \ldots \le \frac{b}{n_K}$ 

Then, the lower bound (70) is minimized at:

-

$$(s_1^*, \dots, s_j^*, s_{j+1}^*, \dots, s_K^*) = \left(\sqrt{\sqrt{\frac{n_1\lambda_H}{\lambda_W}} - N\lambda_H}, \dots, \sqrt{\sqrt{\frac{n_j\lambda_H}{\lambda_W}} - N\lambda_H}, 0, \dots, 0\right).$$
(81)

First, we have the property that the features in each class  $\mathbf{h}_{k,i}^*$  collapsed to their class-mean  $\mathbf{h}_k^*$  ( $\mathcal{NC1}$ ). Let  $\overline{\mathbf{H}}^* = \mathbf{V}_W \mathbf{CU}_W^\top$ , we know that  $\mathbf{H}^* = \overline{\mathbf{H}}^*$  from equation (60). Then, columns from the  $(n_{k-1} + 1)$ -th until  $(n_k)$ -th of  $\mathbf{H}^*$  will all equals the k-th column of  $\overline{\mathbf{H}}^*$ , thus the features in class k are collapsed to their class-mean  $\mathbf{h}_k^*$  (which is the k-th column of  $\overline{\mathbf{H}}$ ), i.e  $\mathbf{h}_{k,1}^* = \mathbf{h}_{k,2}^* = \ldots = \mathbf{h}_{k,n_k}^* \forall k \in [K]$ .

Recall  $U_W$  with the form (73) (Case C cannot happen with the same reason as in Case 1a). From equations (60) and (62), we can conclude the geometry of the following:

$$\mathbf{W}^{*}\mathbf{W}^{*+} = \mathbf{U}_{W}\mathbf{S}_{W}\mathbf{S}_{W}^{*}\mathbf{U}_{W}^{*}$$

$$= \operatorname{diag}\left(\sqrt{\frac{n_{1}\lambda_{H}}{\lambda_{W}}} - N\lambda_{H}, \sqrt{\frac{n_{2}\lambda_{H}}{\lambda_{W}}} - N\lambda_{H}, \dots, \sqrt{\frac{n_{j}\lambda_{H}}{\lambda_{W}}} - N\lambda_{H}, 0, \dots, 0\right), \quad (82)$$

$$\mathbf{W}^{*}\mathbf{H}^{*} = \mathbf{U}_{W}\operatorname{diag}\left(\frac{s_{1}^{2}}{s_{1}^{2} + N\lambda_{H}}, \dots, \frac{s_{j}^{2}}{s_{j}^{2} + N\lambda_{H}}, 0, \dots, 0\right)\mathbf{U}_{W}^{\top}\mathbf{Y}$$

$$= \begin{bmatrix} \frac{s_{1}^{2}}{s_{1}^{2} + N\lambda_{H}}\mathbf{1}_{n_{1}}^{\top} & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & \frac{s_{2}^{2}}{s_{2}^{2} + N\lambda_{H}}\mathbf{1}_{n_{2}}^{\top} & \dots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \dots & \mathbf{0}_{n_{K}}^{\top} \end{bmatrix} \in \mathbb{R}^{K \times N},$$

$$\mathbf{H}^{*\top}\mathbf{H}^{*} = \begin{bmatrix} \frac{s_{1}^{2}}{(s_{1}^{2} + N\lambda_{H})^{2}}\mathbf{1}_{n_{1}}\mathbf{1}_{n_{1}}^{\top} & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & \frac{s_{2}^{2}}{(s_{2}^{2} + N\lambda_{H})^{2}}\mathbf{1}_{n_{2}}\mathbf{1}_{n_{2}}^{\top} & \dots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \dots & \mathbf{0}_{n_{K} \times n_{K}} \end{bmatrix} \in \mathbb{R}^{N \times N}, \quad (83)$$

where  $\mathbf{1}_{n_k} \mathbf{1}_{n_k}^{\top}$  is a  $n_k \times n_k$  matrix will all entries are 1's.

For any  $k \in [K]$ , denote  $\mathbf{w}_k^*$  the k-th row of  $\mathbf{W}^*$  and  $\mathbf{v}_k$  the k-th column of  $\mathbf{V}_W$ , we have:

$$\mathbf{W}^{*} = \mathbf{U}_{W} \mathbf{S}_{W} \mathbf{V}_{W}^{\dagger},$$
  

$$\overline{\mathbf{H}}^{*} = \mathbf{V}_{W} \mathbf{C} \mathbf{U}_{W}^{\top}$$
  

$$\Rightarrow \mathbf{w}_{k}^{*} = (s_{k}^{2} + N\lambda_{H}) \mathbf{h}_{k}^{*} = \sqrt{\frac{n_{k}\lambda_{H}}{\lambda_{W}}} \mathbf{h}_{k}^{*}.$$
(84)

And, for k > j, we have  $\mathbf{w}_k^* = \mathbf{h}_k^* = \mathbf{0}$ , which means the optimal classifiers and features of class k > j will be  $\mathbf{0}$ .

• Case 3a:  $1 < \frac{b}{n_1} \le \frac{b}{n_2} \le \ldots \le \frac{b}{n_R}$ 

Then, the lower bound (70) is minimized at:

$$(s_1^*, s_2^*, \dots, s_K^*) = (0, 0, \dots, 0).$$
 (85)

Hence, the global minimizer of f in this case is  $(\mathbf{W}^*, \mathbf{H}^*) = (\mathbf{0}, \mathbf{0})$ .

Now, we turn to consider the case d < K, and thus,  $r \leq R = d < K$ . Again, we consider the following cases:

• Case 1b: 
$$\frac{b}{n_1} \leq \frac{b}{n_2} \leq \ldots \leq \frac{b}{n_R} \leq 1$$
.

Then, the lower bound (70) is minimized at  $(x_1^*, x_2^*, \dots, x_K^*) = (\sqrt{\frac{n_1}{b}} - 1, \sqrt{\frac{n_2}{b}} - 1, \dots, \sqrt{\frac{n_R}{b}} - 1, 0, \dots, 0) = (\sqrt{\frac{n_1}{N^2 \lambda_W \lambda_H}} - 1, \sqrt{\frac{n_R}{N^2 \lambda_W \lambda_H}} - 1, \dots, \sqrt{\frac{n_R}{N^2 \lambda_W \lambda_H}} - 1, 0, \dots, 0).$  Therefore:

$$(s_1^*, s_2^*, \dots, s_R^*, s_{R+1}^*, \dots, s_K^*) = \left(\sqrt{\sqrt{\frac{n_1\lambda_H}{\lambda_W}} - N\lambda_H}, \sqrt{\sqrt{\frac{n_2\lambda_H}{\lambda_W}} - N\lambda_H}, \dots, \sqrt{\sqrt{\frac{n_R\lambda_H}{\lambda_W}} - N\lambda_H}, 0, \dots, 0\right).$$
(86)

We have  $(\mathcal{NC}1)$  and  $(\mathcal{NC}3)$  properties are the same as **Case 1a**.

We have Case C happens iff  $b/n_R < 1$  (i.e.,  $x_R^* > 0$ ) and  $n_R = n_{R+1}$ . Then, if  $b/n_R = 1$  or  $n_R > n_{R+1}$ , we have:

$$\mathbf{W}^* \mathbf{W}^{*\top} = \mathbf{U}_W \mathbf{S}_W \mathbf{S}_W^\top \mathbf{U}_W^\top = \begin{bmatrix} \sqrt{\frac{n_1 \lambda_H}{\lambda_W}} - N \lambda_H & \dots & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & \sqrt{\frac{n_R \lambda_H}{\lambda_W}} - N \lambda_H & \dots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & \dots & 0 \end{bmatrix} \in \mathbb{R}^{K \times K}, \quad (87)$$

$$\overline{\mathbf{H}}^{*\top}\overline{\mathbf{H}}^{*} = \mathbf{U}_{W}^{\top}\mathbf{C}^{\top}\mathbf{C}\mathbf{U}_{W} = \begin{bmatrix} \frac{s_{1}^{2}}{(s_{1}^{2}+N\lambda_{H})^{2}} & 0 & \dots & 0\\ 0 & \frac{s_{2}^{2}}{(s_{2}^{2}+N\lambda_{H})^{2}} & \dots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \dots & 0 \end{bmatrix} \in \mathbb{R}^{K \times K},$$
(88)

$$\mathbf{W}^* \overline{\mathbf{H}}^* = \mathbf{U}_W \mathbf{S}_W \mathbf{C} \mathbf{U}_{\mathbf{W}}^\top = \begin{bmatrix} \frac{s_1^2}{s_1^2 + N\lambda_H} & 0 & \dots & 0\\ 0 & \frac{s_2^2}{s_2^2 + N\lambda_H} & \dots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \dots & 0 \end{bmatrix} \in \mathbb{R}^{K \times K}.$$
(89)

Furthermore, we have  $\mathbf{w}_k^* = \mathbf{h}_k^* = \mathbf{0}$  for k > R.

If Case C happens, there exists  $k \leq R$ , l > R such that  $n_{k-1} > n_k = n_{k+1} = \ldots = n_R = \ldots = n_l > n_{l+1}$ . Recall

$$\mathbf{F}_{2585} = \mathbf{F}_{2587} = \left[ \begin{array}{cccc} \sqrt{\frac{n_{1}\lambda_{H}}{\lambda_{W}}} - N\lambda_{H} & \cdots & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ \mathbf{0} & \cdots & \sqrt{\frac{n_{k-1}\lambda_{H}}{\lambda_{W}}} - N\lambda_{H} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \cdots & \sqrt{\frac{n_{k-1}\lambda_{H}}{\lambda_{W}}} - N\lambda_{H} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \cdots & \mathbf{0} & \left( \sqrt{\frac{n_{k}\lambda_{H}}{\lambda_{W}}} - N\lambda_{H} \right) \mathcal{P}_{R-k+1}(\mathbf{I}_{l-k+1}) & \mathbf{0} \\ \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} & \mathbf{0}_{(K-l)\times(K-l)} \end{bmatrix} \\$$

$$\mathbf{F}_{2595} = \mathbf{F}_{1}^{*T} \mathbf{F}_{1}^{*} = \begin{bmatrix} \frac{s_{1}^{2}}{(s_{1}^{2} + N\lambda_{H})^{2}} & \cdots & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ \mathbf{0} & \cdots & \mathbf{0} & \frac{s_{k-1}^{2}}{(s_{k-1}^{2} + N\lambda_{H})^{2}} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \cdots & \mathbf{0} & \frac{s_{k}^{2}}{(s_{k}^{2} + N\lambda_{H})^{2}} \mathcal{P}_{R-k+1}(\mathbf{I}_{l-k+1}) & \mathbf{0} \\ \mathbf{0} & \cdots & \mathbf{0} & \frac{s_{k}^{2}}{(s_{k}^{2} + N\lambda_{H})^{2}} \mathcal{P}_{R-k+1}(\mathbf{I}_{l-k+1}) & \mathbf{0} \\ \mathbf{0} & \cdots & \mathbf{0} & \frac{s_{k}^{2}}{(s_{k}^{2} + N\lambda_{H})^{2}} \mathcal{P}_{R-k+1}(\mathbf{I}_{l-k+1}) & \mathbf{0} \\ \mathbf{0} & \cdots & \mathbf{0} & \frac{s_{k}^{2}}{(s_{k}^{2} + N\lambda_{H})^{2}} \mathcal{P}_{R-k+1}(\mathbf{I}_{l-k+1}) & \mathbf{0} \\ \mathbf{0} & \cdots & \mathbf{0} & \frac{s_{k}^{2}}{(s_{k}^{2} + N\lambda_{H})^{2}} \mathcal{P}_{R-k+1}(\mathbf{I}_{l-k+1}) & \mathbf{0} \\ \mathbf{0} & \cdots & \mathbf{0} & \frac{s_{k}^{2}}{(s_{k}^{2} + N\lambda_{H})^{2}} \mathcal{P}_{R-k+1}(\mathbf{I}_{l-k+1}) & \mathbf{0} \\ \mathbf{0} & \cdots & \mathbf{0} & \frac{s_{k}^{2}}{(s_{k}^{2} + N\lambda_{H})^{2}} \mathcal{P}_{R-k+1}(\mathbf{I}_{l-k+1}) & \mathbf{0} \\ \mathbf{0} & \cdots & \mathbf{0} & \frac{s_{k}^{2}}{(s_{k}^{2} + N\lambda_{H})^{2}} \mathcal{P}_{R-k+1}(\mathbf{I}_{l-k+1}) & \mathbf{0} \\ \mathbf{0} & \cdots & \mathbf{0} & \frac{s_{k}^{2}}{(s_{k}^{2} + N\lambda_{H})^{2}} \mathcal{P}_{R-k+1}(\mathbf{I}_{l-k+1}) & \mathbf{0} \\ \mathbf{0} & \cdots & \mathbf{0} & \frac{s_{k}^{2}}{(s_{k}^{2} + N\lambda_{H})^{2}} \mathcal{P}_{R-k+1}(\mathbf{I}_{l-k+1}) & \mathbf{0} \\ \mathbf{0} & \cdots & \mathbf{0} & \frac{s_{k}^{2}}{(s_{k}^{2} + N\lambda_{H})^{2}} \mathcal{P}_{R-k+1}(\mathbf{I}_{l-k+1}) & \mathbf{0} \\ \mathbf{0} & \cdots & \mathbf{0} & \frac{s_{k}^{2}}{(s_{k}^{2} + N\lambda_{H})^{2}} \mathcal{P}_{R-k+1}(\mathbf{I}_{l-k+1}) & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0}_{(K-l)\times(K-l)} \end{bmatrix} \right],$$

and for any k > l > R, we have  $\mathbf{w}_k^* = \mathbf{h}_k^* = \mathbf{0}$ .

• Case 2b: There exists  $j \in [R-1]$  s.t.  $\frac{b}{n_1} \le \frac{b}{n_2} \le \ldots \le \frac{b}{n_j} \le 1 < \frac{b}{n_{j+1}} \le \ldots \le \frac{b}{n_R}$ 

Then, the lower bound (70) is minimized at:

$$(s_1^*, \dots, s_j^*, s_{j+1}^*, \dots, s_K^*) = \left(\sqrt{\sqrt{\frac{n_1\lambda_H}{\lambda_W}} - N\lambda_H}, \dots, \sqrt{\sqrt{\frac{n_j\lambda_H}{\lambda_W}} - N\lambda_H}, 0, \dots, 0\right).$$
(93)

We have  $(\mathcal{NC}1)$  and  $(\mathcal{NC}3)$  properties are the same as **Case 2a**.

**Case C** does not happen in this case because  $b/n_R > 1$  and thus,  $x_R^* = 0$ . Thus, we can conclude the geometry of the following:

$$\mathbf{W}^{*}\mathbf{W}^{*+} = \mathbf{U}_{W}\mathbf{S}_{W}\mathbf{S}_{W}^{+}\mathbf{U}_{W}^{+}$$

$$= \operatorname{diag}\left(\sqrt{\frac{n_{1}\lambda_{H}}{\lambda_{W}}} - N\lambda_{H}, \sqrt{\frac{n_{2}\lambda_{H}}{\lambda_{W}}} - N\lambda_{H}, \dots, \sqrt{\frac{n_{j}\lambda_{H}}{\lambda_{W}}} - N\lambda_{H}, 0, \dots, 0\right), \quad (94)$$

$$\mathbf{W}^{*}\mathbf{H}^{*} = \mathbf{U}_{W}\operatorname{diag}\left(\frac{s_{1}^{2}}{s_{1}^{2} + N\lambda_{H}}, \dots, \frac{s_{j}^{2}}{s_{j}^{2} + N\lambda_{H}}, 0, \dots, 0\right)\mathbf{U}_{W}^{\top}\mathbf{Y}$$

$$= \begin{bmatrix}\frac{s_{1}^{2}}{s_{1}^{2} + N\lambda_{H}}\mathbf{1}_{n_{1}}^{\top} & \mathbf{0} & \dots & \mathbf{0}\\ \mathbf{0} & \frac{s_{2}^{2}}{s_{2}^{2} + N\lambda_{H}}\mathbf{1}_{n_{2}}^{\top} & \dots & \mathbf{0}\\ \vdots & \vdots & \ddots & \vdots\\ \mathbf{0} & \mathbf{0} & \dots & \mathbf{0}_{n_{K}}^{\top}\end{bmatrix} \in \mathbb{R}^{K \times N},$$

 $\mathbf{H}^{*\top}\mathbf{H}^{*} = \begin{vmatrix} \frac{s_{1}^{2}}{(s_{1}^{2}+N\lambda_{H})^{2}} \mathbf{1}_{n_{1}} \mathbf{1}_{n_{1}}^{\top} & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & \frac{s_{2}^{2}}{(s_{2}^{2}+N\lambda_{H})^{2}} \mathbf{1}_{n_{2}} \mathbf{1}_{n_{2}}^{\top} & \dots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \dots & \mathbf{0}_{n_{K} \times n_{K}} \end{vmatrix} \in \mathbb{R}^{N \times N},$ (95)

where  $\mathbf{1}_{n_k} \mathbf{1}_{n_k}^{\top}$  is a  $n_k \times n_k$  matrix will all entries are 1's. And for any k > j,  $\mathbf{w}_k^* = \mathbf{h}_k^* = \mathbf{0}$ .

• Case 3b:  $1 < \frac{b}{n_1} \le \frac{b}{n_2} \le \ldots \le \frac{b}{n_R}$ 

Then, the lower bound (70) is minimized at:

$$(s_1^*, s_2^*, \dots, s_K^*) = (0, 0, \dots, 0).$$
 (96)

Hence, the global minimizer of f in this case is  $(\mathbf{W}^*, \mathbf{H}^*) = (\mathbf{0}, \mathbf{0})$ .

## F. Proof of Theorem 4.4

**Theorem F.1.** Let  $d_m \ge K \forall m \in [M]$  and  $(\mathbf{W}_M^*, \mathbf{W}_{M-1}^*, \dots, \mathbf{W}_2^*, \mathbf{W}_1^*, \mathbf{H}_1^*)$  be any global minimizer of problem (6). We have:

$$(\mathcal{NC1}) \quad \mathbf{H}_{1}^{*} = \overline{\mathbf{H}}^{*} \mathbf{Y} \Leftrightarrow \mathbf{h}_{k,i}^{*} = \mathbf{h}_{k}^{*} \forall k \in [K], i \in [n_{k}], where \ \overline{\mathbf{H}}^{*} = [\mathbf{h}_{1}^{*}, \dots, \mathbf{h}_{K}^{*}] \in \mathbb{R}^{d_{1} \times K}.$$

 $(\mathcal{NC2}) \text{ Let } c := \frac{\lambda_{W_1}^{M^{-1}}}{\lambda_{W_M} \lambda_{W_M^{-1}} \dots \lambda_{W_2}}, a := N \sqrt[M]{N\lambda_{W_M} \lambda_{W_{M-1}} \dots \lambda_{W_1} \lambda_{H_1}} \text{ and } \forall k \in [K], x_k^* \text{ is the largest positive solution} of the equation <math>\frac{a}{n_k} - \frac{x^{M^{-1}}}{(x^{M+1})^2} = 0$ , we have the following:

$$\begin{split} \mathbf{W}_{M}^{*} \mathbf{W}_{M}^{*\top} &= \frac{\lambda_{W_{1}}}{\lambda_{W_{M}}} \operatorname{diag} \left\{ s_{k}^{2} \right\}_{k=1}^{K}, \\ \overline{\mathbf{H}}^{*\top} \overline{\mathbf{H}}^{*} &= \operatorname{diag} \left\{ \frac{cs_{k}^{2M}}{(cs_{k}^{2M} + N\lambda_{H_{1}})^{2}} \right\}_{k=1}^{K}, \\ \mathbf{W}_{M}^{*} \mathbf{W}_{M-1}^{*} \dots \mathbf{W}_{1}^{*} \mathbf{H}_{1}^{*} &= \left\{ \frac{cs_{k}^{2M}}{cs_{k}^{2M} + N\lambda_{H_{1}}} \right\}_{k=1}^{K} \mathbf{Y}, \end{split}$$

( $\mathcal{NC3}$ ) We have,  $\forall k \in [K]$ :

$$(\mathbf{W}_M^*\mathbf{W}_{M-1}^*\ldots\mathbf{W}_2^*\mathbf{W}_1^*)_k = (cs_k^{2M} + N\lambda_{H_1})\mathbf{h}_k^*$$

seo where:

• If 
$$\frac{a}{n_1} \le \frac{a}{n_2} \le \dots \le \frac{a}{n_K} < \frac{(M-1)^{\frac{M-1}{M}}}{M^2}$$
, we have:  
 $s_k = \sqrt[2M]{\frac{N\lambda_{H_1} x_k^{*M}}{c}} \quad \forall k.$   
• If there exists  $a \neq [K-1]$  s.t.  $\frac{a}{m} < \frac{a}{m} < \dots < \frac{a}{m} < \frac{(M-1)^{\frac{M-1}{M}}}{M} < \dots$ 

• If there exists  $a \ j \in [K-1]$  s.t.  $\frac{a}{n_1} \leq \frac{a}{n_2} \leq \ldots \leq \frac{a}{n_j} < \frac{(M-1)^{\frac{m_M}{M}}}{M^2} < \frac{a}{n_{j+1}} \leq \ldots \leq \frac{a}{n_K}$ , we have: 2688 2689 2690 2690 2691  $s_k = \begin{cases} \frac{2M}{\sqrt{\frac{N\lambda_{H_1}x_k^{*M}}{c}}} & \forall \ k \leq j \\ 0 & \forall \ k > j \end{cases}$ 

And, for any k such that  $s_k = 0$ , we have:

$$(\mathbf{W}_M^*)_k = \mathbf{h}_k^* = \mathbf{0}.$$

• If  $\frac{(M-1)^{\frac{M-1}{M}}}{M^2} < \frac{a}{n_1} \le \frac{a}{n_2} \le \ldots \le \frac{a}{n_K}$ , we have:  $(s_1, s_2, \ldots, s_K) = (0, 0, \ldots, 0),$ and  $(\mathbf{W}_{M}^{*}, \dots, \mathbf{W}_{1}^{*}, \mathbf{H}_{1}^{*}) = (\mathbf{0}, \dots, \mathbf{0}, \mathbf{0})$  in this case. The only case left is if there exists  $i, j \in [K]$  ( $i \le j \le K$ ) such that  $\frac{a}{n_1} \le \frac{a}{n_2} \le \ldots \le \frac{a}{n_{i-1}} < \frac{a}{n_i} = \frac{a}{n_{i+1}} = \ldots = \frac{a}{n_j} = \frac{a}{n_j}$  $\frac{(M-1)^{\frac{M-1}{M}}}{M^2} < \frac{a}{n_{j+1}} \le \frac{a}{n_{j+2}} \le \ldots \le \frac{a}{n_K}, we have:$  $s_k = \begin{cases} \sqrt[2M]{N\lambda_{H_1} x_k^{*M}/c} & \forall k \le i-1 \\ \sqrt[2M]{N\lambda_{H_1} x_k^{*M}/c} & or \ 0 & \forall i \le k \le j \\ 0 & \forall k > i+1 \end{cases}$ furthermore, let r is the largest index that  $s_r > 0$ , we must have  $s_{r+1} = s_{r+2} = \ldots = s_K = 0$ . (NC1) and (NC3) are the same as above but for  $(\mathcal{NC2})$ :  $\mathbf{W}_{M}^{*}\mathbf{W}_{M}^{*\top} = \frac{\lambda_{W_{1}}}{\lambda_{W_{M}}} \begin{bmatrix} s_{1}^{2} & \dots & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ \mathbf{0} & \dots & s_{i-1}^{2} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \dots & \mathbf{0} & s_{i}^{2}\mathcal{P}_{r-i+1}(\mathbf{I}_{j-i+1}) & \mathbf{0} \\ \mathbf{0} & \dots & \mathbf{0} & \mathbf{0} & \mathbf{0}_{(K-j)\times(K-j)} \end{bmatrix},$ (97) $\mathbf{\overline{H}}^{*\top}\mathbf{\overline{H}}^{*} = \begin{bmatrix} \frac{cs_{1}^{2M}}{(cs_{1}^{2M}+N\lambda_{H_{1}})^{2}} & \dots & \mathbf{0} & \mathbf{0} \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ \mathbf{0} & \dots & \frac{cs_{i-1}^{2M}}{(cs_{i-1}^{2M}+N\lambda_{H_{1}})^{2}} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \dots & \mathbf{0} & \frac{cs_{i}^{2M}}{(cs_{i}^{2M}+N\lambda_{H_{1}})^{2}} \mathcal{P}_{r-i+1}(\mathbf{I}_{j-i+1}) & \mathbf{0} \\ \mathbf{0} & \dots & \mathbf{0} & \mathbf{0}_{(K-j)\times(K-j)} \end{bmatrix},$ (98)  $\mathbf{W}_{M}^{*}\mathbf{W}_{M-1}^{*}\dots\mathbf{W}_{2}^{*}\mathbf{W}_{1}^{*}\overline{\mathbf{H}}^{*} = \begin{bmatrix} \frac{cs_{1}^{2M}}{cs_{1}^{2M}+N\lambda_{H_{1}}} & \cdots & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ \mathbf{0} & \cdots & \frac{cs_{i-1}^{2M}}{cs_{i-1}^{2M}+N\lambda_{H_{1}}} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \cdots & \mathbf{0} & \frac{cs_{i}^{2M}}{cs_{i}^{2M}+N\lambda_{H_{1}}} \mathcal{P}_{r-i+1}(\mathbf{I}_{j-i+1}) & \mathbf{0} \\ \mathbf{0} & \cdots & \mathbf{0} & \mathbf{0} & \mathbf{0}_{(K-j)\times(K-j)} \end{bmatrix},$ (99)and, for any h > j,  $(\mathbf{W}_{M}^{*}\mathbf{W}_{M-1}^{*}...\mathbf{W}_{2}^{*}\mathbf{W}_{1}^{*})_{h} = \mathbf{h}_{h}^{*} = \mathbf{0}$ . **Theorem F.2.** Let  $R = \min(d_M, \ldots, d_1, K) < K$  and  $(\mathbf{W}_M^*, \mathbf{W}_{M-1}^*, \ldots, \mathbf{W}_2^*, \mathbf{W}_1^*, \mathbf{H}_1^*)$  be any global minimizer of problem (6). We have:  $(\mathcal{NC1}) \quad \mathbf{H}_{1}^{*} = \overline{\mathbf{H}}^{*} \mathbf{Y} \Leftrightarrow \mathbf{h}_{k,i}^{*} = \mathbf{h}_{k}^{*} \forall k \in [K], i \in [n_{k}], where \ \overline{\mathbf{H}}^{*} = [\mathbf{h}_{1}^{*}, \dots, \mathbf{h}_{K}^{*}] \in \mathbb{R}^{d_{1} \times K}.$  $(\mathcal{NC3})$  We have,  $\forall k \in [K]$ :  $(\mathbf{W}_{M}^{*}\mathbf{W}_{M-1}^{*}\ldots\mathbf{W}_{2}^{*}\mathbf{W}_{1}^{*})_{k} = (cs_{k}^{2M} + N\lambda_{H_{1}})\mathbf{h}_{k}^{*},$ 

 $\begin{array}{l} 2746\\ 2747\\ (\mathcal{NC2}) \quad Let \ c := \frac{\lambda_{W_1}^{M-1}}{\lambda_{W_M}\lambda_{W_{M-1}}\dots\lambda_{W_2}}, \ a := N \sqrt[M]{N\lambda_{W_M}\lambda_{W_{M-1}}\dots\lambda_{W_1}\lambda_{H_1}} \ and \ \forall k \in [K], \ x_k^* \ is \ the \ largest \ positive \ solution \ of \ the \ equation \ \frac{a}{n_k} - \frac{x^{M-1}}{(x^{M+1})^2} = 0, \ we \ define \ \{s_k\}_{k=1}^K \ as \ follows: \end{array}$ 

• If 
$$\frac{a}{n_1} \leq \frac{a}{n_2} \leq \ldots \leq \frac{a}{n_R} < \frac{(M-1)^{\frac{M-1}{M}}}{M^2}$$
, we have:

 $s_k = \begin{cases} \sqrt[2M]{\frac{N\lambda_{H_1} x_k^{*M}}{c}} & \forall \, k \leq R \\ 0 & \forall \, k > R \end{cases}.$ 

Then, if  $n_R > n_{R+1}$ , we have:

$$\mathbf{W}_{M}^{*}\mathbf{W}_{M}^{*\top} = \frac{\lambda_{W_{1}}}{\lambda_{W_{M}}} \operatorname{diag} \left\{ s_{k}^{2} \right\}_{k=1}^{K},$$
$$\overline{\mathbf{H}}^{*\top}\overline{\mathbf{H}}^{*} = \operatorname{diag} \left\{ \frac{cs_{k}^{2M}}{(cs_{k}^{2M} + N\lambda_{H_{1}})^{2}} \right\}_{k=1}^{K},$$
$$\mathbf{W}_{M}^{*}\mathbf{W}_{M-1}^{*} \dots \mathbf{W}_{1}^{*}\overline{\mathbf{H}_{1}}^{*} = \left\{ \frac{cs_{k}^{2M}}{cs_{k}^{2M} + N\lambda_{H_{1}}} \right\}_{k=1}^{K}$$

and for any k > R, we have  $(\mathbf{W}_M^* \mathbf{W}_{M-1}^* \dots \mathbf{W}_2^* \mathbf{W}_1^*)_k = \mathbf{h}_k^* = \mathbf{0}$ .

*Otherwise, if*  $n_R = n_{R+1}$ *, and there exists*  $k \le R$ *,* l > R *such that*  $n_{k-1} > n_k = n_{k+1} = ... = n_R = ... = n_l > n_{l+1}$ *, we have:* 

$$\mathbf{W}_{M}^{*}\mathbf{W}_{M}^{*\top} = \frac{\lambda_{W_{1}}}{\lambda_{W_{M}}} \begin{bmatrix} s_{1}^{2} \dots 0 & 0 & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & s_{k-1}^{2} & 0 & 0 & 0 \\ 0 & \dots & 0 & s_{k}^{2}\mathcal{P}_{R-k+1}(\mathbf{I}_{l-k+1}) & 0 \\ 0 & \dots & 0 & 0 & 0_{(K-l)\times(K-l)} \end{bmatrix},$$
(100)  
$$\overline{\mathbf{H}}^{*\top}\overline{\mathbf{H}}^{*} = \begin{bmatrix} \frac{cs_{1}^{2M}}{(cs_{1}^{2M}+N\lambda_{H_{1}})^{2}} & \cdots & 0 & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & \frac{cs_{k-1}^{2M}}{(cs_{k-1}^{2M}+N\lambda_{H_{1}})^{2}} & 0 & 0 \\ 0 & \dots & 0 & \frac{cs_{k}^{2M}}{(cs_{k}^{2M}+N\lambda_{H_{1}})^{2}} \mathcal{P}_{R-k+1}(\mathbf{I}_{l-k+1}) & 0 \\ 0 & \dots & 0 & 0 & 0_{(K-l)\times(K-l)} \end{bmatrix} \\ \mathbf{W}_{M}^{*}\mathbf{W}_{M-1}^{*}\dots\mathbf{W}_{2}^{*}\mathbf{W}_{1}^{*}\overline{\mathbf{H}}^{*} = \begin{bmatrix} \frac{cs_{1}^{2M}}{cs_{1}^{2M}+N\lambda_{H_{1}}} & \cdots & 0 & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots & 0 \\ 0 & \dots & 0 & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots & \vdots & 0 \\ 0 & \dots & 0 & \frac{cs_{k}^{2M}}{cs_{k}^{2M}+N\lambda_{H_{1}}} \mathcal{P}_{R-k+1}(\mathbf{I}_{l-k+1}) & 0 \\ 0 & \dots & 0 & 0 \\ 0 & \dots & 0 & 0 \\ 0 & \dots & 0 & 0 \\ (102) \end{bmatrix},$$

and, for any h > l > R,  $(\mathbf{W}_{M}^{*}\mathbf{W}_{M-1}^{*}...\mathbf{W}_{2}^{*}\mathbf{W}_{1}^{*})_{h} = \mathbf{h}_{h}^{*} = \mathbf{0}.$ 

• If there exists a  $j \in [R-1]$  s.t.  $\frac{a}{n_1} \le \frac{a}{n_2} \le \ldots \le \frac{a}{n_j} < \frac{(M-1)^{\frac{M-1}{M}}}{M^2} < \frac{a}{n_{j+1}} \le \ldots \le \frac{a}{n_R}$ , we have:

$$s_k = \begin{cases} \sqrt[2M]{\frac{N\lambda_{H_1} x_k^{*M}}{c}} & \forall k \leq j \\ 0 & \forall k > j \end{cases}.$$

 $\mathbf{W}_{M}^{*}\mathbf{W}_{M}^{*\top} = \frac{\lambda_{W_{1}}}{\lambda_{W_{M}}} \operatorname{diag}\left\{s_{k}^{2}\right\}_{k=1}^{K},$ 

 $\overline{\mathbf{H}}^{*\top}\overline{\mathbf{H}}^{*} = \operatorname{diag}\left\{\frac{cs_{k}^{2M}}{(cs_{k}^{2M} + N\lambda_{H_{1}})^{2}}\right\}_{k=1}^{K},$ 

Then, we have:

and for any k > j, we have  $(\mathbf{W}_{M}^{*}\mathbf{W}_{M-1}^{*}...\mathbf{W}_{2}^{*}\mathbf{W}_{1}^{*})_{k} = \mathbf{h}_{k}^{*} = \mathbf{0}$ .

- If  $\frac{(M-1)^{\frac{M-1}{M}}}{M^2} < \frac{a}{n_1} \le \frac{a}{n_2} \le \ldots \le \frac{a}{n_R}$ , we have:
  - $(s_1, s_2, \ldots, s_K) = (0, 0, \ldots, 0),$

 $\mathbf{W}_{M}^{*}\mathbf{W}_{M-1}^{*}\ldots\mathbf{W}_{1}^{*}\overline{\mathbf{H}_{1}}^{*} = \left\{\frac{cs_{k}^{2M}}{cs_{k}^{2M}+N\lambda_{H}}\right\}_{k=1}^{K},$ 

and  $(\mathbf{W}_{M}^{*}, \dots, \mathbf{W}_{1}^{*}, \mathbf{H}_{1}^{*}) = (\mathbf{0}, \dots, \mathbf{0}, \mathbf{0})$  in this case.

The only case left is if there exists  $i, j \in [R]$  ( $i \le j \le R$ ) such that  $\frac{a}{n_1} \le \frac{a}{n_2} \le \ldots \le \frac{a}{n_{i-1}} < \frac{a}{n_i} = \frac{a}{n_{i+1}} = \ldots = \frac{a}{n_j} = \frac{a}{n_j}$  $\frac{(M-1)^{\frac{M-1}{M}}}{M^2} < \frac{a}{n_{j+1}} \leq \frac{a}{n_{j+2}} \leq \ldots \leq \frac{a}{n_R}$ , we have: 

$$s_{k} = \begin{cases} \sqrt[2M]{N\lambda_{H_{1}}x_{k}^{*M}/c} & \forall k \leq i-1\\ \sqrt[2M]{N\lambda_{H_{1}}x_{k}^{*M}/c} & \text{or } 0 & \forall i \leq k \leq j \\ 0 & \forall k \geq j+1 \end{cases}$$

furthermore, let r is the largest index that  $s_r > 0$ , we must have  $r \le R$  and  $s_{r+1} = s_{r+2} = \ldots = s_K = 0$ . (NC1) and  $(\mathcal{NC3})$  are the same as above but for  $(\mathcal{NC2})$ , we have: 

and, for any h > j,  $(\mathbf{W}_{M}^{*}\mathbf{W}_{M-1}^{*}...\mathbf{W}_{2}^{*}\mathbf{W}_{1}^{*})_{h} = \mathbf{h}_{h}^{*} = \mathbf{0}$ . 

*Proof of Theorem F.1 and F.2.* First, by using lemma D.2, we have for any critical point  $(\mathbf{W}_M, \mathbf{W}_{M-1}, \dots, \mathbf{W}_2, \mathbf{W}_1, \mathbf{H}_1)$ of f, we have the following:  $\lambda_{W_M} \mathbf{W}_M^\top \mathbf{W}_M = \lambda_{W_M-1} \mathbf{W}_{M-1} \mathbf{W}_{M-1}^\top,$  $\lambda_{W_{M-1}} \mathbf{W}_{M-1}^{\top} \mathbf{W}_{M-1} = \lambda_{W_{M-2}} \mathbf{W}_{M-2} \mathbf{W}_{M-2}^{\top},$  $\lambda_{W_2} \mathbf{W}_2^\top \mathbf{W}_2 = \lambda_{W_1} \mathbf{W}_1 \mathbf{W}_1^\top,$  $\lambda_{W_1} \mathbf{W}_1^\top \mathbf{W}_1 = \lambda_{H_1} \mathbf{H}_1 \mathbf{H}_1^\top.$ Let  $\mathbf{W}_1 = \mathbf{U}_{W_1} \mathbf{S}_{W_1} \mathbf{V}_{W_1}^{\top}$  be the SVD decomposition of  $\mathbf{W}_1$  with  $\mathbf{U}_{W_1} \in \mathbb{R}^{d_2 \times d_2}$ ,  $\mathbf{V}_{W_1} \in \mathbb{R}^{d_1 \times d_1}$  are orthonormal matrices and  $\mathbf{S}_{W_1} \in \mathbb{R}^{d_2 \times d_1}$  is a diagonal matrix with **decreasing** non-negative singular values. We denote the *r* singular values of  $\mathbf{W}_1$  as  $\{s_k\}_{k=1}^r$   $(r \leq R := \min(K, d_M, \dots, d_1))$ . From Lemma D.4, we have the SVD of other weight matrices as:  $\mathbf{W}_M = \mathbf{U}_{W,v} \mathbf{S}_{W,v} \mathbf{U}_{W,v}^{\top}$  $\mathbf{W}_{M-1} = \mathbf{U}_{W_{M-1}} \mathbf{S}_{W_{M-1}} \mathbf{U}_{W_{M-2}}^{\top},$  $\mathbf{W}_{M-2} = \mathbf{U}_{W_{M-2}} \mathbf{S}_{W_{M-2}} \mathbf{U}_{W_{M-3}}^{\top},$  $\mathbf{W}_{M-3} = \mathbf{U}_{W_{M-3}} \mathbf{S}_{W_{M-3}} \mathbf{U}_{W_{M-4}}^{\top},$  $\mathbf{W}_2 = \mathbf{U}_{W_2} \mathbf{S}_{W_2} \mathbf{U}_W^\top,$  $\mathbf{W}_1 = \mathbf{U}_{W_1} \mathbf{S}_{W_1} \mathbf{V}_{W_2}^{\top},$ with:  $\mathbf{S}_{W_j} = \sqrt{\frac{\lambda_{W_1}}{\lambda_{W_i}}} \begin{bmatrix} \operatorname{diag}(s_1, \dots, s_r) & \mathbf{0}_{r \times (d_j - r)} \\ \mathbf{0}_{(d_{i+1} - r) \times r} & \mathbf{0}_{(d_{i+1} - r) \times (d_i - r)} \end{bmatrix} \in \mathbb{R}^{d_{j+1} \times d_j} \quad \forall j \in [M],$ and  $\mathbf{U}_{W_M}, \mathbf{U}_{W_{M-1}}, \mathbf{U}_{W_{M-2}}, \mathbf{U}_{W_{M-3}}, \dots, \mathbf{U}_{W_1}, \mathbf{V}_{W_1}$  are all orthonormal matrices. From Lemma D.5, denote  $c := \frac{\lambda_{W_1}^{M-1}}{\lambda_{W_M} \lambda_{W_M-1} \dots \lambda_{W_2}}$ , we have:  $\mathbf{H}_{1} = \mathbf{V}_{W_{1}} \underbrace{ \begin{bmatrix} \operatorname{diag} \left( \frac{\sqrt{c} s_{1}^{M}}{c s_{1}^{2M} + N \lambda_{H_{1}}}, \dots, \frac{\sqrt{c} s_{r}^{M}}{c s_{r}^{2M} + N \lambda_{H_{1}}} \right) & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}}_{\mathbf{O} \subset \mathbb{W}^{L \times K}} \mathbf{U}_{W_{M}}^{\top} \mathbf{Y}$ (106) $= \mathbf{V}_{W_1} \mathbf{C} \mathbf{U}_{W_2}^\top \mathbf{Y}.$  $\mathbf{W}_{M}\mathbf{W}_{M-1}\dots\mathbf{W}_{2}\mathbf{W}_{1}\mathbf{H}-\mathbf{Y}=\mathbf{U}_{W_{M}}\underbrace{\begin{bmatrix}\operatorname{diag}\left(\frac{-N\lambda_{H_{1}}}{cs_{1}^{2M}+N\lambda_{H_{1}}},\dots,\frac{-N\lambda_{H_{1}}}{cs_{r}^{2M}+N\lambda_{H_{1}}}\right) & \mathbf{0}\\ \mathbf{0} & -\mathbf{I}_{K-r}\end{bmatrix}}_{\mathbf{V}_{W_{M}}^{\top}}\mathbf{Y}$ (107) $= \mathbf{U}_{W_M} \mathbf{D} \mathbf{U}_{W_M}^\top \mathbf{Y}.$ Next, we will calculate the Frobenius norm of  $\mathbf{W}_M \mathbf{W}_{M-1} \dots \mathbf{W}_2 \mathbf{W}_1 \mathbf{H}_1 - \mathbf{Y}$ :  $\|\mathbf{W}_{M}\mathbf{W}_{M-1}\dots\mathbf{W}_{2}\mathbf{W}_{1}\mathbf{H}_{1}-\mathbf{Y}\|_{F}^{2}=\|\mathbf{U}_{W_{M}}\mathbf{D}\mathbf{U}_{W_{M}}^{\top}\mathbf{Y}\|_{F}^{2}=\operatorname{trace}(\mathbf{U}_{W_{M}}\mathbf{D}\mathbf{U}_{W_{M}}^{\top}\mathbf{Y}(\mathbf{U}_{W_{M}}\mathbf{D}\mathbf{U}_{W_{M}}^{\top}\mathbf{Y})^{\top})$ = trace( $\mathbf{U}_{W_M}\mathbf{D}\mathbf{U}_{W_M}^{\top}\mathbf{Y}\mathbf{Y}^{\top}\mathbf{U}_{W_M}\mathbf{D}\mathbf{U}_{W_M}^{\top}$ )  $= \operatorname{trace}(\mathbf{D}^2 \mathbf{U}_{W_M}^\top \mathbf{Y} \mathbf{Y}^\top \mathbf{U}_{W_M}).$ 

| 2915                                                                                                                         | We denote $\mathbf{u}^k$ and $\mathbf{u}_k$ are the k-th row and column of $\mathbf{U}_{W_M}$ , respectively. Let $\mathbf{n} = (n_1, \ldots, n_K)$ , we have the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2916                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2917                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2918                                                                                                                         | $\mathbf{U}_{W_M} = \begin{bmatrix} \dots & \\ \dots & \\ \dots & \\ \dots & \end{bmatrix} = \begin{bmatrix} \mathbf{u}_1 & \dots & \mathbf{u}_K \\ \dots & \dots & \\ \dots & \dots & \\ \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2919                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2920                                                                                                                         | $\mathbf{Y}\mathbf{Y}^{	op} = 	ext{diag}(n_1, n_2, \dots, n_K) \in \mathbb{R}^{K 	imes K}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2921                                                                                                                         | $\begin{bmatrix}   &   &   \end{bmatrix}$ $\begin{bmatrix} -u^1 - \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2922                                                                                                                         | $\Rightarrow \mathbf{U}_{\mathbf{W}}^{\top} \mathbf{Y} \mathbf{Y}^{\top} \mathbf{U}_{\mathbf{W}} = \left[ (\mathbf{u}^{1})^{\top}  (\mathbf{u}^{K})^{\top} \right] \operatorname{diag}(n_{1}, n_{2}, \dots, n_{K}) \right]  (108)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2923                                                                                                                         | $ \begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ $    |
| 2924                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2925                                                                                                                         | $\begin{vmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & $ |
| 2926                                                                                                                         | $= \begin{bmatrix} (\mathbf{u}^{\mathbf{r}})^{+} & \dots & (\mathbf{u}^{\mathbf{r}})^{+} \end{bmatrix} \begin{bmatrix} \dots & \dots$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2927                                                                                                                         | $\begin{bmatrix} & & & \\ & & & \end{bmatrix} \begin{bmatrix} -n_k \mathbf{u}^{-1} - \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2928                                                                                                                         | $\Rightarrow (\mathbf{U}_{W_M}^{\top} \mathbf{Y} \mathbf{Y}^{\top} \mathbf{U}_{W_M})_{kk} = n_1 u_{1k}^2 + n_2 u_{2k}^2 + \ldots + n_k u_{Kk}^2 = (\mathbf{u}_k \odot \mathbf{u}_k)^{\top} \mathbf{n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2929                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2930                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2931                                                                                                                         | $\Rightarrow \ \mathbf{W}_{M}\mathbf{W}_{M-1}\dots\mathbf{W}_{2}\mathbf{W}_{1}\mathbf{H}_{1}-\mathbf{Y}\ _{F}^{2} = \operatorname{trace}(\mathbf{D}^{2}\mathbf{U}_{W}^{\top}\mathbf{Y}\mathbf{Y}^{\top}\mathbf{U}_{W})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2932                                                                                                                         | r ( $r$ ) $K$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2933                                                                                                                         | $= \sum_{n=1}^{\infty} (\mathbf{u}_{1} \odot \mathbf{u}_{2})^{T} \mathbf{n} \frac{(-N\lambda_{H_{1}})^{2}}{(-N\lambda_{H_{1}})^{2}} + \sum_{n=1}^{\infty} (\mathbf{u}_{1} \odot \mathbf{u}_{2})^{T} \mathbf{n} $ (109)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2934                                                                                                                         | $=\sum_{k=1}^{\infty} (\mathbf{u}_k \odot \mathbf{u}_k)^{-1} (cs_k^{2M} + N\lambda_{H_1})^2 + \sum_{h=r+1}^{\infty} (\mathbf{u}_h \odot \mathbf{u}_h)^{-1} \mathbf{n},  (10))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2935                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2936                                                                                                                         | where the last equality is from the fact that $\mathbf{D}^2$ is a diagonal matrix, so the diagonal of $\mathbf{D}^2 \mathbf{U}_{W_M}^{\top} \mathbf{Y} \mathbf{Y}^{\top} \mathbf{U}_{W_M}$ is the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2937                                                                                                                         | element-wise product between the diagonal of $\mathbf{D}^2$ and $\mathbf{U}_{W_M}^{\top} \mathbf{Y} \mathbf{Y}^{\top} \mathbf{U}_{W_M}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2938                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2939                                                                                                                         | Similarly, we calculate the Frobenius norm of $\mathbf{H}_{i}$ from equation (106), we have:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2940                                                                                                                         | Similarly, we calculate the Probenius norm of 11, from equation (100), we have.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2941                                                                                                                         | $\ \mathbf{H}_1\ _F^2 = \operatorname{trace}(\mathbf{V}_{W_1}\mathbf{C}\mathbf{U}_{W_M}^{	op}\mathbf{Y}\mathbf{Y}^{	op}\mathbf{U}_{W_M}\mathbf{C}^{	op}\mathbf{V}_{W_1}^{	op}) = \operatorname{trace}(\mathbf{C}^{	op}\mathbf{C}\mathbf{U}_{W_M}^{	op}\mathbf{Y}\mathbf{Y}^{	op}\mathbf{U}_{W_M})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2942                                                                                                                         | $r$ $c^2M$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2945                                                                                                                         | $= \sum (\mathbf{u}_k \odot \mathbf{u}_k)^{T} \mathbf{n} \frac{cs_k}{c^{2M} + M(\mathbf{u}_k)^{2}}.$ (110)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2944                                                                                                                         | $\sum_{k=1}^{\infty} (cs_k^{2M} + N\lambda_{H_1})^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2945                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2947                                                                                                                         | Now, we plug the equations (109), (110) and the SVD of weight matrices into the function $f$ and note that orthonormal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2948                                                                                                                         | matrix does not change Frobenius norm, we got:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 2949                                                                                                                         | 1 $\lambda_{W}$ $\lambda_{W}$ $\lambda_{W}$ $\lambda_{W}$ $\lambda_{W}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2950                                                                                                                         | $f = \frac{1}{2N} \ \mathbf{W}_M \mathbf{W}_{M-1} \dots \mathbf{W}_1 \mathbf{H}_1 - \mathbf{Y}\ _F^2 + \frac{\gamma w_M}{2} \ \mathbf{W}_M\ _F^2 + \dots + \frac{\gamma w_1}{2} \ \mathbf{W}_1\ _F^2 + \frac{\gamma H_1}{2} \ \mathbf{H}_1\ _F^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2951                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2952                                                                                                                         | $=\frac{1}{1-1}\sum_{k}(\mathbf{u}_{k}\odot\mathbf{u}_{k})^{T}\mathbf{n}\frac{(-N\lambda_{H_{1}})^{2}}{(-N\lambda_{H_{1}})^{2}}+\frac{1}{1-1}\sum_{k}(\mathbf{u}_{k}\odot\mathbf{u}_{k})^{T}\mathbf{n}+\frac{\lambda_{W_{M}}}{(-N\lambda_{H_{1}})^{2}}s_{k}^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2953                                                                                                                         | $2N\sum_{k=1}^{2(-\kappa-1)}(cs_k^{2M}+N\lambda_{H_1})^2 + 2N\sum_{k=r+1}^{2(-\kappa-1)}(cs_k^{2M}+N\lambda_{H_1})^2 + 2\sum_{k=1}^{2(-\kappa-1)}\lambda_{W_M}^{-\kappa}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0054                                                                                                                         | n=1 $n=1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2954                                                                                                                         | $\frac{r}{r} \rightarrow \frac{r}{r} \rightarrow \frac{r}{r} \rightarrow \frac{r}{r} \rightarrow \frac{r}{r} \qquad ce^{2M}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2954<br>2955                                                                                                                 | $+ \frac{\lambda_{W_{M-1}}}{2} \sum_{r=1}^{r} \frac{\lambda_{W_1}}{\lambda_{W_1}} s_k^2 + \ldots + \frac{\lambda_{W_1}}{2} \sum_{r=1}^{r} s_k^2 + \frac{\lambda_{H_1}}{2} \sum_{r=1}^{r} (\mathbf{u}_k \odot \mathbf{u}_k)^\top \mathbf{n} \frac{c s_k^{2M}}{(-2M+M)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2954<br>2955<br>2956                                                                                                         | $+ \frac{\lambda_{W_{M-1}}}{2} \sum_{k=1}^{r} \frac{\lambda_{W_{1}}}{\lambda_{W_{M-1}}} s_{k}^{2} + \ldots + \frac{\lambda_{W_{1}}}{2} \sum_{k=1}^{r} s_{k}^{2} + \frac{\lambda_{H_{1}}}{2} \sum_{k=1}^{r} (\mathbf{u}_{k} \odot \mathbf{u}_{k})^{\top} \mathbf{n} \frac{cs_{k}^{2M}}{(cs_{k}^{2M} + N\lambda_{H_{1}})^{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2954<br>2955<br>2956<br>2957                                                                                                 | $+\frac{\lambda_{W_{M-1}}}{2}\sum_{k=1}^{r}\frac{\lambda_{W_{1}}}{\lambda_{W_{M-1}}}s_{k}^{2}+\ldots+\frac{\lambda_{W_{1}}}{2}\sum_{k=1}^{r}s_{k}^{2}+\frac{\lambda_{H_{1}}}{2}\sum_{k=1}^{r}(\mathbf{u}_{k}\odot\mathbf{u}_{k})^{\top}\mathbf{n}\frac{cs_{k}^{2M}}{(cs_{k}^{2M}+N\lambda_{H_{1}})^{2}}$ $\lambda_{H_{1}}\sum_{k=1}^{r}(\mathbf{u}_{k}\odot\mathbf{u}_{k})^{\top}\mathbf{n}=1-\sum_{k=1}^{K}\sum_{k=1}^{r}(\mathbf{u}_{k}\odot\mathbf{u}_{k})^{\top}\mathbf{n}=1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2954<br>2955<br>2956<br>2957<br>2958                                                                                         | $+ \frac{\lambda_{W_{M-1}}}{2} \sum_{k=1}^{r} \frac{\lambda_{W_1}}{\lambda_{W_{M-1}}} s_k^2 + \ldots + \frac{\lambda_{W_1}}{2} \sum_{k=1}^{r} s_k^2 + \frac{\lambda_{H_1}}{2} \sum_{k=1}^{r} (\mathbf{u}_k \odot \mathbf{u}_k)^\top \mathbf{n} \frac{c s_k^{2M}}{(c s_k^{2M} + N \lambda_{H_1})^2}$ $= \frac{\lambda_{H_1}}{2} \sum_{k=1}^{r} \frac{(\mathbf{u}_k \odot \mathbf{u}_k)^\top \mathbf{n}}{(c s_k^{2M} + N \lambda_{H_1})^2} + \frac{1}{2N} \sum_{k=1}^{K} (\mathbf{u}_h \odot \mathbf{u}_h)^\top \mathbf{n} + \frac{M \lambda_{W_1}}{2} \sum_{k=1}^{r} s_k^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2954<br>2955<br>2956<br>2957<br>2958<br>2959                                                                                 | $ + \frac{\lambda_{W_{M-1}}}{2} \sum_{k=1}^{r} \frac{\lambda_{W_{1}}}{\lambda_{W_{M-1}}} s_{k}^{2} + \dots + \frac{\lambda_{W_{1}}}{2} \sum_{k=1}^{r} s_{k}^{2} + \frac{\lambda_{H_{1}}}{2} \sum_{k=1}^{r} (\mathbf{u}_{k} \odot \mathbf{u}_{k})^{\top} \mathbf{n} \frac{cs_{k}^{2M}}{(cs_{k}^{2M} + N\lambda_{H_{1}})^{2}} $ $ = \frac{\lambda_{H_{1}}}{2} \sum_{k=1}^{r} \frac{(\mathbf{u}_{k} \odot \mathbf{u}_{k})^{\top} \mathbf{n}}{(cs_{k}^{2M} + N\lambda_{H_{1}})^{+}} + \frac{1}{2N} \sum_{h=r+1}^{K} (\mathbf{u}_{h} \odot \mathbf{u}_{h})^{\top} \mathbf{n} + \frac{M\lambda_{W_{1}}}{2} \sum_{k=1}^{r} s_{k}^{2} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2954<br>2955<br>2956<br>2957<br>2958<br>2959<br>2960                                                                         | $+ \frac{\lambda_{W_{M-1}}}{2} \sum_{k=1}^{r} \frac{\lambda_{W_1}}{\lambda_{W_{M-1}}} s_k^2 + \dots + \frac{\lambda_{W_1}}{2} \sum_{k=1}^{r} s_k^2 + \frac{\lambda_{H_1}}{2} \sum_{k=1}^{r} (\mathbf{u}_k \odot \mathbf{u}_k)^\top \mathbf{n} \frac{cs_k^{2M}}{(cs_k^{2M} + N\lambda_{H_1})^2}$ $= \frac{\lambda_{H_1}}{2} \sum_{k=1}^{r} \frac{(\mathbf{u}_k \odot \mathbf{u}_k)^\top \mathbf{n}}{(cs_k^{2M} + N\lambda_{H_1})} + \frac{1}{2N} \sum_{h=r+1}^{K} (\mathbf{u}_h \odot \mathbf{u}_h)^\top \mathbf{n} + \frac{M\lambda_{W_1}}{2} \sum_{k=1}^{r} s_k^2$ $= \frac{1}{2} \frac{cs_k^{2M}}{(cs_k^{2M} + N\lambda_{H_1})} + \frac{1}{2N} \sum_{h=r+1}^{K} (\mathbf{u}_h \odot \mathbf{u}_h)^\top \mathbf{n} + \frac{M\lambda_{W_1}}{2} \sum_{k=1}^{r} s_k^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2954<br>2955<br>2956<br>2957<br>2958<br>2959<br>2960<br>2961                                                                 | $ + \frac{\lambda_{W_{M-1}}}{2} \sum_{k=1}^{r} \frac{\lambda_{W_1}}{\lambda_{W_{M-1}}} s_k^2 + \dots + \frac{\lambda_{W_1}}{2} \sum_{k=1}^{r} s_k^2 + \frac{\lambda_{H_1}}{2} \sum_{k=1}^{r} (\mathbf{u}_k \odot \mathbf{u}_k)^\top \mathbf{n} \frac{cs_k^{2M}}{(cs_k^{2M} + N\lambda_{H_1})^2} $ $ = \frac{\lambda_{H_1}}{2} \sum_{k=1}^{r} \frac{(\mathbf{u}_k \odot \mathbf{u}_k)^\top \mathbf{n}}{(cs_k^{2M} + N\lambda_{H_1})} + \frac{1}{2N} \sum_{h=r+1}^{K} (\mathbf{u}_h \odot \mathbf{u}_h)^\top \mathbf{n} + \frac{M\lambda_{W_1}}{2} \sum_{k=1}^{r} s_k^2 $ $ = \frac{1}{2N} \sum_{k=1}^{r} \left( \frac{(\mathbf{u}_k \odot \mathbf{u}_k)^\top \mathbf{n}}{cs_k^{2M}} + MN\lambda_{W_1} \sqrt[M]{\frac{N\lambda_{H_1}}{2}} \left( \sqrt[M]{\frac{cs_k^{2M}}{N\lambda_{W_1}}} \right) \right) + \frac{1}{2N} \sum_{k=1}^{K} (\mathbf{u}_h \odot \mathbf{u}_h)^\top \mathbf{n} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2954<br>2955<br>2956<br>2957<br>2958<br>2959<br>2960<br>2961<br>2962                                                         | $ + \frac{\lambda_{W_{M-1}}}{2} \sum_{k=1}^{r} \frac{\lambda_{W_1}}{\lambda_{W_{M-1}}} s_k^2 + \dots + \frac{\lambda_{W_1}}{2} \sum_{k=1}^{r} s_k^2 + \frac{\lambda_{H_1}}{2} \sum_{k=1}^{r} (\mathbf{u}_k \odot \mathbf{u}_k)^\top \mathbf{n} \frac{cs_k^{2M}}{(cs_k^{2M} + N\lambda_{H_1})^2} $ $ = \frac{\lambda_{H_1}}{2} \sum_{k=1}^{r} \frac{(\mathbf{u}_k \odot \mathbf{u}_k)^\top \mathbf{n}}{(cs_k^{2M} + N\lambda_{H_1})} + \frac{1}{2N} \sum_{h=r+1}^{K} (\mathbf{u}_h \odot \mathbf{u}_h)^\top \mathbf{n} + \frac{M\lambda_{W_1}}{2} \sum_{k=1}^{r} s_k^2 $ $ = \frac{1}{2N} \sum_{k=1}^{r} \left( \frac{(\mathbf{u}_k \odot \mathbf{u}_k)^\top \mathbf{n}}{\frac{cs_k^{2M}}{N\lambda_{H_1}} + 1} + MN\lambda_{W_1} \sqrt[M]{\frac{N\lambda_{H_1}}{c}} \left( \sqrt[M]{\frac{cs_k^{2M}}{N\lambda_{H_1}}} \right) \right) + \frac{1}{2N} \sum_{h=r+1}^{K} (\mathbf{u}_h \odot \mathbf{u}_h)^\top \mathbf{n} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2954<br>2955<br>2956<br>2957<br>2958<br>2959<br>2960<br>2961<br>2962<br>2963                                                 | $ + \frac{\lambda_{W_{M-1}}}{2} \sum_{k=1}^{r} \frac{\lambda_{W_1}}{\lambda_{W_{M-1}}} s_k^2 + \dots + \frac{\lambda_{W_1}}{2} \sum_{k=1}^{r} s_k^2 + \frac{\lambda_{H_1}}{2} \sum_{k=1}^{r} (\mathbf{u}_k \odot \mathbf{u}_k)^\top \mathbf{n} \frac{cs_k^{2M}}{(cs_k^{2M} + N\lambda_{H_1})^2} $ $ = \frac{\lambda_{H_1}}{2} \sum_{k=1}^{r} \frac{(\mathbf{u}_k \odot \mathbf{u}_k)^\top \mathbf{n}}{(cs_k^{2M} + N\lambda_{H_1})} + \frac{1}{2N} \sum_{h=r+1}^{K} (\mathbf{u}_h \odot \mathbf{u}_h)^\top \mathbf{n} + \frac{M\lambda_{W_1}}{2} \sum_{k=1}^{r} s_k^2 $ $ = \frac{1}{2N} \sum_{k=1}^{r} \left( \frac{(\mathbf{u}_k \odot \mathbf{u}_k)^\top \mathbf{n}}{\frac{cs_k^{2M}}{N\lambda_{H_1}} + 1} + MN\lambda_{W_1} \sqrt[M]{\frac{N\lambda_{H_1}}{c}} \left( \sqrt[M]{\frac{cs_k^{2M}}{N\lambda_{H_1}}} \right) \right) + \frac{1}{2N} \sum_{h=r+1}^{K} (\mathbf{u}_h \odot \mathbf{u}_h)^\top \mathbf{n} $ $ = \frac{1}{2N} \sum_{k=1}^{r} \left( (\mathbf{u}_k \odot \mathbf{u}_k)^\top \mathbf{n} + MN\lambda_{W_1} \sqrt[M]{\frac{N\lambda_{H_1}}{c}} \left( \sqrt[M]{\frac{cs_k^{2M}}{N\lambda_{H_1}}} \right) \right) + \frac{1}{2N} \sum_{h=r+1}^{K} (\mathbf{u}_h \odot \mathbf{u}_h)^\top \mathbf{n} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2954<br>2955<br>2956<br>2957<br>2958<br>2959<br>2960<br>2961<br>2962<br>2963<br>2964                                         | $ + \frac{\lambda_{W_{M-1}}}{2} \sum_{k=1}^{r} \frac{\lambda_{W_{1}}}{\lambda_{W_{M-1}}} s_{k}^{2} + \dots + \frac{\lambda_{W_{1}}}{2} \sum_{k=1}^{r} s_{k}^{2} + \frac{\lambda_{H_{1}}}{2} \sum_{k=1}^{r} (\mathbf{u}_{k} \odot \mathbf{u}_{k})^{\top} \mathbf{n} \frac{cs_{k}^{2M}}{(cs_{k}^{2M} + N\lambda_{H_{1}})^{2}} $ $ = \frac{\lambda_{H_{1}}}{2} \sum_{k=1}^{r} \frac{(\mathbf{u}_{k} \odot \mathbf{u}_{k})^{\top} \mathbf{n}}{(cs_{k}^{2M} + N\lambda_{H_{1}})} + \frac{1}{2N} \sum_{h=r+1}^{K} (\mathbf{u}_{h} \odot \mathbf{u}_{h})^{\top} \mathbf{n} + \frac{M\lambda_{W_{1}}}{2} \sum_{k=1}^{r} s_{k}^{2} $ $ = \frac{1}{2N} \sum_{k=1}^{r} \left( \frac{(\mathbf{u}_{k} \odot \mathbf{u}_{k})^{\top} \mathbf{n}}{\frac{cs_{k}^{2M}}{N\lambda_{H_{1}}} + 1} + MN\lambda_{W_{1}} \sqrt[M]{\frac{N\lambda_{H_{1}}}{c}} \left( \sqrt[M]{\frac{cs_{k}^{2M}}{N\lambda_{H_{1}}}} \right) \right) + \frac{1}{2N} \sum_{h=r+1}^{K} (\mathbf{u}_{h} \odot \mathbf{u}_{h})^{\top} \mathbf{n} $ $ = \frac{1}{2M} \sum_{k=1}^{r} \left( \frac{(\mathbf{u}_{k} \odot \mathbf{u}_{k})^{\top} \mathbf{n}}{\frac{cs_{k}^{2M}}{N\lambda_{H_{1}}} + 1} + bs_{k} \right) + \frac{1}{2N} \sum_{k=1}^{K} (\mathbf{u}_{h} \odot \mathbf{u}_{h})^{\top} \mathbf{n} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2954<br>2955<br>2956<br>2957<br>2958<br>2959<br>2960<br>2961<br>2962<br>2963<br>2964<br>2965                                 | $ + \frac{\lambda_{W_{M-1}}}{2} \sum_{k=1}^{r} \frac{\lambda_{W_{1}}}{\lambda_{W_{M-1}}} s_{k}^{2} + \dots + \frac{\lambda_{W_{1}}}{2} \sum_{k=1}^{r} s_{k}^{2} + \frac{\lambda_{H_{1}}}{2} \sum_{k=1}^{r} (\mathbf{u}_{k} \odot \mathbf{u}_{k})^{\top} \mathbf{n} \frac{cs_{k}^{2M}}{(cs_{k}^{2M} + N\lambda_{H_{1}})^{2}} $ $ = \frac{\lambda_{H_{1}}}{2} \sum_{k=1}^{r} \frac{(\mathbf{u}_{k} \odot \mathbf{u}_{k})^{\top} \mathbf{n}}{cs_{k}^{2M} + N\lambda_{H_{1}}} + \frac{1}{2N} \sum_{h=r+1}^{K} (\mathbf{u}_{h} \odot \mathbf{u}_{h})^{\top} \mathbf{n} + \frac{M\lambda_{W_{1}}}{2} \sum_{k=1}^{r} s_{k}^{2} $ $ = \frac{1}{2N} \sum_{k=1}^{r} \left( \frac{(\mathbf{u}_{k} \odot \mathbf{u}_{k})^{\top} \mathbf{n}}{\frac{cs_{k}^{2M}}{N\lambda_{H_{1}}} + 1} + MN\lambda_{W_{1}} \sqrt[M]{\frac{N\lambda_{H_{1}}}{c}} \left( \sqrt[M]{\frac{N\lambda_{H_{1}}}{N\lambda_{H_{1}}}} \right) \right) + \frac{1}{2N} \sum_{h=r+1}^{K} (\mathbf{u}_{h} \odot \mathbf{u}_{h})^{\top} \mathbf{n} $ $ = \frac{1}{2N} \sum_{k=1}^{r} \left( \frac{(\mathbf{u}_{k} \odot \mathbf{u}_{k})^{\top} \mathbf{n}}{x_{k}^{M} + 1} + bx_{k} \right) + \frac{1}{2N} \sum_{h=r+1}^{K} (\mathbf{u}_{h} \odot \mathbf{u}_{h})^{\top} \mathbf{n} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2954<br>2955<br>2956<br>2957<br>2958<br>2959<br>2960<br>2961<br>2962<br>2963<br>2964<br>2965<br>2965                         | $ + \frac{\lambda_{W_{M-1}}}{2} \sum_{k=1}^{r} \frac{\lambda_{W_{1}}}{\lambda_{W_{M-1}}} s_{k}^{2} + \dots + \frac{\lambda_{W_{1}}}{2} \sum_{k=1}^{r} s_{k}^{2} + \frac{\lambda_{H_{1}}}{2} \sum_{k=1}^{r} (\mathbf{u}_{k} \odot \mathbf{u}_{k})^{\top} \mathbf{n} \frac{cs_{k}^{2M}}{(cs_{k}^{2M} + N\lambda_{H_{1}})^{2}} $ $ = \frac{\lambda_{H_{1}}}{2} \sum_{k=1}^{r} \frac{(\mathbf{u}_{k} \odot \mathbf{u}_{k})^{\top} \mathbf{n}}{cs_{k}^{2M} + N\lambda_{H_{1}}} + \frac{1}{2N} \sum_{h=r+1}^{K} (\mathbf{u}_{h} \odot \mathbf{u}_{h})^{\top} \mathbf{n} + \frac{M\lambda_{W_{1}}}{2} \sum_{k=1}^{r} s_{k}^{2} $ $ = \frac{1}{2N} \sum_{k=1}^{r} \left( \frac{(\mathbf{u}_{k} \odot \mathbf{u}_{k})^{\top} \mathbf{n}}{cs_{k}^{2M} + 1} + MN\lambda_{W_{1}} \sqrt[M]{\frac{N\lambda_{H_{1}}}{c}} \left( \sqrt[M]{\frac{N\lambda_{H_{1}}}{N\lambda_{H_{1}}}} \right) \right) + \frac{1}{2N} \sum_{h=r+1}^{K} (\mathbf{u}_{h} \odot \mathbf{u}_{h})^{\top} \mathbf{n} $ $ = \frac{1}{2N} \sum_{k=1}^{r} \left( \frac{(\mathbf{u}_{k} \odot \mathbf{u}_{k})^{\top} \mathbf{n}}{x_{k}^{M} + 1} + bx_{k} \right) + \frac{1}{2N} \sum_{h=r+1}^{K} (\mathbf{u}_{h} \odot \mathbf{u}_{h})^{\top} \mathbf{n} $ $ = \frac{1}{2N} \sum_{k=1}^{r} \left( -a_{k} - a_{k} - b_{k} - b_{k} \right) = 1 - \frac{K}{2N} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2954<br>2955<br>2956<br>2957<br>2958<br>2959<br>2960<br>2961<br>2962<br>2963<br>2964<br>2965<br>2966<br>2966                 | $ + \frac{\lambda_{W_{M-1}}}{2} \sum_{k=1}^{r} \frac{\lambda_{W_{1}}}{\lambda_{W_{M-1}}} s_{k}^{2} + \dots + \frac{\lambda_{W_{1}}}{2} \sum_{k=1}^{r} s_{k}^{2} + \frac{\lambda_{H_{1}}}{2} \sum_{k=1}^{r} (\mathbf{u}_{k} \odot \mathbf{u}_{k})^{\top} \mathbf{n} \frac{cs_{k}^{2M}}{(cs_{k}^{2M} + N\lambda_{H_{1}})^{2}} $ $ = \frac{\lambda_{H_{1}}}{2} \sum_{k=1}^{r} \frac{(\mathbf{u}_{k} \odot \mathbf{u}_{k})^{\top} \mathbf{n}}{cs_{k}^{2M} + N\lambda_{H_{1}}} + \frac{1}{2N} \sum_{h=r+1}^{K} (\mathbf{u}_{h} \odot \mathbf{u}_{h})^{\top} \mathbf{n} + \frac{M\lambda_{W_{1}}}{2} \sum_{k=1}^{r} s_{k}^{2} $ $ = \frac{1}{2N} \sum_{k=1}^{r} \left( \frac{(\mathbf{u}_{k} \odot \mathbf{u}_{k})^{\top} \mathbf{n}}{cs_{k}^{2M} + N\lambda_{H_{1}}} + MN\lambda_{W_{1}} \sqrt[M]{\frac{N\lambda_{H_{1}}}{c}} \left( \sqrt[M]{\frac{cs_{k}^{2M}}{N\lambda_{H_{1}}}} \right) \right) + \frac{1}{2N} \sum_{h=r+1}^{K} (\mathbf{u}_{h} \odot \mathbf{u}_{h})^{\top} \mathbf{n} $ $ = \frac{1}{2N} \sum_{k=1}^{r} \left( \frac{(\mathbf{u}_{k} \odot \mathbf{u}_{k})^{\top} \mathbf{n}}{x_{k}^{M} + 1} + bx_{k} \right) + \frac{1}{2N} \sum_{h=r+1}^{K} (\mathbf{u}_{h} \odot \mathbf{u}_{h})^{\top} \mathbf{n} $ $ = \frac{1}{2N} \sum_{k=1}^{r} \left( \frac{a_{k}}{m} + 1 + bx_{k} \right) + \frac{1}{2N} \sum_{h=r+1}^{K} a_{h}, $ $ (111)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2954<br>2955<br>2956<br>2957<br>2958<br>2959<br>2960<br>2961<br>2962<br>2963<br>2964<br>2965<br>2966<br>2966<br>2967<br>2968 | $ + \frac{\lambda_{W_{M-1}}}{2} \sum_{k=1}^{r} \frac{\lambda_{W_{1}}}{\lambda_{W_{M-1}}} s_{k}^{2} + \dots + \frac{\lambda_{W_{1}}}{2} \sum_{k=1}^{r} s_{k}^{2} + \frac{\lambda_{H_{1}}}{2} \sum_{k=1}^{r} (\mathbf{u}_{k} \odot \mathbf{u}_{k})^{\top} \mathbf{n} \frac{cs_{k}^{2M}}{(cs_{k}^{2M} + N\lambda_{H_{1}})^{2}} $ $ = \frac{\lambda_{H_{1}}}{2} \sum_{k=1}^{r} \frac{(\mathbf{u}_{k} \odot \mathbf{u}_{k})^{\top} \mathbf{n}}{cs_{k}^{2M} + N\lambda_{H_{1}}} + \frac{1}{2N} \sum_{h=r+1}^{K} (\mathbf{u}_{h} \odot \mathbf{u}_{h})^{\top} \mathbf{n} + \frac{M\lambda_{W_{1}}}{2} \sum_{k=1}^{r} s_{k}^{2} $ $ = \frac{1}{2N} \sum_{k=1}^{r} \left( \frac{(\mathbf{u}_{k} \odot \mathbf{u}_{k})^{\top} \mathbf{n}}{\frac{cs_{k}^{2M}}{N\lambda_{H_{1}}} + 1} + MN\lambda_{W_{1}} \sqrt[M]{\frac{N\lambda_{H_{1}}}{c}} \left( \sqrt[M]{\frac{cs_{k}^{2M}}{N\lambda_{H_{1}}}} \right) \right) + \frac{1}{2N} \sum_{h=r+1}^{K} (\mathbf{u}_{h} \odot \mathbf{u}_{h})^{\top} \mathbf{n} $ $ = \frac{1}{2N} \sum_{k=1}^{r} \left( \frac{(\mathbf{u}_{k} \odot \mathbf{u}_{k})^{\top} \mathbf{n}}{x_{k}^{M} + 1} + bx_{k} \right) + \frac{1}{2N} \sum_{h=r+1}^{K} (\mathbf{u}_{h} \odot \mathbf{u}_{h})^{\top} \mathbf{n} $ $ = \frac{1}{2N} \sum_{k=1}^{r} \left( \frac{a_{k}}{x_{k}^{M} + 1} + bx_{k} \right) + \frac{1}{2N} \sum_{h=r+1}^{K} (\mathbf{u}_{h} \odot \mathbf{u}_{h})^{\top} \mathbf{n} $ $ (111)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

with  $x_k := \sqrt[M]{\frac{cs_k^{2M}}{N\lambda_{H_1}}}, a_k := (\mathbf{u}_k \odot \mathbf{u}_k)^\top \mathbf{n} \text{ and } b := MN\lambda_{W_1} \sqrt[M]{\frac{N\lambda_{H_1}}{c}} = MN\lambda_{W_1} \sqrt[M]{\frac{N\lambda_{W_M}\lambda_{W_M-1}\dots\lambda_{W_2}\lambda_{H_1}}{\lambda_{W_1}^{M-1}}} = MN\lambda_{W_1} \sqrt[M]{\frac{N\lambda_{W_M}\lambda_{W_M-1}\dots\lambda_{W_2}\lambda_{W_1}}{\lambda_{W_1}^{M-1}}} = MN\lambda_{W_1} \sqrt[M]{\frac{N\lambda_{W_M}\lambda_{W_M-1}\dots\lambda_{W_2}}{\lambda_{W_1}^{M-1}}} = MN\lambda_{W_1} \sqrt[M]{\frac{N\lambda_{W_M}\lambda_{W_M-1}\dots\lambda_{W_2}}{\lambda_{W_1}^{M-1}}} = MN\lambda_{W_1} \sqrt[M]{\frac{N\lambda_{W_M}\lambda_{W_M}\lambda_{W_M-1}\dots\lambda_{W_2}}{\lambda_{W_1}^{M-1}}} = MN\lambda_{W_1} \sqrt[M]{\frac{N\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_{W_M}\lambda_$  $MN \sqrt[M]{N\lambda_{W_M}\lambda_{W_{M-1}}\dots\lambda_{W_1}\lambda_H}$ From the fact that  $U_W$  is an orthonormal matrix, we have:  $\sum_{k=1}^{K} a_k = \sum_{k=1}^{K} (\mathbf{u}_k \odot \mathbf{u}_k)^\top \mathbf{n} = \left(\sum_{k=1}^{K} \mathbf{u}_k \odot \mathbf{u}_k\right)^\top \mathbf{n} = \mathbf{1}^\top \mathbf{n} = \sum_{k=1}^{K} n_k = N,$ (112)and, for any  $j \in [K]$ , denote  $p_{i,j} := u_{i1}^2 + u_{i2}^2 + ... + u_{ij}^2 \forall i \in [K]$ , we have:  $\sum_{k=1}^{j} a_{k} = \sum_{k=1}^{j} (\mathbf{u}_{k} \odot \mathbf{u}_{k})^{\top} \mathbf{n} = n_{1} (u_{11}^{2} + u_{12}^{2} + \dots + u_{1j}^{2}) + n_{2} (u_{21}^{2} + u_{22}^{2} + \dots + u_{2j}^{2}) + \dots + n_{K} (u_{K1}^{2} + u_{K2}^{2} + \dots + u_{Kj}^{2})$  $=\sum_{k=1}^{K} p_{k,j}n_k \le p_{1,j}n_1 + p_{2,j}n_2 + \ldots + p_{j-1,j}n_{j-1} + (p_{j,j} + p_{j+1,j} + p_{j+2,j} + \ldots + p_{K,j})n_j$  $= p_{1,j}n_1 + p_{2,j}n_2 + \ldots + p_{j-1,j}n_{j-1} + (j - p_{1,j} + \ldots + p_{j-1,j})n_j$  $=\sum_{k=1}^{j}n_{k}+\sum_{k=1}^{j-1}(n_{h}-n_{j})(p_{h,j}-1)\leq\sum_{k=1}^{j}n_{k}$  $\Rightarrow \sum_{k=-i+1}^{K} a_k \ge N - \sum_{k=-1}^{j} n_k = \sum_{k=-i+1}^{K} n_k \quad \forall j \in [K],$ (113)where we used the fact that  $\sum_{k=1}^{K} p_{k,j} = j$  since it is the sum of squares of all entries of the first j columns of an orthonormal matrix, and  $p_{i,j} \leq 1 \forall i$  because it is the sum of squares of some entries on the *i*-th row of  $\mathbf{U}_W$ . 

By applying Lemma E.3 to the RHS of equation (111) with  $z_k = \frac{1}{x_k^M + 1} \forall k \le r$  and  $z_k = 1$  otherwise, we obtain: 

$$f(\mathbf{W}_M, \mathbf{W}_{M-1}, \dots, \mathbf{W}_2, \mathbf{W}_1, \mathbf{H}_1) \ge \frac{1}{2N} \sum_{k=1}^r \left(\frac{n_k}{x_k^M + 1} + bx_k\right) + \frac{1}{2N} \sum_{h=r+1}^K n_h$$
(114)

$$= \frac{1}{2N} \sum_{k=1}^{r} n_k \left( \frac{1}{x_k^M + 1} + \frac{b}{n_k} x_k \right) + \frac{1}{2N} \sum_{h=r+1}^{K} n_h.$$
(115)

The minimizer of the function  $g(x) = \frac{1}{x^{M+1}} + ax$  has been studied in Section D.2.1. Apply this result for the lower bound (115), we finish bounding  $f(\mathbf{W}_M, \mathbf{W}_{M-1}, \dots, \mathbf{W}_2, \mathbf{W}_1, \mathbf{H}_1)$ . 

Now, we study the equality conditions. In the lower bound (115), by letting  $x_k^*$  be the minimizer of  $\frac{1}{x_k^M+1} + \frac{b}{n_k}x_k$  for all  $k \leq r$  and  $x_k^* = 0$  for all k > r, there are only four possibilities as following: 

• Case A: If  $x_1^* > 0$  and  $n_1 > n_2$ : If  $x_2^* = 0$ , it is clear that  $x_1^* > x_2^*$ . Otherwise, we have  $x_1^*$  and  $x_2^*$  must satisfy (see Section D.2.1 for details): 

$$\frac{Mx_1^{*M-1}}{(x_1^{*M}+1)^2} = \frac{b}{n_1}$$

$$3022$$
  $Mr_{*}^{*M-1}$  h

$$\frac{Mx_2^{*M-1}}{(x_2^{*M}+1)^2} = \frac{b}{n_2}.$$

Because  $\frac{b}{n_1} < \frac{b}{n_2}$  and the function  $p(x) = \frac{Mx^{M-1}}{(x^M+1)^2}$  is a decreasing function when  $x > \sqrt[M]{\frac{M-1}{M+1}}$ , we got  $x_1^* > x_2^*$ . Hence, from the equality condition of Lemma E.3, we have  $a_1 = n_1$ . From the orthonormal property of  $\mathbf{u}_k$ , we have:

$$a_1 = (\mathbf{u}_1 \odot \mathbf{u}_1)^\top \mathbf{n} = n_1 u_{11}^2 + n_2 u_{21}^2 + \ldots + n_k u_{K1}^2 \le n_1 (u_{11}^2 + u_{21}^2 + \ldots + u_{K1}^2) = n_1$$

The equality holds when and only when  $u_{11}^2 = 1$  and  $u_{21} = \ldots = u_{K1} = 0$ .

• Case B: If  $x_1^* > 0$  and there exists  $1 < j \le r$  such that  $n_1 = n_2 = \ldots = n_j > n_{j+1}$ , we have:

$$\frac{1}{x^M+1} + \frac{b}{n_1}x = \frac{1}{x^M+1} + \frac{b}{n_2}x = \dots = \frac{1}{x^M+1} + \frac{b}{n_j}x$$

and thus,  $x_1^* = x_2^* = \ldots = x_j^* > x_{j+1}^*$ . Hence, from the equality condition of Lemma E.3, we have  $a_1 + a_2 + \ldots + a_j = n_1 + \ldots + n_j$ . We have:

$$\sum_{k=1}^{j} (\mathbf{u}_k \odot \mathbf{u}_k)^\top \mathbf{n} = n_1 (u_{11}^2 + u_{12}^2 + \dots + u_{1j}^2) + n_2 (u_{21}^2 + u_{22}^2 + \dots + u_{2j}^2)$$
  
+ \dots + n\_K (u\_{K1}^2 + u\_{K2}^2 + \dots + u\_{Kj}^2) \le \sum\_{k=1}^{j} n\_j,

where the inequality is from the fact that for any  $k \in [K]$ ,  $(u_{k1}^2 + u_{k2}^2 + \ldots + u_{kj}^2) \leq 1$  and  $\sum_{k=1}^{K} (u_{k1}^2 + u_{k2}^2 + \ldots + u_{kj}^2) = j$ . The equality holds iff  $u_{k1}^2 + u_{k2}^2 + \ldots + u_{kj}^2 = 1 \forall k = 1, 2, \ldots, j$  and  $u_{k1} = u_{k2} = \ldots = u_{kj} = 0 \forall k = j + 1, \ldots, K$ , i.e. the upper left sub-matrix size  $j \times j$  of  $\mathbf{U}_{W_M}$  is an orthonormal matrix and other entries of  $\mathbf{U}_{W_M}$  lie on the same rows or columns with this sub-matrix must all equal 0's.

• Case C: If  $x_1^* > 0$ , r < K and there exists  $r < j \le K$  such that  $n_1 = n_2 = \ldots = n_r = \ldots = n_j > n_{j+1}$ , we have  $x_1^* = x_2^* = \ldots = x_r^* > 0$  and  $x_{r+1}^* = \ldots = x_K^* = 0$ . Hence, from the equality condition of Lemma E.3, we have  $a_1 + a_2 + \ldots + a_r = n_1 + \ldots + n_r$ . We have:

$$\sum_{k=1}^{r} (\mathbf{u}_k \odot \mathbf{u}_k)^\top \mathbf{n} = n_1 (u_{11}^2 + u_{12}^2 + \dots + u_{1r}^2) + n_2 (u_{21}^2 + u_{22}^2 + \dots + u_{2r}^2)$$
$$+ \dots + n_K (u_{K1}^2 + u_{K2}^2 + \dots + u_{Kr}^2) \le \sum_{k=1}^{r} n_k,$$

where the inequality is from the fact that for any  $k \in [K]$ ,  $(u_{k1}^2 + u_{k2}^2 + \ldots + u_{kr}^2) \leq 1$  and  $\sum_{k=1}^{K} (u_{k1}^2 + u_{k2}^2 + \ldots + u_{kr}^2) = r$ . The equality holds iff  $u_{k1} = u_{k2} = \ldots = u_{kr} = 0 \forall k = j + 1, \ldots, K$ , i.e. the upper left sub-matrix size  $j \times r$  of  $\mathbf{U}_{W_M}$  includes r orthonormal vectors in  $\mathbb{R}^j$  and the bottom left sub-matrix size  $(K - j) \times r$  are all zeros. The other K - r columns of  $\mathbf{U}_{W_M}$  does not matter because  $\mathbf{W}_M^*$  can be written as:

$$\mathbf{W}_M^* = \sum_{k=1}^r s_k^* \mathbf{u}_k \mathbf{v}_k^\top,$$

with  $\mathbf{v}_k$  is the right singular vector that satisfies  $\mathbf{W}_M^{*\top} \mathbf{u}_k = s_k^* \mathbf{v}_k$ . Note that since  $s_1^* = s_2^* = \ldots = s_r^* := s^*$ , thus we have compact SVD form as follows:

$$\mathbf{W}_{M}^{*} = s^{*} \mathbf{U}_{W_{M}}^{'} \mathbf{V}_{W_{M}}^{'\top}, \tag{116}$$

where  $\mathbf{U}'_{W_M} \in \mathbb{R}^{K \times r}$  and  $\mathbf{V}'_{W_M} \in \mathbb{R}^{d \times r}$ . Especially, the last K - j rows of  $\mathbf{W}^*_M$  will be zeros since the last K - j rows of  $\mathbf{U}'_{W_M}$  are zeros. Furthermore,  $\mathbf{U}'_{W_M} \mathbf{U}^{\top \top}_{W_M}$  after removing the last K - j zero rows and the last K - j zero columns is the best rank-r approximation of  $\mathbf{I}_j$ .

We note that if **Case C** happens, then the number of positive singular values are limited by the matrix rank r (e.g., by  $r \leq R = \min(d_M, \ldots, d_1, K) < K$ ), and  $n_r = n_{r+1}$ , thus  $x_r^* > 0$  and  $x_{r+1}^* = 0$  ( $x_{r+1}^*$  should equal  $x_r^* > 0$  if it is not forced to be zero).

• Case D: If  $x_1^* = 0$ , we must have  $x_2^* = \ldots = x_K^* = 0$ ,  $\sum_{k=1}^K (\mathbf{u}_k \odot \mathbf{u}_k)^\top \mathbf{n}$  always equal N and thus,  $\mathbf{U}_{W_M}$  can be an arbitrary size  $K \times K$  orthonormal matrix.

We perform similar arguments as above for all subsequent  $x_k^*$ 's, after we finish reasoning for prior ones. Before going to the conclusion, we first study the matrix  $\mathbf{U}_{W_M}$ . If **Case C** does not happen for any  $x_k^*$ 's, we have:

$$\mathbf{U}_{W_M} = \begin{bmatrix} \mathbf{A}_1 & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_2 & \mathbf{0} & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{A}_l \end{bmatrix},$$
(117)

where each  $A_i$  is an orthonormal block which corresponds with one or a group of classes that have the same number of training samples and their  $x^* > 0$  (**Case A** and **Case B**) or corresponds with all classes with  $x^* = 0$  (**Case D**). If **Case C** happens, we have:

$$\mathbf{U}_{W_M} = \begin{bmatrix} \mathbf{A}_1 & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_2 & \mathbf{0} & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{A}_l \end{bmatrix},$$
(118)

where each  $A_i, i \in [l-1]$  is an orthonormal block which corresponds with one or a group of classes that have the same number of training samples and their  $x^* > 0$  (**Case A** and **Case B**).  $A_l$  is the orthonormal block has the same property as  $U_{W_M}$  in **Case C**.

We consider the case R = K from now on. By using arguments about the minimizer of g(x) applied to the lower bound (115), we consider four cases as following:

3108  
3109 • Case 1a: 
$$\frac{b}{n_1} \le \frac{b}{n_2} \le \ldots \le \frac{b}{n_K} < \frac{(M-1)^{\frac{M-1}{M}}}{M}$$
.

Then, the lower bound (115) is minimized at  $(x_1^*, x_2^*, \dots, x_K^*)$  where  $x_i^*$  is the largest positive solution of the equation  $\frac{b}{n_i} - \frac{Mx^{M-1}}{(x^M+1)^2} = 0$  for  $i = 1, 2, \dots, K$ . We conclude:

$$(s_1^*, s_2^*, \dots, s_K^*) = \left( \sqrt[2M]{\frac{N\lambda_{H_1} x_1^{*M}}{c}}, \sqrt[2M]{\frac{N\lambda_{H_1} x_2^{*M}}{c}}, \dots \sqrt[2M]{\frac{N\lambda_{H_1} x_K^{*M}}{c}} \right).$$
(119)

First, we have the property that the features in each class  $\mathbf{h}_{k,i}^*$  collapsed to their class-mean  $\mathbf{h}_k^*$  ( $\mathcal{NC1}$ ). Let  $\overline{\mathbf{H}}^* = \mathbf{V}_{W_1} \mathbf{C} \mathbf{U}_{W_M}^\top$ , we know that  $\mathbf{H}_1^* = \overline{\mathbf{H}}^* \mathbf{Y}$  from equation (106). Then, columns from the  $(n_{k-1} + 1)$ -th until  $(n_k)$ -th of  $\mathbf{H}_1^*$  will all equals the k-th column of  $\overline{\mathbf{H}}^*$ , thus the features in class k collapse to their class-mean  $\mathbf{h}_k^*$  (which is the k-th column of  $\overline{\mathbf{H}}^*$ ), i.e.,  $\mathbf{h}_{k,1}^* = \mathbf{h}_{k,2}^* = \ldots = \mathbf{h}_{k,n_k}^* \forall k \in [K]$ .

Since r = R = K, **Case C** never happens, and we have  $U_{W_M}$  as in equation (117). Hence, together with equations (106) and (107), we can conclude the geometry of the following:

$$\mathbf{W}_{M}^{*}\mathbf{W}_{M}^{*\top} = \mathbf{U}_{W_{M}}\mathbf{S}_{W_{M}}\mathbf{S}_{W_{M}}^{\top}\mathbf{U}_{W_{M}}^{\top} = \operatorname{diag}\left(\frac{\lambda_{W_{1}}}{\lambda_{W_{M}}}s_{1}^{2}, \dots, \frac{\lambda_{W_{1}}}{\lambda_{W_{M}}}s_{K}^{2}\right),$$
(120)

$$\mathbf{H}_{1}^{*\top}\mathbf{H}_{1}^{*} = \mathbf{Y}^{\top}\mathbf{U}_{W_{M}}\mathbf{C}^{T}\mathbf{C}\mathbf{U}_{W_{M}}^{\top}\mathbf{Y} = \begin{bmatrix} \frac{cs_{1}}{(cs_{1}^{2M}+N\lambda_{H_{1}})^{2}}\mathbf{1}_{n_{1}}\mathbf{1}_{n_{1}}^{\dagger} & \dots & \mathbf{0} \\ \vdots & \ddots & \vdots \\ \mathbf{0} & \dots & \frac{cs_{K}^{2M}}{(cs_{K}^{2M}+N\lambda_{H_{1}})^{2}}\mathbf{1}_{n_{K}}\mathbf{1}_{n_{K}}^{\top} \end{bmatrix}, \quad (121)$$

3134

3089 3090

3104

3111

3119

3121 3122

3123 3124

3125

31263127312831293130

$$\mathbf{W}_{M}^{*}\mathbf{W}_{M-1}^{*}\dots\mathbf{W}_{2}^{*}\mathbf{W}_{1}^{*}\mathbf{H}_{1}^{*} = \mathbf{U}_{W_{M}}\mathbf{S}_{W_{M}}\mathbf{S}_{W_{M-1}}\dots\mathbf{S}_{W_{1}}\mathbf{C}\mathbf{U}_{W_{M}}^{\top}\mathbf{Y}$$
$$= \begin{bmatrix} \frac{cs_{1}^{2M}}{cs_{1}^{2M}+N\lambda_{H_{1}}}\mathbf{1}_{n_{1}}^{\top} & \cdots & \mathbf{0} \\ \vdots & \ddots & \vdots \\ \mathbf{0} & \cdots & \frac{cs_{K}^{2M}}{cs_{K}^{2M}+N\lambda_{H_{1}}}\mathbf{1}_{n_{K}}^{\top} \end{bmatrix}.$$
(122)

We additionally have the structure of the class-means matrix:

$$\overline{\mathbf{H}}^{*\top}\overline{\mathbf{H}}^{*} = \mathbf{U}_{W_{M}}^{\top}\mathbf{C}^{\top}\mathbf{C}\mathbf{U}_{W_{M}} = \begin{bmatrix} \frac{cs_{1}^{2M}}{(cs_{1}^{2M}+N\lambda_{H_{1}})^{2}} & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & \frac{cs_{K}^{2M}}{(cs_{K}^{2M}+N\lambda_{H_{1}})^{2}} \end{bmatrix}, \quad (123)$$

$$\mathbf{W}_{M}^{*}\mathbf{W}_{M-1}^{*}\dots\mathbf{W}_{2}^{*}\mathbf{W}_{1}^{*}\overline{\mathbf{H}}^{*} = \mathbf{U}_{W_{M}}\mathbf{S}_{W_{M}}\mathbf{C}\mathbf{U}_{\mathbf{W}}^{\top} = \begin{bmatrix} \frac{cs_{1}}{cs_{1}^{2M}+N\lambda_{H_{1}}} & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & \frac{cs_{K}^{2M}}{cs_{K}^{2M}+N\lambda_{H_{1}}} \end{bmatrix}.$$
 (124)

And the alignment between the weights and features are as following. For any  $k \in [K]$ , denote  $(\mathbf{W}_M^* \mathbf{W}_{M-1}^* \dots \mathbf{W}_2^* \mathbf{W}_1^*)_k$  the k-th row of  $\mathbf{W}_M^* \mathbf{W}_{M-1}^* \dots \mathbf{W}_2^* \mathbf{W}_1^*$ :

$$\mathbf{W}_{M}^{*}\mathbf{W}_{M-1}^{*}\ldots\mathbf{W}_{2}^{*}\mathbf{W}_{1}^{*} = \mathbf{U}_{W_{M}}\mathbf{S}_{W_{M}}\mathbf{S}_{W_{M-1}}\ldots\mathbf{S}_{W_{1}}\mathbf{V}_{W_{1}}^{\dagger},$$
  
$$\overline{\mathbf{H}}^{*} = \mathbf{V}_{W_{1}}\mathbf{C}\mathbf{U}_{W_{M}}^{\top}$$
  
$$\Rightarrow (\mathbf{W}_{M}^{*}\mathbf{W}_{M-1}^{*}\ldots\mathbf{W}_{2}^{*}\mathbf{W}_{1}^{*})_{k} = (cs_{k}^{2M} + N\lambda_{H_{1}})\mathbf{h}_{k}^{*}.$$
(125)

• Case 2a: There exists  $j \in [K-1]$  s.t.  $\frac{b}{n_1} \le \frac{b}{n_2} \le \ldots \le \frac{b}{n_j} < \frac{(M-1)^{\frac{M-1}{M}}}{M} < \frac{b}{n_{j+1}} \le \ldots \le \frac{b}{n_K}$ .

Then, the lower bound (115) is minimized at  $(x_1^*, x_2^*, \dots, x_K^*)$  where  $x_i^*$  is the largest positive solution of equation  $\frac{b}{n_i} - \frac{Mx^{M-1}}{(x^M+1)^2} = 0$  for  $i = 1, 2, \dots, j$  and  $x_i^* = 0$  for  $i = j + 1, \dots, K$ . We conclude:

$$(s_1^*, s_2^*, \dots, s_j^*, s_{j+1}^*, \dots, s_K^*) = \left(\sqrt[2^{2M}]{\frac{N\lambda_{H_1} x_1^{*M}}{c}}, \sqrt[2^{M}]{\frac{N\lambda_{H_1} x_2^{*M}}{c}}, \dots, \sqrt[2^{M}]{\frac{N\lambda_{H_1} x_j^{*M}}{c}}, 0, \dots, 0\right).$$
(126)

First, we have the property that the features in each class  $\mathbf{h}_{k,i}^*$  collapsed to their class-mean  $\mathbf{h}_k^*$  ( $\mathcal{NC1}$ ). Let  $\overline{\mathbf{H}}^* = \mathbf{V}_W \mathbf{C} \mathbf{U}_W^\top$ , we know that  $\mathbf{H}_1^* = \overline{\mathbf{H}}^* \mathbf{Y}$ . Then, columns from the  $(n_{k-1} + 1)$ -th until  $(n_k)$ -th of  $\mathbf{H}_1^*$  will all equals the k-th column of  $\overline{\mathbf{H}}^*$ , thus the features in class k are collapsed to their class-mean  $\mathbf{h}_k^*$  (which is the k-th column of  $\overline{\mathbf{H}}$ ), i.e  $\mathbf{h}_{k,1}^* = \mathbf{h}_{k,2}^* = \ldots = \mathbf{h}_{k,n_k}^* \forall k \in [K]$ .

For any  $k \in [K]$ , denote  $(\mathbf{W}_M^* \mathbf{W}_{M-1}^* \dots \mathbf{W}_2^* \mathbf{W}_1^*)_k$  the k-th row of  $\mathbf{W}_M^* \mathbf{W}_{M-1}^* \dots \mathbf{W}_2^* \mathbf{W}_1^*$ :

$$\mathbf{W}_{M}^{*}\mathbf{W}_{M-1}^{*}\dots\mathbf{W}_{2}^{*}\mathbf{W}_{1}^{*} = \mathbf{U}_{W_{M}}\mathbf{S}_{W_{M}}\mathbf{S}_{W_{M-1}}\dots\mathbf{S}_{W_{1}}\mathbf{V}_{W_{1}}^{\top},$$
  
$$\overline{\mathbf{H}}^{*} = \mathbf{V}_{W_{1}}\mathbf{C}\mathbf{U}_{W_{M}}^{\top}$$
  
$$\Rightarrow (\mathbf{W}_{M}^{*}\mathbf{W}_{M-1}^{*}\dots\mathbf{W}_{2}^{*}\mathbf{W}_{1}^{*})_{k} = (cs_{k}^{2M} + N\lambda_{H_{1}})\mathbf{h}_{k}^{*}.$$
(127)

And, for k > j, we have  $(\mathbf{W}_M^* \mathbf{W}_{M-1}^* \dots \mathbf{W}_2^* \mathbf{W}_1^*)_k = \mathbf{h}_k^* = \mathbf{0}$ .

3188 3189

314431453146314731483149

3157

3165 3166 3167

3168

316931703171317231733174

3175 3176

3177

3178

3179 3180

Recall the form of  $U_{W_M}$  as in equation (117) (Case C cannot happen since r = j and  $n_j > n_{j+1}$ ). We can conclude the geometry of following objects, with the usage of equations (106) and (107):

$$\mathbf{W}_{M}^{*}\mathbf{W}_{M}^{*+} = \mathbf{U}_{W_{M}}\mathbf{S}_{W_{M}}\mathbf{S}_{W_{M}}^{+}\mathbf{U}_{W}^{+}$$
$$= \operatorname{diag}\left(\frac{\lambda_{W_{1}}}{\lambda_{W_{M}}}s_{1}^{2}, \frac{\lambda_{W_{1}}}{\lambda_{W_{M}}}s_{2}^{2}, \dots, \frac{\lambda_{W_{1}}}{\lambda_{W_{M}}}s_{j}^{2}, 0, \dots, 0\right),$$
$$\begin{bmatrix} cs_{1}^{2M} & 1 & 1^{\top} & 0 \\ cs_{1}^{2M} & 1 & 1^{\top} & 0 \end{bmatrix}$$
(128)

$$\mathbf{H}_{1}^{*\top}\mathbf{H}_{1}^{*} = \begin{vmatrix} \mathbf{0} & \frac{cs_{2}^{2M}}{(cs_{1}^{2M}+N\lambda_{H_{1}})^{2}} \mathbf{1}_{n_{1}} \mathbf{1}_{n_{1}} & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & \frac{cs_{2}^{2M}}{(cs_{2}^{2M}+N\lambda_{H_{1}})^{2}} \mathbf{1}_{n_{2}} \mathbf{1}_{n_{2}}^{\top} & \dots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \dots & \mathbf{0} \\ \end{matrix} \right|, \qquad (129)$$

$$\mathbf{W}_{M}^{*}\mathbf{W}_{M-1}^{*}\dots\mathbf{W}_{2}^{*}\mathbf{W}_{1}^{*}\mathbf{H}_{1}^{*} = \mathbf{U}_{W}\operatorname{diag}\left(\frac{cs_{1}^{2M}}{cs_{1}^{2M}+N\lambda_{H_{1}}},\dots,\frac{cs_{j}^{2M}}{cs_{j}^{2M}+N\lambda_{H_{1}}},0,\dots,0\right)\mathbf{U}_{W}^{\top}\mathbf{Y}$$
$$= \begin{bmatrix}\frac{cs_{1}^{2M}}{cs_{1}^{2M}+N\lambda_{H_{1}}}\mathbf{1}_{n_{1}}^{\top} & \mathbf{0} & \dots & \mathbf{0}\\ \mathbf{0} & \frac{cs_{2}^{2M}}{cs_{2}^{2M}+N\lambda_{H_{1}}}\mathbf{1}_{n_{2}}^{\top} & \dots & \mathbf{0}\\ \vdots & \vdots & \ddots & \vdots\\ \mathbf{0} & \mathbf{0} & \dots & \mathbf{0}_{n_{K}}^{\top}\end{bmatrix},$$

where  $\mathbf{1}_{n_k} \mathbf{1}_{n_k}^{\top}$  is a  $n_k \times n_k$  matrix will all entries are 1's.

• Case 3a: 
$$\frac{(M-1)^{\frac{M-1}{M}}}{M} < \frac{b}{n_1} \le \frac{b}{n_2} \le \ldots \le \frac{b}{n_K}$$

In this case, the lower bound (115) is minimized at:

$$(s_1^*, s_2^*, \dots, s_K^*) = (0, 0, \dots, 0).$$
 (130)

Hence, the global minimizer of f is  $(\mathbf{W}_M^*, \mathbf{W}_{M-1}^*, \dots, \mathbf{W}_2^*, \mathbf{W}_1^*, \mathbf{H}_1^*) = (\mathbf{0}, \mathbf{0}, \dots, \mathbf{0}).$ 

• Case 4a: There exists  $i, j \in [K]$   $(i \le j)$  such that  $\frac{b}{n_1} \le \frac{b}{n_2} \le \ldots \le \frac{b}{n_{i-1}} < \frac{b}{n_i} = \frac{b}{n_{i+1}} = \ldots = \frac{b}{n_i} = \frac{(M-1)^{\frac{M-1}{M}}}{M} < \frac{b}{n_1} \le \frac{b}{n_2} \le \ldots \le \frac{b}{n_1} \le \frac{b}{n_1}$  $\frac{b}{n_{j+1}} \le \frac{b}{n_{j+2}} \le \ldots \le \frac{b}{n_K}.$ 

Then, the lower bound (115) is minimized at  $(x_1^*, x_2^*, \dots, x_K^*)$  where  $\forall t \le i - 1, x_t^*$  is the largest positive solution of equation  $\frac{b}{n_t} - \frac{Mx^{M-1}}{(x^M+1)^2} = 0$ . If  $i \le t \le j, x_t^*$  can either be 0 or the largest positive solution of equation  $\frac{b}{n_t} - \frac{Mx^{M-1}}{(x^M+1)^2} = 0$  as long as the sequence  $\{x_t^*\}$  is a decreasing sequence. Otherwise,  $\forall t > j, x_t^* = 0$ .

In this case, we have  $\mathcal{NC}1$  and  $\mathcal{NC}3$  properties similar as **Case 1a**.

For  $(\mathcal{NC}^2)$ , we can freely choose the number of positive singular values r to be any value between i and j. Thus, **Case C** does happen for this case. As a consequence, the diagonal block  $\operatorname{diag}(s_i^2, \ldots, s_j^2)$  of  $\mathbf{W}_M^* \mathbf{W}_M^{*\top}$  in **Case 1a**, will be replace by  $s_r^2 \mathcal{P}_{r-i+1}(\mathbf{I}_{j-i+1})$ . Similar changes are also applied for  $\mathbf{H}_1^{\dagger \top} \mathbf{H}_1^{\ast}$  and  $\mathbf{W}_M^* \mathbf{W}_{M-1}^{\ast} \dots \mathbf{W}_2^* \mathbf{W}_1^{\ast} \mathbf{H}_1^{\ast}$ . 

Now, we turn to consider the case R < K. Again, we consider the following cases: 

• Case 1b: 
$$\frac{b}{n_1} \le \frac{b}{n_2} \le \ldots \le \frac{b}{n_R} < \frac{(M-1)^{\frac{M-1}{M}}}{M}$$
.

Then, the lower bound (115) is minimized at  $(x_1^*, x_2^*, \dots, x_K^*)$  where  $x_i^*$  is the largest positive solution of the equation  $\frac{b}{n_i} - \frac{Mx^{M-1}}{(x^M+1)^2} = 0$  for i = 1, 2, ..., R and  $x_i^* = 0$  for i = R+1, ..., K. We conclude:

$$(s_1^*, s_2^*, \dots, s_R^*, s_{R+1}^*, \dots, s_K^*) = \left( \sqrt[2^{2M}]{\frac{N\lambda_{H_1} x_1^{*M}}{c}}, \sqrt[2^{2M}]{\frac{N\lambda_{H_1} x_2^{*M}}{c}}, \dots \sqrt[2^{2M}]{\frac{N\lambda_{H_1} x_R^{*M}}{c}}, 0, \dots, 0 \right).$$
(131)

We have  $(\mathcal{NC}1)$  and  $(\mathcal{NC}3)$  properties are the same as **Case 1a**.

We have **Case C** happens iff  $x_R^* > 0$  (already satisfied) and  $n_R = n_{R+1}$ . If  $n_R > n_{R+1}$ , we can conclude the geometry of the following:

$$\mathbf{W}_{M}^{*}\mathbf{W}_{M}^{*\top} = \mathbf{U}_{W_{M}}\mathbf{S}_{W_{M}}\mathbf{S}_{W_{M}}^{\top}\mathbf{U}_{W_{M}}^{\top} = \begin{bmatrix} \begin{bmatrix} \frac{\lambda_{W_{1}}}{\lambda_{W_{M}}}s_{1}^{2} & \dots & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & \frac{\lambda_{W_{1}}}{\lambda_{W_{M}}}s_{1}^{2} & \dots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & \dots & 0 \end{bmatrix} \\ = \operatorname{diag}\left(\frac{\lambda_{W_{1}}}{\lambda_{W_{M}}}s_{1}^{2}, \dots, \frac{\lambda_{W_{1}}}{\lambda_{W_{M}}}s_{R}^{2}, 0, \dots, 0\right), \qquad (132) \\ \mathbf{\overline{H}}^{*\top}\mathbf{\overline{H}}^{*} = \mathbf{U}_{W_{M}}^{\top}\mathbf{C}^{\top}\mathbf{C}\mathbf{U}_{W_{M}} = \begin{bmatrix} \frac{\operatorname{cs}_{1}^{2M}}{(\operatorname{cs}_{1}^{2M}+N\lambda_{H_{1}})^{2}} & \dots & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & \dots & 0 \end{bmatrix}, \qquad (133) \\ \mathbf{W}_{M}^{*}\mathbf{W}_{M-1}^{*}\dots\mathbf{W}_{2}^{*}\mathbf{W}_{1}^{*}\mathbf{\overline{H}}^{*} = \mathbf{U}_{W_{M}}\mathbf{S}_{W_{M}}\mathbf{C}\mathbf{U}_{W_{M}}^{\top} = \begin{bmatrix} \frac{\operatorname{cs}_{1}^{2M}}{\operatorname{cs}_{1}^{2M}+N\lambda_{H_{1}}} & \dots & 0 & \dots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & \dots & 0 \end{bmatrix}, \qquad (134) \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \dots & 0 & \dots & 0 \end{bmatrix}.$$

Furthermore, for k > R, we have  $(\mathbf{W}_M^* \mathbf{W}_{M-1}^* \dots \mathbf{W}_2^* \mathbf{W}_1^*)_k = \mathbf{h}_k^* = \mathbf{0}$ .

If  $n_R = n_{R+1}$ , there exists  $k \leq R$ , l > R such that  $n_{k-1} > n_k = n_{k+1} = \ldots = n_R = \ldots = n_l > n_{l+1}$ , then :

$$\mathbf{W}_{M}^{*}\mathbf{W}_{M}^{*\top} = \frac{\lambda_{W_{1}}}{\lambda_{W_{M}}} \begin{bmatrix} s_{1}^{2} & \dots & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ \mathbf{0} & \dots & s_{k-1}^{2} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \dots & \mathbf{0} & s_{k}^{2}\mathcal{P}_{R-k+1}(\mathbf{I}_{l-k+1}) & \mathbf{0} \\ \mathbf{0} & \dots & \mathbf{0} & \mathbf{0} & \mathbf{0}_{(K-l)\times(K-l)} \end{bmatrix}, \quad (135)$$

$$\overline{\mathbf{H}}^{*\top}\overline{\mathbf{H}}^{*} = \begin{bmatrix} \frac{cs_{1}^{2M}}{(cs_{1}^{2M}+N\lambda_{H_{1}})^{2}} & \dots & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ \mathbf{0} & \dots & \frac{cs_{k-1}^{2M}}{(cs_{k-1}^{2M}+N\lambda_{H_{1}})^{2}} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \dots & \mathbf{0} & \frac{cs_{k}^{2M}}{(cs_{k}^{2M}+N\lambda_{H_{1}})^{2}} \mathcal{P}_{R-k+1}(\mathbf{I}_{l-k+1}) & \mathbf{0} \\ \mathbf{0} & \dots & \mathbf{0} & \mathbf{0} & \mathbf{0}_{(K-l)\times(K-l)} \end{bmatrix} \\ \mathbf{0} & \dots & \mathbf{0} & \mathbf{0} & \mathbf{0}_{(K-l)\times(K-l)} \end{bmatrix}$$

and, for any h > l > R,  $(\mathbf{W}_M^* \mathbf{W}_{M-1}^* \dots \mathbf{W}_2^* \mathbf{W}_1^*)_h = \mathbf{h}_h^* = \mathbf{0}$ .

• Case 2b: There exists  $j \in [R-1]$  s.t.  $\frac{b}{n_1} \le \frac{b}{n_2} \le \ldots \le \frac{b}{n_j} < \frac{(M-1)^{\frac{M-1}{M}}}{M} < \frac{b}{n_{j+1}} \le \ldots \le \frac{b}{n_R}$ .

Then, the lower bound (115) is minimized at  $(x_1^*, x_2^*, \dots, x_K^*)$  where  $x_i^*$  is the largest positive solution of equation  $\frac{b}{n_i} - \frac{Mx^{M-1}}{(x^M+1)^2} = 0$  for  $i = 1, 2, \dots, j$  and  $x_i^* = 0$  for  $i = j + 1, \dots, K$ . We conclude:

$$(s_1^*, s_2^*, \dots, s_j^*, s_{j+1}^*, \dots, s_K^*) = \left( \sqrt[2M]{\frac{N\lambda_{H_1} x_1^{*M}}{c}}, \sqrt[2M]{\frac{N\lambda_{H_1} x_2^{*M}}{c}}, \dots, \sqrt[2M]{\frac{N\lambda_{H_1} x_j^{*M}}{c}}, \dots, \sqrt[2M]{\frac{N\lambda_{H_1} x_j^{*M}}{c}}, 0, \dots, 0 \right).$$
(138)

We have  $(\mathcal{NC}1)$  and  $(\mathcal{NC}3)$  properties are the same as **Case 2a**.

We can conclude the geometry of following objects, with the usage of equations (106) and (107):

$$\mathbf{W}_{M}^{*}\mathbf{W}_{M}^{*\top} = \mathbf{U}_{W_{M}}\mathbf{S}_{W_{M}}\mathbf{S}_{W_{M}}^{\top}\mathbf{U}_{W}^{\top}$$

$$= \operatorname{diag}\left(\frac{\lambda_{W_{1}}}{\lambda_{W_{M}}}s_{1}^{2}, \frac{\lambda_{W_{1}}}{\lambda_{W_{M}}}s_{2}^{2}, \dots, \frac{\lambda_{W_{1}}}{\lambda_{W_{M}}}s_{j}^{2}, 0, \dots, 0\right),$$

$$\left[\frac{cs_{1}^{2M}}{(cs^{2M}+N) + N^{2}}\mathbf{1}_{n_{1}}\mathbf{1}_{n_{1}}^{\top}, \mathbf{0}, \dots, \mathbf{0}\right]$$
(139)

$$\mathbf{H}_{1}^{*\top}\mathbf{H}_{1}^{*} = \begin{bmatrix} \mathbf{\hat{c}}_{1}^{2M} + N\lambda_{H_{1}})^{2} \mathbf{1}_{n_{1}} \mathbf{1}_{n_{1}} & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & \frac{cs_{2}^{2M}}{(cs_{2}^{2M} + N\lambda_{H_{1}})^{2}} \mathbf{1}_{n_{2}} \mathbf{1}_{n_{2}}^{\top} & \dots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}, \quad (140)$$

$$\mathbf{W}_{M}^{*}\mathbf{W}_{M-1}^{*}\dots\mathbf{W}_{2}^{*}\mathbf{W}_{1}^{*}\mathbf{H}_{1}^{*} = \mathbf{U}_{W}\operatorname{diag}\left(\frac{cs_{1}^{2M}}{cs_{1}^{2M}+N\lambda_{H_{1}}},\dots,\frac{cs_{j}^{2M}}{cs_{j}^{2M}+N\lambda_{H_{1}}},0,\dots,0\right)\mathbf{U}_{W}^{\top}\mathbf{Y}$$
$$= \begin{bmatrix} \frac{cs_{1}^{2M}}{cs_{1}^{2M}+N\lambda_{H_{1}}}\mathbf{1}_{n_{1}}^{\top} & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & \frac{cs_{2}^{2M}}{cs_{2}^{2M}+N\lambda_{H_{1}}}\mathbf{1}_{n_{2}}^{\top} & \dots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \dots & \mathbf{0}_{n_{K}}^{\top} \end{bmatrix},$$

where  $\mathbf{1}_{n_k} \mathbf{1}_{n_k}^{\top}$  is a  $n_k \times n_k$  matrix will all entries are 1's. Case C cannot happen in this case because r = j < R and  $n_j > n_{j+1}$ .

And, for k > j, we have  $(\mathbf{W}_M^* \mathbf{W}_{M-1}^* \dots \mathbf{W}_2^* \mathbf{W}_1^*)_k = \mathbf{h}_k^* = \mathbf{0}$ .

• Case 3b:  $\frac{(M-1)^{\frac{M-1}{M}}}{M} < \frac{b}{n_1} \le \frac{b}{n_2} \le \ldots \le \frac{b}{n_R}$ . 

In this case, the lower bound (115) is minimized at:

$$(s_1^*, s_2^*, \dots, s_K^*) = (0, 0, \dots, 0).$$
 (141)

Hence, the global minimizer of f is  $(\mathbf{W}_M^*, \mathbf{W}_{M-1}^*, \dots, \mathbf{W}_2^*, \mathbf{W}_1^*, \mathbf{H}_1^*) = (\mathbf{0}, \mathbf{0}, \dots, \mathbf{0}).$ 

• Case 4b: There exists 
$$i, j \in [R]$$
  $(i \le j \le R)$  such that  $\frac{b}{n_1} \le \frac{b}{n_2} \le \dots \le \frac{b}{n_{i-1}} < \frac{b}{n_i} = \frac{b}{n_{i+1}} = \dots = \frac{b}{n_j} = \frac{(M-1)^{\frac{M-1}{M}}}{M} < \frac{b}{n_{j+1}} \le \frac{b}{n_{j+2}} \le \dots \le \frac{b}{n_R}.$ 

Then, the lower bound (115) is minimized at  $(x_1^*, x_2^*, \dots, x_K^*)$  where  $\forall t \le i - 1, x_t^*$  is the largest positive solution of equation  $\frac{b}{n_t} - \frac{Mx^{M-1}}{(x^M+1)^2} = 0$ . If  $i \le t \le j, x_t^*$  can either be 0 or the largest positive solution of equation  $\frac{b}{n_t} - \frac{Mx^{M-1}}{(x^M+1)^2} = 0$  as long as the sequence  $\{x_t^*\}$  is a decreasing sequence and there is no more than R positive singular values. Otherwise,  $\forall t > j, x_t^* = 0$ .

In this case, we have  $(\mathcal{NC}1)$  and  $(\mathcal{NC}3)$  properties similar as **Case 1b**.

For  $(\mathcal{NC2})$ , if  $b/n_R > \frac{(M-1)^{\frac{M-1}{M}}}{M}$ , we can freely choose the number of positive singular values r between i and j, thus we have similar results as in **Case 4a**.

Otherwise, if  $b/n_R = \frac{(M-1)^{\frac{M-1}{M}}}{M}$ , we can freely choose the number of positive singular values r between i and R, thus we still have similar geometries as in **Case 4a**.

We finish the proof.

## 3376 G. Proof of Theorem A.1

Proof of Theorem A.1. Let  $\mathbf{Z} = \mathbf{W}_M \mathbf{W}_{M-1} \dots \mathbf{W}_2 \mathbf{W}_1 \mathbf{H}_1$ . We begin by noting that any critical point  $(\mathbf{W}_M, \mathbf{W}_{M-1}, \dots, \mathbf{W}_2, \mathbf{W}_1, \mathbf{H}_1, \mathbf{b})$  of f satisfies the following:

$$\frac{\partial f}{\partial \mathbf{W}_M} = \frac{2}{N} \frac{\partial g}{\partial \mathbf{Z}} \mathbf{H}_1^\top \mathbf{W}_1^\top \dots \mathbf{W}_{M-1}^\top + \lambda_{W_M} \mathbf{W}_M = \mathbf{0},$$
(142)

$$\frac{\partial f}{\partial \mathbf{W}_{M-1}} = \frac{2}{N} \mathbf{W}_{M}^{\top} \frac{\partial g}{\partial \mathbf{Z}} \mathbf{H}_{1}^{\top} \mathbf{W}_{1}^{\top} \dots \mathbf{W}_{M-2}^{\top} + \lambda_{W_{M-1}} \mathbf{W}_{M-1} = \mathbf{0},$$
(143)

$$\frac{\partial f}{\partial \mathbf{W}_1} = \frac{2}{N} \mathbf{W}_2^\top \mathbf{W}_3^\top \dots \mathbf{W}_M^\top \frac{\partial g}{\partial \mathbf{Z}} \mathbf{H}_1^\top + \lambda_{W_1} \mathbf{W}_1 = \mathbf{0},$$
(144)

$$\frac{\partial f}{\partial \mathbf{H}_1} = \frac{2}{N} \mathbf{W}_1^\top \mathbf{W}_2^\top \dots \mathbf{W}_M^\top \frac{\partial g}{\partial \mathbf{Z}} \mathbf{H}^\top + \lambda_{H_1} \mathbf{H}_1 = \mathbf{0}.$$
(145)

Next, we have:

3401 Making similar argument for the other derivatives, we also have:

$$\lambda_{W_{M}} \mathbf{W}_{M}^{\top} \mathbf{W}_{M} = \lambda_{W_{M-1}} \mathbf{W}_{M-1} \mathbf{W}_{M-1}^{\top},$$

$$\lambda_{W_{M-1}} \mathbf{W}_{M-1}^{\top} \mathbf{W}_{M-1} = \lambda_{W_{M-2}} \mathbf{W}_{M-2} \mathbf{W}_{M-2}^{\top},$$

$$\dots,$$

$$\lambda_{W_{2}} \mathbf{W}_{2}^{\top} \mathbf{W}_{2} = \lambda_{W_{1}} \mathbf{W}_{1} \mathbf{W}_{1}^{\top},$$

$$\lambda_{W_{1}} \mathbf{W}_{1}^{\top} \mathbf{W}_{1} = \lambda_{H_{1}} \mathbf{H}_{1} \mathbf{H}_{1}^{\top}.$$
(146)

Now, let  $\mathbf{H}_1 = \mathbf{U}_H \mathbf{S}_H \mathbf{V}_H^{\top}$  be the SVD decomposition of  $\mathbf{H}_1$  with orthonormal matrices  $\mathbf{U} \in \mathbb{R}^{d_1 \times d_1}$ ,  $\mathbf{V} \in \mathbb{R}^{N \times N}$  and  $\mathbf{S} \in \mathbb{R}^{d_1 \times N}$  is a diagonal matrix with decreasing singular values. We note that from equations (146),  $r := \operatorname{rank}(\mathbf{W}_M) =$  $\ldots = \operatorname{rank}(\mathbf{W}_1) = \operatorname{rank}(\mathbf{H}_1)$  is at most  $R := \min(d_M, d_{M-1}, \ldots, d_1, K)$ . We denote r singular values of  $\mathbf{H}_1$  as  $\{s_k\}_{k=1}^r$ Next, we start to bound  $g(\mathbf{W}_M \mathbf{W}_{M-1} \dots \mathbf{W}_2 \mathbf{W}_1 \mathbf{H}_1 + \mathbf{b} \mathbf{1}^{\top})$  with techniques extended from Lemma D.3 in (Zhu et al., 2021). By using Lemma G.1 for  $\mathbf{z}_{k,i} = \mathbf{W}_M \mathbf{W}_{M-1} \dots \mathbf{W}_2 \mathbf{W}_1 \mathbf{h}_{k,i} + \mathbf{b}$  with the same scalar  $c_1, c_2$  ( $c_1$  can be chosen arbitrarily) for all k and i, we have:  $(1+c_1)(K-1)[q(\mathbf{W}_M\mathbf{W}_{M-1}\dots\mathbf{W}_2\mathbf{W}_1\mathbf{H}_1+\mathbf{b}\mathbf{1}^{\top})-c_2]$  $= (1+c_1)(K-1) \left| \frac{1}{N} \sum_{k=1}^{K} \sum_{i=1}^{n} \mathcal{L}_{CE}(\mathbf{W}_M \mathbf{W}_{M-1} \dots \mathbf{W}_2 \mathbf{W}_1 \mathbf{h}_{k,i} + \mathbf{b}, \mathbf{y}_k) - c_2 \right|$  $\geq \frac{1}{N} \sum_{k=1}^{K} \sum_{i=1}^{n} \left[ \sum_{i=1}^{K} ((\mathbf{W}_{M} \mathbf{W}_{M-1} \dots \mathbf{W}_{2} \mathbf{W}_{1})_{j} \mathbf{h}_{k,i} + b_{j}) - K((\mathbf{W}_{M} \mathbf{W}_{M-1} \dots \mathbf{W}_{2} \mathbf{W}_{1})_{k} \mathbf{h}_{k,i} + b_{k}) \right]$  $= \frac{1}{N} \sum_{i=1}^{n} \left| \left( \sum_{k=1}^{K} \sum_{j=1}^{K} (\mathbf{W}_{M} \mathbf{W}_{M-1} \dots \mathbf{W}_{1})_{j} \mathbf{h}_{k,i} - K \sum_{k=1}^{K} (\mathbf{W}_{M} \mathbf{W}_{M-1} \dots \mathbf{W}_{1})_{k} \mathbf{h}_{k,i} \right) + \underbrace{\sum_{k=1}^{K} \sum_{j=1}^{K} (b_{j} - b_{k})}_{=0} \right|$  $=\frac{1}{N}\sum_{i=1}^{n}\left(\sum_{k=1}^{K}\sum_{i=1}^{K}(\mathbf{W}_{M}\mathbf{W}_{M-1}\ldots\mathbf{W}_{2}\mathbf{W}_{1})_{j}\mathbf{h}_{k,i}-K\sum_{i=1}^{K}(\mathbf{W}_{M}\mathbf{W}_{M-1}\ldots\mathbf{W}_{2}\mathbf{W}_{1})_{k}\mathbf{h}_{k,i}\right)$  $= \frac{K}{N} \sum_{i=1}^{n} \sum_{k=1}^{K} \left[ (\mathbf{W}_M \mathbf{W}_{M-1} \dots \mathbf{W}_2 \mathbf{W}_1)_k \left( \frac{1}{K} \sum_{i=1}^{K} (\mathbf{h}_{j,i} - \mathbf{h}_{k,i}) \right) \right]$  $=\frac{1}{n}\sum_{i=1}^{n}\sum_{j=1}^{K}(\mathbf{W}_{M}\mathbf{W}_{M-1}\ldots\mathbf{W}_{2}\mathbf{W}_{1})_{k}(\overline{\mathbf{h}}_{i}-\mathbf{h}_{k,i})$  $= \frac{-1}{n} \sum_{i=1}^{n} \sum_{k=1}^{K} (\mathbf{W}_{M} \mathbf{W}_{M-1} \dots \mathbf{W}_{2} \mathbf{W}_{1})_{k} (\mathbf{h}_{k,i} - \overline{\mathbf{h}}_{i}),$ 

where  $\overline{\mathbf{h}}_i = \frac{1}{K} \sum_{j=1}^{K} \mathbf{h}_{j,i}$ . Now, from the AM-GM inequality, we know that for any  $\mathbf{u}, \mathbf{v} \in \mathbb{R}^K$  and any  $c_3 > 0$ , 

$$\mathbf{u}^{\top}\mathbf{v} \leq \frac{c_3}{2} \|\mathbf{u}\|_2^2 + \frac{1}{2c_3} \|\mathbf{v}\|_2^2.$$

The equality holds when  $c_3 \mathbf{u} = \mathbf{v}$ . Therefore, by applying AM-GM for each term  $(\mathbf{W}_M \mathbf{W}_{M-1} \dots \mathbf{W}_2 \mathbf{W}_1)_k (\mathbf{h}_{k,i} - \overline{\mathbf{h}}_i)$ , we further have:

3465 where the first inequality becomes an equality if and only if 3466 3467  $c_3(\mathbf{W}_M \mathbf{W}_{M-1} \dots \mathbf{W}_2 \mathbf{W}_1)_k = \mathbf{h}_{k,i} - \overline{\mathbf{h}}_i \,\forall k, i,$ (149)3468 3469 and we ignore the term  $\sum_{i=1}^{n} \|\overline{\mathbf{h}}_{i}\|_{2}^{2}$  in the last inequality (equality holds iff  $\overline{\mathbf{h}}_{i} = \mathbf{0} \forall i$ ). 3470 3471 3472 Now, by using equation (146), we have: 3473 3474  $\|\mathbf{W}_{M}\mathbf{W}_{M-1}\dots\mathbf{W}_{2}\mathbf{W}_{1}\|_{F}^{2} = \operatorname{trace}(\mathbf{W}_{1}^{\top}\mathbf{W}_{2}^{\top}\dots\mathbf{W}_{M-1}^{\top}\mathbf{W}_{M}^{\top}\mathbf{W}_{M}\mathbf{W}_{M-1}\dots\mathbf{W}_{2}\mathbf{W}_{1})$ 3475 3476  $=\underbrace{\frac{\lambda_{H_1}^{M}}{\lambda_{W_M}\lambda_{W_{M-1}}\dots\lambda_{W_1}}}_{\mathcal{M}_{W_M}\lambda_{W_{M-1}}\dots\lambda_{W_1}}\operatorname{trace}[(\mathbf{H}_1\mathbf{H}_1^{\top})^M] = c\sum_{k=1}^{m} s_k^{2M}.$ (150)3477 3478 3479 3480 3481 We will choose  $c_3$  to let all the inequalities at (148) become equalities, which is as following: 3482 3483  $c_3(\mathbf{W}_M\mathbf{W}_{M-1}\ldots\mathbf{W}_2\mathbf{W}_1)_k = \mathbf{h}_{k,i} \quad \forall k, i$  $\Rightarrow c_3^2 = \frac{\sum_{k=1}^K \sum_{i=1}^n \|\mathbf{h}_{k,i}\|_2^2}{n \sum_{k=1}^K \|(\mathbf{W}_M \mathbf{W}_{M-1} \dots \mathbf{W}_2 \mathbf{W}_1)_k\|_2^2} = \frac{\|\mathbf{H}_1\|_F^2}{n \|\mathbf{W}_M \mathbf{W}_{M-1} \dots \mathbf{W}_2 \mathbf{W}_1\|_F^2} = \frac{\sum_{k=1}^r s_k^2}{cn \sum_{k=1}^r s_k^2}.$ 3485 (151)3486 3487 3489 With  $c_3$  chosen as above, continue from the lower bound at (148), we have: 3490 3491  $g(\mathbf{W}_M \mathbf{W}_{M-1} \dots \mathbf{W}_2 \mathbf{W}_1 \mathbf{H}_1 + \mathbf{b} \mathbf{1}^\top) \ge \frac{1}{(1+c_1)(K-1)} \left( -\sqrt{\frac{c}{n}} \sqrt{\left(\sum_{k=1}^r s_k^2\right) \left(\sum_{k=1}^r s_k^{2M}\right)} \right) + c_2.$ 3492 (152)3493 3494 3495 3496 Using this lower bound of f, we have for any critical point  $(\mathbf{W}_M \mathbf{W}_{M-1} \dots \mathbf{W}_2 \mathbf{W}_1, \mathbf{H}_1, \mathbf{b})$  of function f and  $c_1 > 0$ : 3497 3498  $f(\mathbf{W}_M, \mathbf{W}_{M-1}, \dots, \mathbf{W}_2, \mathbf{W}_1, \mathbf{H}_1, \mathbf{b}) = g(\mathbf{W}_M \mathbf{W}_{M-1} \dots \mathbf{W}_2 \mathbf{W}_1 \mathbf{H}_1 + \mathbf{b} \mathbf{1}^\top) + \frac{\lambda_{W_M}}{2} \|\mathbf{W}_M\|_F^2$ 3499 3500 +...+ $\frac{\lambda_{W_2}}{2}$  $\|\mathbf{W}_2\|_F^2 + \frac{\lambda_{W_1}}{2}\|\mathbf{W}_1\|_F^2 + \frac{\lambda_{H_1}}{2}\|\mathbf{H}_1\|_F^2$  $\geq \frac{1}{(1+c_1)(K-1)} \left( -\sqrt{\frac{c}{n}} \sqrt{\left| \left(\sum_{k=1}^r s_k^2\right) \left(\sum_{k=1}^r s_k^{2M}\right) \right|} + c_2 + \frac{\lambda_{W_M}}{2} \frac{\lambda_{H_1}}{\lambda_{W_M}} \sum_{k=1}^r s_k^2 \right) \right|$ 3504 3506 +...+ $\frac{\lambda_{W_1}}{2}\frac{\lambda_{H_1}}{\lambda_{W_1}}\sum_{i=1}^r s_k^2 + \frac{\lambda_{H_1}}{2}\sum_{i=1}^r s_k^2 + \frac{\lambda_b}{2} \|\mathbf{b}\|_2^2$ (153)3509  $= \frac{1}{(1+c_1)(K-1)} \left( -\sqrt{\frac{c}{n}} \sqrt{\left(\sum_{k=1}^r s_k^2\right) \left(\sum_{k=1}^r s_k^{2M}\right)} \right) + c_2 + \frac{M+1}{2} \lambda_{H_1} \sum_{k=1}^r s_k^2 + \frac{\lambda_b}{2} \|\mathbf{b}\|_2^2$ 3510 3511 3512  $\xi(s_1, s_2, \dots, s_r, \lambda_{W_2}, \lambda_{W_4}, \lambda_{H_4})$ 3513  $> \xi(s_1, s_2, \ldots, s_r, \lambda_{W_1}, \ldots, \lambda_{W_1}, \lambda_{H_1}),$ 3514 3515 where the last inequality becomes an equality when either  $\mathbf{b} = \mathbf{0}$  or  $\lambda_b = 0$ . 3516 3517 3518 inequality  $f(\mathbf{W}_M, \mathbf{W}_{M-1}, \dots, \mathbf{W}_2, \mathbf{W}_1, \mathbf{H}_1, \mathbf{b})$ From G.2. Lemma we know that the  $\geq$ 3519

 $\xi(s_1, s_2, \ldots, s_r, \lambda_{W_M}, \ldots, \lambda_{W_1}, \lambda_{H_1})$  becomes equality if and only if: 3521 3522  $\|(\mathbf{W}_{M}\mathbf{W}_{M-1}\dots\mathbf{W}_{1})_{1}\|_{2} = \|(\mathbf{W}_{M}\mathbf{W}_{M-1}\dots\mathbf{W}_{1})_{2}\|_{2} = \dots = \|(\mathbf{W}_{M}\mathbf{W}_{M-1}\dots\mathbf{W}_{1})_{K}\|_{2},$ 3523  $\mathbf{b} = \mathbf{0} \text{ or } \lambda_b = 0.$ 3524 3525  $\overline{\mathbf{h}}_i := \frac{1}{K} \sum_{i=1}^K \mathbf{h}_{j,i} = \mathbf{0}, \quad \forall i \in [n], \quad \text{and} \quad c_3(\mathbf{W}_M \mathbf{W}_{M-1} \dots \mathbf{W}_1)_K = \mathbf{h}_{k,i}, \quad \forall k \in [K], i \in [n],$ 3527 (154)3528  $\mathbf{W}_{M}\mathbf{W}_{M-1}\ldots\mathbf{W}_{1}(\mathbf{W}_{M}\mathbf{W}_{M-1}\ldots\mathbf{W}_{1})^{\top} = \frac{c\sum_{k=1}^{r}s_{k}^{2M}}{K-1}\left(\mathbf{I}_{K}-\frac{1}{K}\mathbf{1}_{K}\mathbf{1}_{K}^{\top}\right),$ 3529  $c_1 = \left[ (K-1) \exp\left(-\frac{\sqrt{c}}{(K-1)\sqrt{n}} \sqrt{\left(\sum_{k=1}^r s_k^2\right) \left(\sum_{k=1}^r s_k^{2M}\right)}\right) \right]^{-1},$ 3534 3535 with  $c_3$  as in equation (151). Furthermore,  $\mathbf{H}_1$  includes repeated columns with K non-repeated columns, and the sum of 3536 these non-repeated columns is 0. Hence,  $\operatorname{rank}(\mathbf{H}_1) \leq \min(d_M, d_{M-1}, \ldots, d_1, K-1) = K-1$ . 3537

Now, the only work left is to prove  $\xi(s_1, s_2, \dots, s_r, \lambda_{W_M}, \dots, \lambda_{W_1}, \lambda_{H_1})$  achieve its minimum at finite  $s_1, \dots, s_r$  for any fixed  $\lambda_{W_M}, \dots \lambda_{W_1}, \lambda_{H_1}$ . From equation (154), we know that  $c_1 = [(K-1)\exp\left(-\frac{\sqrt{c}}{(K-1)\sqrt{n}}\sqrt{(\sum_{k=1}^r s_k^2)(\sum_{k=1}^r s_k^{2M})}\right)]^{-1}$  is an increasing function in terms of  $s_1, s_2, \dots, s_r$ , and  $c_2 = \frac{1}{1+c_1}\log\left((1+c_1)(K-1)\right) + \frac{c_1}{1+c_1}\log\left(\frac{1+c_1}{c_1}\right)$  is a decreasing function in terms of  $c_1$ . Therefore, we observe the following: When any  $s_k \to +\infty, c_1 \to +\infty$  and  $\frac{1}{(1+c_1)(K-1)}\left(-\sqrt{\frac{c}{n}}\sqrt{(\sum_{k=1}^r s_k^2)(\sum_{k=1}^r s_k^{2M})}\right) \to 0, c_2 \to 0$ , so that  $\xi(s_1, \dots, s_K, \lambda_{W_M}, \dots \lambda_{W_1}, \lambda_{H_1}) \to +\infty$  as  $s_k \to +\infty$ .

Since  $\xi(s_1, s_2, \dots, s_r, \lambda_{W_M}, \dots, \lambda_{W_1}, \lambda_{H_1})$  is a continuous function of  $(s_1, s_2, \dots, s_r)$  and  $\xi(s_1, s_2, \dots, s_r, \lambda_{W_M}, \dots, \lambda_{W_1}, \lambda_{H_1}) \to +\infty$  when any  $s_k \to +\infty$ ,  $\xi$  must achieves its minimum at finite  $(s_1, s_2, \dots, s_r)$ . This finishes the proof.

## <sup>3554</sup> G.1. Supporting lemmas

3538

3552 3553

3558 3559 3560

3563

3569 3570

3556 **Lemma G.1** (Lemma D.5 in (Zhu et al., 2021)). Let  $y_k \in \mathbb{R}^K$  be an one-hot vector with the k-th entry equalling 1 for some 3557  $k \in [K]$ . For any vector  $z \in \mathbb{R}^K$  and  $c_1 > 0$ , the cross-entropy loss  $\mathcal{L}_{CE}(z, y_k)$  with  $y_k$  can be lower bounded by

$$\mathcal{L}_{CE}(\boldsymbol{z}, \boldsymbol{y}_k) \geq \frac{1}{1+c_1} \frac{\left(\sum_{i=1}^{K} z_i\right) - K z_k}{K-1} + c_2,$$

3564 where  $c_2 = \frac{1}{1+c_1} \log \left( (1+c_1) \left( K - 1 \right) \right) + \frac{c_1}{1+c_1} \log \left( \frac{1+c_1}{c_1} \right)$ . The inequality becomes an equality when 3566 3566

$$z_i = z_j, \quad \forall i, j \neq k, \quad and \quad c_1 = \left[ (K-1) \exp\left(\frac{\left(\sum_{i=1}^K z_i\right) - K z_k}{K-1}\right) \right]^{-1}.$$

Lemma G.2 (Extended from Lemma D.4 in (Zhu et al., 2021)). Let  $(\mathbf{W}_M, \mathbf{W}_{M-1}, \dots, \mathbf{W}_2, \mathbf{W}_1, \mathbf{H}_1, \mathbf{b})$  be a critical point of f with  $\{s_k\}_{k=1}^r$  be the singular values of  $\mathbf{H}_1$ . The lower bound (152) of g is attained for

 $(\mathbf{W}_M, \mathbf{W}_{M-1}, \dots, \mathbf{W}_2, \mathbf{W}_1, \mathbf{H}_1, \mathbf{b})$  if and only if:  $\|(\mathbf{W}_{M}\mathbf{W}_{M-1}\dots\mathbf{W}_{2}\mathbf{W}_{1})_{1}\|_{2} = \|(\mathbf{W}_{M}\mathbf{W}_{M-1}\dots\mathbf{W}_{2}\mathbf{W}_{1})_{2}\|_{2} = \dots = \|(\mathbf{W}_{M}\mathbf{W}_{M-1}\dots\mathbf{W}_{2}\mathbf{W}_{1})_{K}\|_{2},$  $\mathbf{b} = b\mathbf{1}$ .  $\bar{\mathbf{h}}_i := \frac{1}{K} \sum_{i=1}^K \mathbf{h}_{j,i} = \mathbf{0}, \quad \forall i \in [n], \quad and \quad c_3 (\mathbf{W}_M \mathbf{W}_{M-1} \dots \mathbf{W}_2 \mathbf{W}_1)_k = \mathbf{h}_{k,i}, \quad \forall k \in [K], i \in [n],$ (155) $\mathbf{W}_{M}\mathbf{W}_{M-1}\ldots\mathbf{W}_{2}\mathbf{W}_{1}(\mathbf{W}_{M}\mathbf{W}_{M-1}\ldots\mathbf{W}_{2}\mathbf{W}_{1})^{\top} = \frac{c\sum_{k=1}^{K}s_{k}^{2M}}{K-1}\left(\mathbf{I}_{K}-\frac{1}{K}\mathbf{1}_{K}\mathbf{1}_{K}^{\top}\right),$  $c_1 = \left[ (K-1) \exp\left(-\frac{\sqrt{c}}{(K-1)\sqrt{n}} \sqrt{\left(\sum_{k=1}^K s_k^2\right) \left(\sum_{k=1}^K s_k^{2M}\right)}\right) \right]^{-1},$ 

with  $c_3$  as in equation (151).

Proof of Lemma G.2. For the inequality (152), to become an equality, first we will need two inequalities at (148) to become equalities, this leads to: 

 $\overline{\mathbf{h}}_i = 0 \quad \forall i \in [n].$  $c_3(\mathbf{W}_M \mathbf{W}_{M-1} \dots \mathbf{W}_2 \mathbf{W}_1)_k = \mathbf{h}_{k,i} \quad \forall k \in [K], i \in [n],$ 

3598 with 
$$c_3 = \sqrt{\frac{\sum_{k=1}^r s_k^2}{cn \sum_{k=1}^r s_k^{2M}}}$$
 and  $c = \frac{\lambda_{H_1}^M}{\lambda_{W_M} \lambda_{W_{M-1}} \dots \lambda_{W_1}}$ 

Next, we will need the inequality at (147) to become an equality, which is true if and only if (from the equality conditions of Lemma G.1): 

$$(\mathbf{W}_M \mathbf{W}_{M-1} \dots \mathbf{W}_2 \mathbf{W}_1)_j \mathbf{h}_{k,i} + b_j = (\mathbf{W}_M \mathbf{W}_{M-1} \dots \mathbf{W}_2 \mathbf{W}_1)_l \mathbf{h}_{k,i} + b_l, \quad \forall j, l \neq k,$$
$$c_1 = \left[ (K-1) \exp\left(\frac{\left(\sum_{j=1}^K [z_{k,i}]_j\right) - K[z_{k,i}]_k}{K-1}\right) \right]^{-1} \quad \forall i \in [n]; k \in [K],$$

with  $z_{k,i} = \mathbf{W}_M \mathbf{W}_{M-1} \dots \mathbf{W}_2 \mathbf{W}_1 \mathbf{h}_{k,i}$ , and we have: 

$$\sum_{j=1}^{K} [\mathbf{z}_{k,i}]_j = \sum_{j=1}^{K} (\mathbf{W}_M \mathbf{W}_{M-1} \dots \mathbf{W}_2 \mathbf{W}_1)_j \mathbf{h}_{k,i} + \sum_{j=1}^{K} b_j = \sum_{j=1}^{K} \frac{1}{c_3} \mathbf{h}_{j,i}^{\top} \mathbf{h}_{k,i} + \sum_{j=1}^{K} b_j$$

$$= K \overline{\mathbf{h}}_i \mathbf{h}_{k,i}^{\top} + \sum_{j=1}^{K} b_j = K \overline{b},$$

$$= K \overline{\mathbf{h}}_i \mathbf{h}_{k_i}^{\mathsf{T}}$$

$$= K \overline{\mathbf{h}}_i \mathbf{h}_{k_i}^{\mathsf{T}}$$

with  $\overline{b} = \frac{1}{K} \sum_{i=1}^{K} b_i$ , and: 

3619  
3620 
$$K[\mathbf{z}_{k,i}]_{k} = K(\mathbf{W}_{M}\mathbf{W}_{M-1}\dots\mathbf{W}_{2}\mathbf{W}_{1})_{k}\mathbf{h}_{k,i} + Kb_{k} = Kc_{3}\|(\mathbf{W}_{M}\mathbf{W}_{M-1}\dots\mathbf{W}_{2}\mathbf{W}_{1})_{k}\|_{2}^{2} + Kb_{k}.$$

With these calculations, we can calculate  $c_1$  as following: 

$$c_{1} = \left[ (K-1) \exp\left(\frac{\left(\sum_{j=1}^{K} [\boldsymbol{z}_{k,i}]_{j}\right) - K[\boldsymbol{z}_{k,i}]_{k}}{K-1}\right) \right]^{-1}$$

$$= \left[ (K-1) \exp\left(\frac{K}{K-1} (\bar{b} - c_{3} \| (\mathbf{W}_{M} \mathbf{W}_{M-1} \dots \mathbf{W}_{2} \mathbf{W}_{1})_{k} \|_{2}^{2} - b_{k} \right) \right]^{-1}.$$

$$(156)$$

| 3630         | Since $c_1$ is chosen to be the same for all $k \in [K]$ , we have:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 3631         | $c_0 \  (\mathbf{W}_{\lambda}, \mathbf{W}_{\lambda}, \mathbf{W}_{\lambda}) \ _{2}^{2} + b_l - c_0 \  (\mathbf{W}_{\lambda}, \mathbf{W}_{\lambda}, \mathbf{W}_{\lambda}) \ _{2}^{2} + b_l  \forall l \neq k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (157) |
| 3633         | $c_{3\parallel}(\cdots, m, \cdots, m-1, \cdots, m, 2, \cdots, 1)\kappa\parallel_{2}^{2} + o_{\kappa}^{2} = c_{3\parallel}(\cdots, m, \cdots, m-1, \cdots, 2, \cdots, 1)\iota\parallel_{2}^{2} + o_{\iota}^{2} + o_{\iota}^{2} + o_{\iota}^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (157) |
| 3634<br>3635 | Second, since $[z_{k,i}]_j = [z_{k,i}]_\ell$ for all $\forall j, \ell \neq k, k \in [K]$ , we have:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| 3636         | $(\mathbf{W}_M \mathbf{W}_{M-1} \dots \mathbf{W}_1)_i \mathbf{h}_{k,i} + b_i = (\mathbf{W}_M \mathbf{W}_{M-1} \dots \mathbf{W}_1)_l \mathbf{h}_{k,i} + b_l,  \forall j, l \neq k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| 3637         | $\Leftrightarrow c_3(\mathbf{W}_M\dots\mathbf{W}_1)_i(\mathbf{W}_M\dots\mathbf{W}_1)_k + b_i = c_3(\mathbf{W}_M\dots\mathbf{W}_1)_l(\mathbf{W}_M\dots\mathbf{W}_1)_k + b_i,  \forall i, l \neq k.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (158) |
| 3638         | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| 3639         | Based on this and $\sum_{k=1}^{K} (\mathbf{W}_{M}\mathbf{W}_{M-1} - \mathbf{W}_{2}\mathbf{W}_{1})_{k} = \frac{1}{2}\sum_{k=1}^{K} \mathbf{h}_{k} = \frac{1}{2}K\mathbf{h}_{k} = 0$ we have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| 3641         | $\sum_{k=1}^{k} (1 + M + M + M + 1) + (1 + M + 2) + (1 + M +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| 3642         | $c_3 \  (\mathbf{W}_M \mathbf{W}_{M-1} \dots \mathbf{W}_2 \mathbf{W}_1)_k \ _2^2 + b_k = -c_3 \sum (\mathbf{W}_M \mathbf{W}_{M-1} \dots \mathbf{W}_1)_l (\mathbf{W}_M \mathbf{W}_{M-1} \dots \mathbf{W}_1)_k + b_k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| 3643         | $j \neq k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| 3644         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (150) |
| 3646         | $= -(K-1)c_3\left(\mathbf{W}_M\mathbf{W}_{M-1}\dots\mathbf{W}_2\mathbf{W}_1\right)_l\left(\mathbf{W}_M\mathbf{W}_{M-1}\dots\mathbf{W}_2\mathbf{W}_1\right)_k + \left(b_k + \sum_{j=1}^{n} (b_j - b_j)\right)_{l=1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (139) |
| 3647         | $l \neq k$ $j \neq l, k$ $j \neq l, k$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |
| 3648         | $= -(K-1)c_3(\mathbf{W}_M\mathbf{W}_{M-1}\dots\mathbf{W}_2\mathbf{W}_1)_l(\mathbf{W}_M\mathbf{W}_{M-1}\dots\mathbf{W}_2\mathbf{W}_1)_k + \left[2b_k + (K-1)b_l - K\bar{b}\right],$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| 3649         | for all $l \neq k$ . Combining equations (157) and (159) for all $k \mid l \in [K]$ with $k \neq l$ we have:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| 3650         | for all $i \neq k$ . Combining equations (157) and (159), for all $k, i \in [K]$ with $k \neq i$ we have.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
| 3652         | $2b_k + (K-1)b_\ell - K\bar{b} = 2b_l + (K-1)b_k - K\bar{b}  \Longleftrightarrow  b_k = b_l, \forall k \neq l.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| 3653         | Hence we have $\mathbf{b} = h1$ for some $h > 0$ . Therefore, from equations (157), (158) and (150):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| 3654         | Hence, we have $\mathbf{D} = 01$ for some $0 > 0$ . Therefore, from equations (157), (158) and (159).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
| 3655         | $\ (\mathbf{x}_{\mathbf{x}_{t}} - \mathbf{x}_{t})\ ^{2} = -\ (\mathbf{x}_{t} - \mathbf{x}_{t})\ ^{2} = \frac{1}{2}\ (\mathbf{x}_{t} - \mathbf{x}_{t})\ ^{2} = \frac{c}{2}\sum_{k=1}^{r} e^{2M}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (160) |
| 3657         | $\ (\mathbf{v}_{M} \dots \mathbf{v}_{1})_{1}\ _{2} = \dots = \ (\mathbf{v}_{M} \dots \mathbf{v}_{1})_{K}\ _{2} = \overline{K}\ (\mathbf{v}_{M} \dots \mathbf{v}_{1})\ _{F} = \overline{K} \sum_{k=1}^{K} s_{k},$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (100) |
| 3658         | $(\mathbf{W}_{M}\mathbf{W}_{M-1}\ldots\mathbf{W}_{1})_{i}(\mathbf{W}_{M}\mathbf{W}_{M-1}\ldots\mathbf{W}_{1})_{k} = (\mathbf{W}_{M}\mathbf{W}_{M-1}\ldots\mathbf{W}_{1})_{l}(\mathbf{W}_{M}\mathbf{W}_{M-1}\ldots\mathbf{W}_{1})_{k}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
| 3659         | $\frac{r}{r}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| 3660         | $= -\frac{1}{K-1} \  (\mathbf{W}_M \mathbf{W}_{M-1} \dots \mathbf{W}_1)_k \ _2^2 = -\frac{c}{K(K-1)} \sum s_k^{2M}  \forall j, l \neq k,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (161) |
| 3661         | 11  1  1  1  k=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| 3663         | and this is equivalent to:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| 3664         | $c \sum^r c^{2M} (1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
| 3665         | $(\mathbf{W}_M \mathbf{W}_{M-1} \dots \mathbf{W}_1) (\mathbf{W}_M \mathbf{W}_{M-1} \dots \mathbf{W}_1)^{	op} = rac{c \sum_{k=1} s_k}{K-1} \left( \mathbf{I}_K - rac{1}{K} 1_K 1_K^{	op}  ight).$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (162) |
| 3666         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| 3668         | Continue with $c_1$ in equation (156), we have:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| 3669         | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| 3670         | $c_1 = \left[ (K-1) \exp \left( \frac{-K}{1-1} c_3 \  (\mathbf{W}_M \mathbf{W}_{M-1} \dots \mathbf{W}_1)_k \ _2^2 \right) \right]^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
| 3671         | $\begin{bmatrix} \langle & \rangle & \Gamma & \langle K-1 \rangle & $ |       |
| 3672         | $\begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |
| 3674         | $= \left  (K-1) \exp \left( -\frac{\sqrt{2}}{(K-1)\sqrt{n}} \sqrt{\left  \left( \sum_{k=1}^{N} s_{k}^{2} \right) \left( \sum_{k=1}^{N} s_{k}^{2M} \right) \right  \right  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| 3675         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| 3676         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| 3677         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| 3078<br>3679 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| 3680         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| 0.004        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |