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Abstract
Modern deep neural networks have achieved im-
pressive performance on tasks from image clas-
sification to natural language processing. Sur-
prisingly, these complex systems with massive
amounts of parameters exhibit the same structural
properties in their last-layer features and classi-
fiers across canonical datasets when training until
convergence. In particular, it has been observed
that the last-layer features collapse to their class-
means, and those class-means are the vertices of
a simplex Equiangular Tight Frame (ETF). This
phenomenon is known as Neural Collapse (NC).
Recent papers have theoretically shown that NC
emerges in the global minimizers of training prob-
lems with the simplified “unconstrained feature
model”. In this context, we take a step further
and prove the NC occurrences in deep linear net-
works for the popular mean squared error (MSE)
and cross entropy (CE) losses, showing that global
solutions exhibit NC properties across the linear
layers. Furthermore, we extend our study to im-
balanced data for MSE loss and present the first
geometric analysis of NC under bias-free setting.
Our results demonstrate the convergence of the
last-layer features and classifiers to a geometry
consisting of orthogonal vectors, whose lengths
depend on the amount of data in their correspond-
ing classes. Finally, we empirically validate our
theoretical analyses on synthetic and practical net-
work architectures with both balanced and imbal-
anced scenarios.

1. Introduction
Despite the impressive performance of deep neural networks
(DNNs) across areas of machine learning and artificial in-
telligence (Krizhevsky et al., 2012; Simonyan & Zisserman,
2014; Goodfellow et al., 2016; He et al., 2015; Huang et al.,
2017; Brown et al., 2020), the highly non-convex nature
of these systems, as well as their massive number of pa-
rameters, ranging from hundreds of millions to hundreds of
billions, impose a significant barrier to having a concrete
theoretical understanding of how they work. Additionally, a

variety of optimization algorithms have been developed for
training DNNs, which makes it more challenging to analyze
the resulting trained networks and learned features (Ruder,
2016). In particular, the modern practice of training DNNs
includes training the models far beyond zero error to achieve
zero loss in the terminal phase of training (TPT) (Ma et al.,
2017; Belkin et al., 2018; 2019). A mathematical under-
standing of this training paradigm is important for studying
the generalization and expressivity properties of DNNs (Pa-
pyan et al., 2020; Han et al., 2021).

Recently, (Papyan et al., 2020) has empirically discovered
an intriguing phenomenon, named Neural Collapse (NC),
which reveals a common pattern of the learned deep rep-
resentations across canonical datasets and architectures in
image classification tasks. (Papyan et al., 2020) defined
Neural Collapse as the existence of the following four prop-
erties:

(NC1) Variability collapse: features of the same class
converge to a unique vector, as training progresses.

(NC2) Convergence to simplex ETF: the optimal class-
means have the same length and are equally and maximally
pairwise seperated, i.e., they form a simplex Equiangular
Tight Frame (ETF).

(NC3) Convergence to self-duality: up to rescaling, the
class-means and classifiers converge on each other.

(NC4) Simplification to nearest class-center: given a
feature, the classifier converges to choosing whichever class
has the nearest class-mean to it.

Theoretically, it has been proven that NC emerges in the
last layer of DNNs during TPT when the models belong to
the class of “unconstrained features model” (UFM) (Mixon
et al., 2020) and trained with cross-entropy (CE) loss or
mean squared error (MSE) loss. With regard to classifica-
tion tasks, CE is undoubtedly the most popular loss function
to train neural networks. However, MSE has recently been
shown to be effective for classification tasks, with compara-
ble or even better generalization performance than CE loss
(Hui & Belkin, 2020; Demirkaya et al., 2020; Zhou et al.,
2022b).

Contributions: We provide a thorough analysis of the
global solutions to the training deep linear network problem
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with MSE and CE losses under the unconstrained features
model defined in Section 2.1. Moreover, we study the geo-
metric structure of the learned features and classifiers under
a more practical setting where the dataset is imbalanced
among classes. Our contributions are three-fold:

1. UFM + MSE + balanced + deep linear network: We
provide the first mathematical analysis of the global solu-
tions for deep linear networks with arbitrary depths and
widths under UFM setting, showing that the global solutions
exhibit NC properties and how adding the bias term can
affect the collapsed structure, when training the model with
the MSE loss and balanced data.

2. UFM + MSE + imbalanced + plain/deep linear net-
work: We provide the first geometric analysis for the plain
UFM, which includes only one layer of weight after the un-
constrained features, when training the model with the MSE
loss and imbalanced data. Additionally, we also generalize
this setting to the deep linear network one.

3. UFM + CE + balanced + deep linear network: We
study deep linear networks trained with CE loss and demon-
strate the existence of NC for any global minimizes in this
setting.

Related works: In recent years, there has been a rapid
increase in interest in NC, resulting in a decent amount of
works in a short period of time. Under UFM, these works
studied different training problems, proving ETF and NC
properties are exhibited by any global solutions of the loss
functions. In particular, a line of works use UFM with CE
training to analyze theoretical abstractions of NC (Zhu et al.,
2021; Fang et al., 2021; Lu & Steinerberger, 2020). Other
works study UFM with MSE loss (Tirer & Bruna, 2022;
Zhou et al., 2022a; Ergen & Pilanci, 2020; Rangamani &
Banburski-Fahey, 2022). For MSE loss, recent extensions to
account for additional layers with non-linearity are studied
in (Tirer & Bruna, 2022; Rangamani & Banburski-Fahey,
2022), or with batch normalization (Ergen & Pilanci, 2020).
Furthermore, (Zhu et al., 2021; Zhou et al., 2022a;b) have
shown the benign optimization landscape for several loss
functions under the plain UFM setting, demonstrating that
critical points can only be global minima or strict saddle
points. Another line of work exploits the ETF structure to
improve the network design by initially fixing the last-layer
linear classifier as a simplex ETF and not performing any
subsequent learning (Zhu et al., 2021; Yang et al., 2022).

Most recent papers study NC in a balanced setting, i.e., the
number of training samples in every class is identical. This
setting is vital for the existence of the ETF structure. To the
best of our knowledge, NC with imbalanced data is studied
in (Fang et al., 2021; Thrampoulidis et al., 2022; Yang et al.,
2022; Xie et al., 2022). In particular, (Fang et al., 2021)
is the first to observe that for imbalanced setting, the col-

lapse of features within the same class is preserved, but the
geometry skew away from the ETF. (Thrampoulidis et al.,
2022) theoretically studies the SVM problem, whose global
minima follows a more general geometry than the simplex
ETF, called “SELI”. However, this work also makes clear
that the unregularized version of CE loss only converges to
KKT points of the SVM problem, which are not necessarily
global minima. Due to space considerations, we defer a
full discussion of related works to Appendix B. A compari-
son of our results with some existing works regarding the
study of global optimality conditions is shown in Table 1 in
Appendix B.

Notation: For a weight matrix W, we use wj to denote
its j-th row vector. ∥.∥F denotes the Frobenius norm of a
matrix and ∥.∥2 denotes L2-norm of a vector. ⊗ denotes the
Kronecker product. The symbol “∝” denotes proportional,
i.e, equal up to a positive scalar. Moreover, we denote the
best rank-k approximation of a matrix A as Pk(A). We
also use some common matrix notations: 1n is the all-ones
vector, diag{a1, . . . , aK} is a square diagonal matrix size
K ×K with diagonal entries a1, . . . , aK .

2. Problem Setup
We consider the classification task with K classes. Let nk
denote the number of training samples of class k, ∀ k ∈ [K]

and N :=
∑K

k=1 nk. A typical deep neural network ψ(·) :
RD → RK can be expressed as follows:

ψ(x) = Wϕ(x) + b,

where ϕ(·) : RD → Rd is the feature mapping, and
W ∈ RK×d and b ∈ RK are the last-layer linear classifiers
and bias, respectively. Formally, the feature mapping ϕ(.)
consists of a multilayer nonlinear compositional mapping,
which can be written as:

ϕθ(x) = σ(WL . . . σ(W1x+ b1) + bL),

where Wl and bl, l = 1, . . . , L, are the weight matrix
and bias at layer l, respectively. Here, σ(·) is a nonlinear
activation function. Let θ := {Wl,bl}Ll=1 be the set of
parameters in the feature mapping and Θ := {W,b, θ} be
the set of all network’s parameters. We solve the following
optimization problem to find the optimal values for Θ:

min
Θ

K∑
k=1

nk∑
i=1

L(ψ(xk,i),yk) +
λ

2
∥Θ∥2F , (1)

where xk,i ∈ RD is the i-th training sample in the k-th
class, and yk ∈ RK denotes its corresponding label, which
is a one-hot vector whose k-th entry is 1 and other entries
are 0. Also, λ > 0 is the regularization hyperparameter
that control the impact of the weight decay penalty, and
L(ψ(xk,i),yk) is the loss function that measures the differ-
ence between the output ψ(xk,i) and the target yk.
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Figure 1. Illustration of UFM, followed by linear layers.

(a) OF (Thm. 3.1) (b) ETF (Thm. 3.1)

(c) GOF (Thm. 4.1)

Figure 2. Visualization of geometries of Frobenius-normalized
classifiers and features with K = 3 classes. For imbalanced
example, the number of samples for each class is 30, 10, and 5.

2.1. Formulation under Unconstrained Features Model

Following recent studies of the NC phenomenon, we adopt
the unconstrained features model (UFM) in our setting.
UFM treats the last-layer features h = ϕ(x) ∈ Rd as free
optimization variables. This relaxation can be justified by
the well-known result that an overparameterized deep neural
network can approximate any continuous function (Hornik
et al., 1989; Hornik, 1991; Zhou, 2018; Yarotsky, 2018).
Using the UFM, we consider the following slight variant of
(1):

min
W,H,b

f(W,H,b) :=
1

2N

K∑
k=1

nk∑
i=1

L(Whk,i + b,yk)

+
λW
2

∥W∥2F +
λH
2

∥H∥2F +
λb
2
∥b∥22, (2)

where hk,i is the feature of the i-th training sample in the k-
th class. We let H := [h1,1, . . . ,h1,n1

,h2,1, . . . ,hK,nK
] ∈

Rd×N be the matrix of unconstrained features. The
feature class-means and global-mean are computed as
hk := n−1

k

∑nk

i=1 hk,i for k = 1, . . . ,K and hG :=

N−1
∑K

k=1

∑nk

i=1 hk,i, respectively. In this paper, we also
denote H by H1 and use these notations interchangeably.

Extending UFM to the setting with M linear layers: NC
phenomenon has been studied extensively for different loss
functions under UFM but with only 1 to 2 layers of weights.
In this work, we study NC under UFM in its significantly
more general form withM ≥ 2 linear layers by generalizing
(2) to deep linear networks with arbitrary depths and widths
(see Fig. 1 for an illustration). We consider the following
generalization of (2) in the M -linear-layer setting:

min
WM ,...,W1

H1,b

1

2N

K∑
k=1

nk∑
i=1

L(WMWM−1 . . .W1hk,i + b,yk)

+
λWM

2
∥WM∥2F +

λWM−1

2
∥WM−1∥2F + . . .

+
λW1

2
∥W1∥2F +

λH1

2
∥H1∥2F +

λb
2
∥b∥22, (3)

where M ≥ 2, λWM
, . . . , λW1 , λH1 , λb > 0 are regular-

ization hyperparameters, and WM ∈ RK×dM , WM−1 ∈
RdM×dM−1 , . . . ,W1 ∈ Rd2×d1 with dM , dM−1, . . . , d1
are arbitrary positive integers. In our setting, we do not
consider the biases of intermediate hidden layers.

Imbalanced data: Without loss of generality, we assume
n1 ≥ n2 ≥ . . . ≥ nK . This setting is more general than
those in previous works, where only two different class
sizes are considered, i.e., the majority classes of nA train-
ing samples and the minority classes of nB samples with
the imbalance ratio R := nA/nB > 1 (Fang et al., 2021;
Thrampoulidis et al., 2022).

We now define the “General Orthogonal Frame” (GOF),
which is the convergence geometry of the class-means and
classifiers in imbalanced MSE training problem with no bias
(see Section 4).

Definition 2.1 (General Orthogonal Frame). A standard
general orthogonal frame (GOF) is a collection of points in
RK specified by the columns of:

N =
1√∑K
k=1 a

2
k

diag(a1, a2, . . . , aK), ai > 0 ∀ i ∈ [K].

We also consider the general version of GOF as a collection
of points in Rd (d ≥ K) specified by the columns of PN
where P ∈ Rd×K is an orthonormal matrix, i.e. P⊤P =
IK . In the special case where a1 = a2 = . . . = aK , we
have N follows OF structure in (Tirer & Bruna, 2022), i.e.,
N⊤N ∝ IK . Fig. 2 shows a visualization for GOF versus
OF and ETF in (Papyan et al., 2020).

3. Neural Collapse in Deep Linear Networks
under the UFM Setting with Balanced Data

In this section, we present our study on the global optimality
conditions for the M -layer deep linear networks (M ≥ 2),
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trained with the MSE loss under the balanced setting, i.e.,
n1 = n2 = ... = nK := n, extending the prior results that
consider only one or two hidden layers. We consider the
following optimization problem for training the model:

min
WM ,...,W1

H1,b

1

2N
∥WMWM−1 . . .W1H1 + b1⊤

n −Y∥2F

+
λWM

2
∥WM∥2F + . . .+

λW1

2
∥W1∥2F +

λH1

2
∥H1∥2F ,

(4)

where Y = IK⊗1⊤
n ∈ RK×N is the one-hot vectors matrix.

Note that (4) is a special case of (3) when λbM = 0.

We further consider two different settings from (4): (i) bias-
free, i.e., excluding b, and (ii) last-layer unregularized bias,
i.e., including b. We now state the characteristics of the
global solutions to these problems.

Theorem 3.1. Let R := min(K, dM , dM−1, . . . , d2, d1)
and

(
W∗

M ,W
∗
M−1, . . . ,W

∗
1,H

∗
1,b

∗) be any
global minimizer of (4). Denoting a :=
K M
√
KnλWM

λWM−1
. . . λW1

λH1
, then the follow-

ing results hold for both (i) bias-free setting with b∗

excluded and (ii) last-layer unregularized bias setting with
b∗ included:

(a) If a < (M−1)
M−1
M

M2 , we have:

(NC1) H∗
1 = H

∗ ⊗ 1⊤
n , where H

∗
= [h∗

1, . . . ,h
∗
K ] ∈

Rd×K and b∗ = 1
K1K .

(NC2) ∀ j = 1, . . . ,M :

W∗
MW∗⊤

M ∝ H
∗⊤

H
∗ ∝ W∗

MW∗
M−1 . . .H

∗

∝ (W∗
MW∗

M−1 . . .W
∗
j )(W

∗
MW∗

M−1 . . .W
∗
j )

⊤

and align to:

(i) OF structure if (4) is bias-free:{
IK if R ≥ K

PR(IK) if R < K
.

(ii) ETF structure if (4) has last-layer bias b:{
IK − 1

K1K1⊤
K if R ≥ K − 1

PR

(
IK − 1

K1K1⊤
K

)
if R < K − 1

.

(NC3) ∀ j = 1, . . . ,M :

W∗
MW∗

M−1 . . .W
∗
1 ∝ H

∗⊤
,

W∗
MW∗

M−1 . . .W
∗
j ∝ (W∗

j−1 . . .W
∗
1H

∗
)⊤.

(b) If a > (M−1)
M−1
M

M2 , (4) only has trivial global
minima (W∗

M ,W
∗
M−1, . . . ,W

∗
1,H

∗
1,b

∗) =

(0,0, . . . ,0,0, 1
K1K).

(c) If a = (M−1)
M−1
M

M2 , (4) has trivial global solution
(W∗

M , . . . ,W
∗
1,H

∗
1,b

∗) = (0, ..,0,0, 1
K1K) and

nontrivial global solutions that have the same (NC1)
and (NC3) properties as case (a).

For (NC2) property, for j = 1, . . . ,M , we have:

W∗
MW∗⊤

M ∝ H
∗⊤

H
∗ ∝ W∗

MW∗
M−1 . . .H

∗ ∝
(W∗

MW∗
M−1 . . .W

∗
j )(W

∗
MW∗

M−1 . . .W
∗
j )

⊤

and align to:{
Pr (IK) if (4) is bias-free

Pr

(
IK − 1

K1K1⊤
K

)
if (4) has last-layer bias ,

with r is the number of positive singular value of H
∗
.

Our proofs (in Appendix D) first characterize critical points
of the loss function, showing that the weight matrices of the
network have the same set of singular values, up to a factor
depending on the weight decay. Then, we use the singular
value decomposition on these weight matrices to transform
the loss function into a function of singular values of W1

and singular vectors of WM . Due to the separation of the
singular values/vectors in the expression of the loss function,
we can optimize each one individually. This method shares
some similarities with the proof for bias-free case in (Tirer
& Bruna, 2022) where they transform a lower bound of the
loss function into a function of singular values. Furthermore,
the threshold (M − 1)

M−1
M /M2 of the constant a is derived

from the minimizer of the function g(x) = 1/(xM+1)+bx

for x ≥ 0. For instance, if b > (M − 1)
M−1
M /M , g(x) is

minimized at x = 0 and the optimal singular values will be
0’s, leading to the stated solution.

The main difficulties and novelties of our proofs for deep
linear networks are: i) we observe that the product of many
matrices can be simplified by using SVD with identical
orthonormal bases between consecutive weight matrices
(see Lemma D.4) and, thus, only the singular values of W1

and left singular vectors of WM remain in the loss function,
ii) optimal singular values are related to the minimizer of
the function g(x) = 1/(xM +1)+bx (see Appendix D.2.1),
and iii) we study the properties of optimal singular vectors
to derive the geometries of the global solutions.

Theorem 3.1 implies the following interesting results:
• Features collapse: For each k ∈ [K], with class-means

matrix H
∗
= [h∗

1, . . . ,h
∗
K ] ∈ Rd×K , we have H∗

1 =

H
∗ ⊗ 1⊤

n , implying the collapse of features within the
same class to their class-mean.
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• Convergence to OF/Simplex ETF: The class-means
matrix, the last-layer linear classifiers, or the product of
consecutive weight matrices converge to OF in the case of
bias-free and simplex ETF in the case of having last-layer
bias. This result is consistent with the two and three-layer
cases in (Tirer & Bruna, 2022; Zhou et al., 2022a).

• Convergence to self-duality: If we separate the product
W∗

M . . .W∗
1H

∗
(once) into any two components, they

will be perfectly aligned to each other up to rescaling.
This generalizes from the previous results which demon-
strate that the last-layer linear classifiers are perfectly
matched with the class-means after rescaling.

Remark 3.2. The convergence of the class-means matrix
to OF/Simplex ETF happens when dm ≥ K (or K − 1)
∀m ∈ [M ], which often holds in practice (Krizhevsky et al.,
2012; He et al., 2015). Otherwise, they converge to the best
rank-R approximation of IK or IK − 1

K1K1K
⊤, where the

class-means neither have the equinorm nor the maximally
pairwise separation properties. This result is consistent with
the two-layer case observed in (Zhou et al., 2022a).

Remark 3.3. From the proofs, we can show that under the
condition dm ≥ K, ∀m ∈ [M ], the optimal value of the
loss function is strictly smaller than when this condition
does not hold. Our result is aligned with (Zhu et al., 2018),
where they empirically observe that a larger network (i.e.,
larger width) tends to exhibit severe NC and have smaller
training errors.

Remark 3.4. We study deep linear networks under UFM and
balanced data for CE loss in Appendix A. The result demon-
strates NC properties of every global solutions, whose the
matrices product WM ×WM−1 × . . .×W1 and H1 con-
verge to the ETF structure when training progresses.

4. Neural Collapse in Deep Linear Networks
under the UFM Setting with MSE Loss and
Imbalanced Data

The majority of theoretical results for NC only consider
the balanced data setting, i.e., the same number of training
samples for each class. This assumption plays a vital role in
the existence of the well-structured ETF geometry. In this
section, we instead consider the imbalanced data setting and
derive the first geometry analysis under this setting for MSE
loss. Furthermore, we extend our study from the plain UFM
setting, which includes only one layer of weight after the
unconstrained features, to the deep linear network one.

4.1. Plain UFM Setting with No Bias

The bias-free plain UFM with MSE loss is given by:

min
W,H

1

2N
∥WH−Y∥2F +

λW
2

∥W∥2F +
λH
2

∥H∥2F , (5)

where W ∈ RK×d, H ∈ Rd×N , and Y ∈ RK×N is the
one-hot vectors matrix consisting nk one-hot vectors for
each class k, ∀ k ∈ [K]. We now state the NC properties
of the global solutions of (5) under the imbalanced data
setting when the feature dimension d is at least the number
of classes K.

Theorem 4.1. Let d ≥ K and (W∗,H∗) be any global
minimizer of problem (5). Then, we have:

(NC1) H∗ = H
∗
Y ⇔ h∗

k,i = h∗
k ∀ k ∈ [K], i ∈ [nk],

where H
∗
= [h∗

1, . . . ,h
∗
K ] ∈ Rd×K .

(NC2) Let a := N2λWλH , we have:

W∗W∗⊤ = diag
{
s2k
}K
k=1

,

H
∗⊤

H
∗
= diag

{
s2k

(s2k +NλH)2

}K

k=1

,

W∗H∗ = diag

{
s2k

s2k +NλH

}K

k=1

Y

=


s21

s21+NλH
1⊤
n1

. . . 0

...
. . .

...

0 . . .
s2K

s2K+NλH
1⊤
nK

 .
where:

• If a
n1

≤ a
n2

≤ . . . ≤ a
nK

≤ 1:

sk =

√√
nkλH
λW

−NλH ∀ k ∈ [K]

• If there exists a j ∈ [K − 1] s.t. a
n1

≤ a
n2

≤ . . . ≤
a
nj

≤ 1 < a
nj+1

≤ . . . ≤ a
nK

:

sk =


√√

nkλH

λW
−NλH ∀ k ≤ j

0 ∀ k > j
.

• If 1 < a
n1

≤ a
n2

≤ . . . ≤ a
nK

:

(s1, s2, . . . , sK) = (0, 0, . . . , 0),

and (W∗,H∗) = (0,0) in this case.

For any k such that sk = 0, we have:

w∗
k = h∗

k = 0.

(NC3) w∗
k =

√
nkλH

λW
h∗
k ∀ k ∈ [K].
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The detailed proofs are provided in the Appendix E. We use
the same approach as the proofs of Theorem 3.1 to prove
this result, with challenge arises in the process of lower
bounding the loss function w.r.t. the singular vectors of
W. Interestingly, the left singular matrix of W∗ consists
multiple orthogonal blocks on its diagonal, with each block
corresponds with a group of classes having the same number
of training samples. This property creates the orthogonality
of (NC2) geometries.

Theorem 4.1 implies the following interesting results:
• Features collapse: The features in the same class also

converge to their class-mean, similar as balanced case.

• Convergence to GOF: When the condition
N2λWλH/nK < 1 is hold, the class-means ma-
trix and the last-layer classifiers converge to GOF (see
Definition 2.1). This geometry includes orthogonal
vectors, but their length depends on the number of
training samples in the class. The above condition
implies that the imbalance and the regularization level
should not be too heavy to avoid trivial solutions that
may harm the model performances. We will discuss
more about this phenomenon in Section 4.2.

• Alignment between linear classifiers and last-layer
features: The last-layer linear classifier is aligned with
the class-mean of the same class, but with a different ratio
across classes. These ratios are proportional to the square
root of the number of training samples, and thus different
compared to the balanced case where W∗/∥W∗∥F =

H
∗⊤
/∥H∗⊤∥F .

Remark 4.2. We study the case d < K in Theorem E.2.
In this case, while (NC1) and (NC3) are exactly similar
as the case d ≥ K, the (NC2) geometries are different if
a/nd < 1 and nd = nd+1, where a square block on the
diagonal is replaced by its low-rank approximation. This
square block corresponds to classes with the number of
training samples equal nd. Also, we have w∗

k = h∗
k = 0 for

any class k with the amount of data is less than nd.

4.2. GOF Structure with Different Imbalance Levels
and Minority Collapse

Given the exact closed forms of the singular values of W∗

stated in Theorem 4.1, we derive the norm ratios between the
classifiers and between features across classes as follows:
Lemma 4.3. Suppose (W∗,H∗) is a global minimizer of
problem (5) such that d ≥ K and N2λWλH/nK < 1, so
that all the sk’s are positive. The following results hold:

∥w∗
i ∥2

∥w∗
j∥2

=

√
niλH

λW
−NλH√

njλH

λW
−NλH

,
∥h∗

i ∥2

∥h∗
j∥2

=
nj
ni

√
njλH

λW
−NλH√

niλH

λW
−NλH

.

If ni ≥ nj , we have ∥w∗
i ∥ ≥ ∥w∗

j∥ and ∥h∗
i ∥ ≤ ∥h∗

j∥.

It has been empirically observed that the classifiers of the
majority classes have greater norms (Kang et al., 2019).
Our result is in agreement with this observation. More-
over, it has been shown that class imbalance impairs the
model’s accuracy on minority classes (Kang et al., 2019;
Cao et al., 2019). Recently, (Fang et al., 2021) discover
the “Minority Collapse” phenomenon. In particular, they
show that there exists a finite threshold for imbalance level
beyond which all the minority classifiers collapse to a single
vector, resulting in the model’s poor performance on these
classes. Theorem 4.1 is not only aligned with the “Minority
Collapse” phenomenon, but also provides the imbalance
threshold for the collapse of minority classes to vector 0,
i.e., N2λWλH/nK > 1.

4.3. Bias-free Deep Linear Network under the UFM
setting

We now generalize (5) to bias-free deep linear networks
with M ≥ 2 and arbitrary widths. We study the following
optimization problem with imbalanced data:

min
WM ,WM−1,...,W1,H1

1

2N
∥WMWM−1 . . .W1H1 −Y∥2F

+
λWM

2
∥WM∥2F + . . .+

λW1

2
∥W1∥2F +

λH1

2
∥H1∥2F ,

(6)

where the target matrix Y is the one-hot vectors matrix
defined in (5). We now state the NC properties of the global
solutions of (6) when the dimensions of the hidden layers
are at least the number of classes K.

Theorem 4.4. Let dm ≥ K, ∀ m ∈ [M ], and
(W∗

M ,W
∗
M−1, . . . ,W

∗
1,H

∗
1) be any global minimizer of

problem (6). We have the following results:

(NC1) H∗
1 = H

∗
Y ⇔ h∗

k,i = h∗
k ∀ k ∈ [K], i ∈ [nk],

where H
∗
= [h∗

1, . . . ,h
∗
K ] ∈ Rd1×K .

(NC2) Let c :=
λM−1
W1

λWM
λWM−1

...λW2
, a :=

N M
√
NλWM

λWM−1
. . . λW1λH1 and ∀k ∈ [K], x∗k is the

largest positive solution of the equation a
nk

− xM−1

(xM+1)2
= 0,

we have the following:

W∗
MW∗⊤

M =
λW1

λWM

diag
{
s2k
}K
k=1

,

(W∗
M . . .W∗

1)(W
∗
M . . .W∗

1)
⊤ = diag

{
cs2Mk

}K
k=1

,

H
∗⊤

H
∗
= diag

{
cs2Mk

(cs2Mk +NλH1)
2

}K

k=1

,

W∗
MW∗

M−1 . . .W
∗
1H

∗
1 =

{
cs2Mk

cs2Mk +NλH1

}K

k=1

Y,
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(NC3) We have, ∀ k ∈ [K]:

(W∗
MW∗

M−1 . . .W
∗
1)k = (cs2Mk +NλH1

)h∗
k,

where:

• If a
n1

≤ a
n2

≤ . . . ≤ a
nK

< (M−1)
M−1
M

M2 , we have:

sk =
2M

√
NλH1x

∗M
k

c
∀ k ∈ [K].

• If there exists a j ∈ [K − 1] s.t. a
n1

≤ a
n2

≤ . . . ≤
a
nj
< (M−1)

M−1
M

M2 < a
nj+1

≤ . . . ≤ a
nK

, we have:

sk =

{
2M

√
NλH1

x∗M
k

c ∀ k ≤ j

0 ∀ k > j
.

For any k such that sk = 0, we have:

(W∗
M )k = h∗

k = 0.

• If (M−1)
M−1
M

M2 < a
n1

≤ a
n2

≤ . . . ≤ a
nK

, we have:

(s1, s2, . . . , sK) = (0, 0, . . . , 0),

and (W∗
M , . . . ,W

∗
1,H

∗
1) = (0, . . . ,0,0) in this case.

The detailed proofs of Theorem 4.4 and the remaining case

where there are some a
nk

’s equal to (M−1)
M−1
M

M2 are provided
in Appendix F.

Remark 4.5. The equation that solves for the optimal sin-
gular value, a

n − xM−1

(xM+1)2
= 0, has exactly two positive

solutions when a < (M − 1)
M−1
M /M2 (see Section D.2.1).

Solving this equation leads to cumbersome solutions of a
high-degree polynomial. Even without the exact closed-
form formula for the solution, the (NC2) geometries can
still be easily computed by numerical methods.

Remark 4.6. We study the case R :=
min(dM , . . . , d1,K) < K in Theorem F.2. In this
case, while (NC1) and (NC3) are exactly similar as the
case R = K in Theorem 4.4, the (NC2) geometries
are different if a/nR ≤ 1 and nR = nR+1, where a
square block on the diagonal is replaced by its low-rank
approximation. This square block corresponds to classes
with the number of training samples equal nR. Also, we
have (WM )∗k = h∗

k = 0 for any class k with the amount of
data is less than nR.

Figure 3. Illustration of NC with 6-layer MLP backbone on CI-
FAR10 for MSE loss, balanced data and bias-free setting.

Figure 4. Same setup as Fig. 3 but having last-layer bias.

5. Experimental Results
In this section, we empirically verify our theoretical results
in multiple settings for both balanced and imbalanced data
settings. In particular, we observe the evolution of NC prop-
erties in the training of deep linear networks with a prior
backbone feature extractor to create the “unconstrained”
features (see Fig. 1 for a sample visualization). The ex-
periments are performed on CIFAR10 (Krizhevsky, 2009)
dataset for the image classification task. Moreover, we also
perform direct optimization experiments, which follows the
setting in (3) to guarantee our theoretical analysis.

The hyperparameters of the optimizers are tuned to reach
the global optimizer in all experiments. The definitions of
the NC metrics, hyperparameters details, and additional
numerical results can be found in Appendix C.

5.1. Balanced Data

Under the balanced data setting, we alternatively substitute
between multilayer perceptron (MLP), ResNet18 (He et al.,
2016) and VGG16 (Simonyan & Zisserman, 2014) in place
of the backbone feature extractor. For all experiments with
MLP backbone model, we perform the regularization on
the “unconstrained” features H1 and on subsequent weight
layers to replicate the UFM setting in (3). For deep learn-
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Figure 5. Training results with ResNet18 backbone on CIFAR10
for MSE loss, balanced data and last-layer bias setting.

Figure 6. Illustration of NC with 6-layer MLP backbone on an
imbalanced subset of CIFAR10 for MSE loss and bias-free setting.

ing experiments with ResNet18 and VGG16 backbone, we
enforce the weight decay on all parameters of the network,
which aligns to the typical training protocol.

Multilayer perceptron experiment: We use a 6-layer MLP
model with ReLU activation as the backbone feature extrac-
tor in this experiment. For deep linear layers, we cover
all depth-width combinations with depth ∈ {1, 3, 6, 9} and
width ∈ {512, 1024, 2048}. We run both bias-free and last-
layer bias cases to demonstrate the convergence to OF and
ETF geometry, with the models trained by Adam optimizer
(Kingma & Ba, 2014) for 200 epochs. For a concrete il-
lustration, the results of width-1024 MLP backbone and
linear layers for MSE loss are shown in Fig. 3 and Fig. 4.
We consistently observe the convergence of NC metrics to
small values as training progresses for various depths of the
linear networks. Additional results with MLP backbone for
other widths and for CE loss can be found in Appendix C.1.

Deep learning experiment: We use ResNet18 and VGG16
as the deep learning backbone for extracting H1 in this
experiment. The depths of the deep linear network are
selected from the set {1, 3, 6, 9} and the widths are chosen
to equal the last-layer dimension of the backbone model (i.e.,
512). The models are trained with the MSE loss without
data augmentation for 200 epochs using stochastic gradient
descent (SGD). As shown in Fig. 5 above and Fig.7 in the
Appendix C.1.2, NC properties are obtained for widely used
architectures in deep learning contexts. Furthermore, the
results empirically confirm the occurrences of NC across
deep linear classifiers described in Theorem 3.1.

Direct optimization experiment: To exactly replicate the
problem (3), WM , . . . ,W1 and H1 are initialized with
standard normal distribution scaled by 0.1 and optimized

with gradient descent with step-size 0.1 for MSE loss. In
this experiment, we set K = 4, n = 100, dM = dM−1 =
. . . = d1 = 64 and all λ’s are set to be 5 × 10−4. We
cover multiple depth settings with M chosen from the set
{1, 3, 6, 9}. Fig. 8 and Fig. 9 in Appendix C.1.2 shows the
convergence to 0 of NC metrics for bias-free and last-layer
bias settings, respectively. The convergence errors are less
than 1e-3 at the final iteration, which corroborates Theorem
3.1.

5.2. Imbalanced Data

For imbalanced data setting, we perform two experiments:
CIFAR10 image classification with an MLP backbone and
direct optimization with a similar setup as in Section 5.1.

Multilayer perceptron experiment: In this experiment,
we use a 6-layer MLP network with ReLU activation as the
backbone model with removed batch normalization. We
choose a random subset of CIFAR10 dataset with num-
ber of training samples of each class chosen from the
list {500, 500, 400, 400, 300, 300, 200, 200, 100, 100}. The
network is trained with batch gradient descent for 12000
epochs. Both the feature extraction model and deep linear
model share the hidden width d = 2048. This experiment
is performed with multiple linear model depths M = 1, 3, 6
and the results are shown in Fig. 6. The converge of NC met-
rics to 0 (errors are at most 5e-2 at the final epoch) strongly
validates Theorem 4.1 and 4.4 with the convergence to GOF
structure of learned classifiers and features.

Direct optimization experiment: In this experiment, ex-
cept for the imbalanced data of K = 4 and n1 = 200, n2 =
100, n3 = n4 = 50, the settings are identical to the direct
optimization experiment in balanced case for MSE loss. Fig.
12 in Appendix C.2.2 corroborates Theorems 4.1 and 4.4
for various depths M = 1, 3, 6 and 9.

6. Concluding Remarks
In this work, we extend the global optimal analysis of
the deep linear networks trained with the mean squared
error (MSE) and cross entropy (CE) losses under the uncon-
strained features model. We prove that NC phenomenon is
exhibited by the global solutions across layers. Moreover,
we extend our theoretical analysis to the UFM imbalanced
data settings for the MSE loss, which are much less studied
in the current literature, and thoroughly analyze NC prop-
erties under this scenario. In our work, we do not include
biases in the training problem under imbalanced setting. We
leave the study of the collapsed structure with the presence
of biases as future work. As the next natural development
of our results, characterizing NC for deep networks with
non-linear activations under unconstrained features model
is a highly interesting direction for future research.
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Appendix for “Neural Collapse in Deep Linear Networks: From Balanced to
Imbalanced Data”

Firstly, we study NC characteristics for cross-entropy loss function in deep linear networks in Appendix A. The delayed
related works discussion are provided in Appendix B. Next, we present additional numerical results and experiments, details
of training hyperparameters and describe NC metrics used for experiments in Appendix C. Finally, detailed proofs for
Theorems 3.1, 4.1, 4.4 and A.1 are provided in Appendix D, E, F and G, respecively.

A. Neural Collapse in Deep Linear Networks under UFM Setting for CE with Balanced Data
In this section, we turn to cross-entropy loss and generalize NC for deep linear networks with last-layer bias under balanced
setting, and a mild assumption that all the hidden layers dimension are at least K − 1 is required. We consider the training
problem (3) with CE loss as following:

min
WM ,. . . ,W1,H1,b

1

N

K∑
k=1

n∑
i=1

LCE(WM . . .W1hk,i + b,yk) +
λWM

2
∥WM∥2F + . . . +

λH1

2
∥H1∥2F +

λb
2
∥b∥22, (7)

where:

LCE(z,yk) := − log

(
ezk∑K
i=1 e

zi

)
.

Theorem A.1. Assume dk ≥ K− 1∀k ∈ [M ], then any global minimizer (W∗
M , . . . ,W

∗
1,H

∗
1,b

∗) of problem (7) satisfies:

• (NC1) + (NC3):

h∗
k,i =

λMH1

λWM
λWM−1

. . . λW1

∑K−1
k=1 s2k∑K−1

k=1 s2Mk
(W∗

MW∗
M−1 . . .W

∗
1)k ∀k ∈ [K], i ∈ [n]

⇒ h∗
k,i = h∗

k ∀ i ∈ [n], k ∈ [K],

where {sk}K−1
k=1 are the singular values of H∗

1.

• (NC2) :H∗
1 and W∗

MW∗
M−1 · · ·W∗

1 will converge to a simplex ETF when training progresses:

(W∗
MW∗

M−1 · · ·W∗
1)(W

∗
MW∗

M−1 · · ·W∗
1)

⊤ =
λMH1

∑K−1
k=1 s2Mk

(K − 1)λWM
λWM−1

. . . λW1

(
IK − 1

K
1K1⊤

K

)
.

• We have b∗ = b∗1 where either b∗ = 0 or λb = 0.

The proof is delayed until Section G and some of the key techniques are extended from the proof for the plain UFM in (Zhu
et al., 2021). Comparing with the plain UFM with one layer of weight only, we have for deep linear case similar results as
the plain UFM case, with the (NC2) and (NC3) property now hold for the product WMWM−1 . . .W1 instead of W.

B. Related Works
In recent years, there has been a rapid increase in interest in Neural Collapse, resulting in a decent amount of papers within a
short period of time. Under the unconstrained feature model, (Zhu et al., 2021; Tirer & Bruna, 2022; Zhou et al., 2022a;b;
Thrampoulidis et al., 2022; Fang et al., 2021; Lu & Steinerberger, 2020; Ergen & Pilanci, 2020; Yang et al., 2022) studied
different training problems, proving simplex ETF and NC properties are exhibited by any global solutions of the loss
functions. In particular, (Zhu et al., 2021; Fang et al., 2021; Lu & Steinerberger, 2020) uses UFM with CE training to
analyze theoretical abstractions of Neural Collapse. Other works study UFM with MSE loss (Tirer & Bruna, 2022; Zhou
et al., 2022a; Ergen & Pilanci, 2020; Rangamani & Banburski-Fahey, 2022), and recent extensions to account for one
additional layer and nonlinearity (with an extra assumption) are studied in (Tirer & Bruna, 2022) or with batch normalization
(Ergen & Pilanci, 2020). The work (Rangamani & Banburski-Fahey, 2022) studies deep homogeneous networks with MSE
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Loss Train model Setting Consider
d < K − 1?

Extra
assumption

NC2
geometry

(Zhu et al., 2021) CE Plain UFM Balanced No N/a Simplex ETF
(Fang et al., 2021) CE Layer-peeled Balanced No N/a Simplex ETF

(Zhou et al., 2022a) MSE Plain UFM Balanced Yes N/a Simplex ETF

(Tirer & Bruna, 2022)

MSE Plain UFM, no bias Balanced No N/a OF
MSE Plain UFM, un-reg. bias Balanced No N/a Simplex ETF
MSE Extended UFM 2 linear layers, no bias Balanced No N/a OF

MSE Extended UFM 2 layers with ReLU, no bias Balanced No
Nuclear norm
equality 1 OF

(Rangamani & Banburski-Fahey, 2022) MSE Deep ReLU network, no bias Balanced No
Symmetric Quasi-
interpolation 2 Simplex ETF

(Thrampoulidis et al., 2022) CE UFM Support Vector Machine Imbalanced No N/a SELI

This work

MSE Extended UFM M linear layers, no bias (Theorem 3.1) Balanced Yes N/a OF
MSE Extended UFM M linear layers, un-reg. last bias (Theorem 3.1) Balanced Yes N/a Simplex ETF
MSE Plain UFM, no bias (Theorem 4.1) Imbalanced Yes N/a GOF
MSE Extended UFM M linear layers, no bias (Theorem 4.4) Imbalanced Yes N/a GOF
CE Extended UFM M linear layers (Theorem A.1) Balanced No N/a Simplex ETF

Table 1. Selected comparision of theoretical results on global optimality conditions with NC occurrence.

loss and trained with stochastic gradient descent. Specifically, the critical points of gradient flow satisfying the so-called
symmetric quasi-interpolation assumption are proved to exhibit NC properties, but the other solutions are not investigated.
(Zhou et al., 2022b) recently extended the global optimal characteristics to other loss functions, such as focal loss and label
smoothing. Moreover, (Zhu et al., 2021; Zhou et al., 2022a;b) provide the benign optimization landscape for different loss
functions under plain UFM, demonstrating that critical points can only be global minima or strict saddle points. Another
line of work, for example (Zhu et al., 2021; Yang et al., 2022), exploits the simplex ETF structure to improve the network
design, such as initially fixing the last-layer linear classifier as a simplex ETF and not performing any subsequent learning.

Most recent papers study Neural Collapse under a balanced setting, i.e., the number of training samples in every class is the
same. This setting is vital for the existence of the simplex ETF structure. To the best of our knowledge, Neural Collapse with
imbalanced data is studied in (Fang et al., 2021; Thrampoulidis et al., 2022; Yang et al., 2022; Xie et al., 2022). In particular,
(Fang et al., 2021) is the first to observe that for imbalanced setting, the collapse of features within the same class NC1 is
preserved, but the geometry skew away from ETF. They also present a phenomenon called “Minority Collapse”: for large
levels of imbalance, the minorities’ classifiers collapse to the same vector. (Thrampoulidis et al., 2022) theoretically studies
the SVM problem, whose global minima follows a more general geometry than the ETF, called “SELI”. However, this work
also makes clear that the unregularized and bias-free (i.e., no bias) version of CE loss only converges to KKT points of
the SVM problem, which are not necessarily global minima, and thus the geometry of the global minima of CE loss is not
guaranteed to be the “SELI” geometry. (Yang et al., 2022) studies the imbalanced data setting but with fixed last-layer linear
classifiers initialized as a simplex ETF right at the beginning. (Xie et al., 2022) proposed a novel loss function for balancing
different components of the gradients for imbalanced learning. Therefore, NC characterizations with imbalanced data for
commonly used loss functions in deep learning regimes such as CE, MSE, etc., still remain open. A comparison of our
results with some existing works regarding the study of global optimality conditions is shown in Table 1.

This work also relates to recent advances in studying the optimization landscape in deep neural network training. As pointed
out in (Zhu et al., 2021), the UFM takes a top-down approach to the analysis of deep neural networks, where last-layer
features are treated as free optimization variables, in contrast to the conventional bottom-up approach that studies the
problem starting from the input (Baldi & Hornik, 1989; Zhu et al., 2018; Kawaguchi, 2016; Yun et al., 2017; Laurent & von
Brecht, 2017; Safran & Shamir, 2017; Yun et al., 2018). These works studies the optimization landscape of two-layer linear
network (Baldi & Hornik, 1989; Zhu et al., 2018), deep linear network (Kawaguchi, 2016; Yun et al., 2017; Laurent & von
Brecht, 2017) and non-linear network (Safran & Shamir, 2017; Yun et al., 2018). (Zhu et al., 2021) provides an interesting
perspective about the differences between this top-down and bottom-up approach, with how results stemmed from UFM
can provide more insights to the network design and the generalization of deep learning while requiring fewer unrealistic
assumptions than the counterpart.

1(Tirer & Bruna, 2022) assumes the nuclear norm of W∗
1H

∗
1 and ReLU(W∗

1H
∗
1) are equal for any global solution (W∗

2 ,W
∗
1 ,H

∗
1).

2(Rangamani & Banburski-Fahey, 2022) assumes having a classifer f : RD → RK where [f(xk,i)]k = 1 − ϵ and [f(xk,i)]k′ =
ϵ/(K − 1) ∀ k′ ̸= k for all training samples
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C. Additional Experiments, Network Training and Metrics
C.1. Balanced Data

C.1.1. METRIC FOR MEASURING NC IN BALANCED SETTINGS

For balanced data, we use similar metrics to those presented in (Zhu et al., 2021) and (Tirer & Bruna, 2022), but also extend
them to the multilayer network setting:

• Features collapse. Since the collapse of the features of the backbone extractors implies the collapse of the features in
subsequent linear layers, we only consider NC1 metric for the output features of the backbone model. We recall the
definition of the class-means and global-mean of the features {hk,i} as:

hk :=
1

n

n∑
i=1

hk,i, hG :=
1

Kn

K∑
k=1

n∑
i=1

hk,i.

We also define the within-class, between-class covariance matrices, and NC1 metric as following:

ΣW :=
1

N

K∑
k=1

n∑
i=1

(hk,i − hk,i)(hk,i − hk,i)
⊤, ΣB :=

1

K

K∑
k=1

(hk − hG)(hk − hG)
⊤,

NC1 :=
1

K
trace(ΣWΣ†

B).

where Σ†
B denotes the pseudo inverse of ΣB .

• Convergence to OF/Simplex ETF. To capture the NC behaviors across layers, we denote Wm :=
WMWM−1 . . .WM−m+1 as the product of last m weight matrices of the deep linear network. We define NC2OF

m

and NC2ETF
m to measure the similarity of the learned classifiers Wm to OF (bias-free case) and ETF (last-layer bias

case) as:

NC2OF
m :=

∥∥∥∥ WmWm⊤

∥WmWm⊤∥F
− 1√

K
IK

∥∥∥∥
F

,

NC2ETF
m :=

∥∥∥∥ WmWm⊤

∥WmWm⊤∥F
− 1√

K − 1

(
IK − 1

K
1K1⊤

K

)∥∥∥∥
F

.

• Convergence to self-duality. We measure the alignment between the learned classifier WMWM−1 . . .W1 and the
learned class-means H via:

NC3OF :=

∥∥∥∥∥ WMWM−1 . . .W1H∥∥WMWM−1 . . .W1H
∥∥
F

− 1√
K

IK

∥∥∥∥∥
F

,

NC3ETF :=

∥∥∥∥∥ WMWM−1 . . .W1H∥∥WMWM−1 . . .W1H
∥∥
F

− 1√
K − 1

(
IK − 1

K
1K1⊤

K

)∥∥∥∥∥
F

,

where H = [h1, . . . ,hK ] is the class-means matrix.

C.1.2. ADDITIONAL NUMERICAL RESULTS FOR BALANCED DATA

This subsection expands upon the experiment results for balanced data in subsection 5.1 by the following points: i) For MLP
experiment, we provide NC metrics measured at the last epoch for the remaining depth-widths combinations mentioned in
subsection 5.1 and ii) Empirically verify Theorem A.1 of the NC existence for cross-entropy loss in deep linear network
setting.

Last-epoch NC metrics for multilayer perceptron and deep learning experiments . We include the full set of last-epoch
NC metrics for mentioned MLP depth-width combinations in Table 2 and 3. In which, Table 2 corresponds to the bias-free
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Figure 7. Illustration of NC for VGG16 backbone with MSE loss, balanced data and last-layer bias setting.

Figure 8. Illustration of NC for direct optimization experiment with MSE loss, balanced data and bias-free setting.

Figure 9. Illustration of NC for direct optimization experiment with MSE loss, balanced data and last-layer bias setting.

setting and Table 3 corresponds to the last-layer bias setting. Similarly, the full set of last-epoch NC metrics for deep
learning experiments with ResNet18 and VGG19 models are also presented in Table 4.

Verification of Theorem A.1 for CE loss: We run two experiments to verify neural collapse for CE loss described in
Theorem A.1 in two settings: MLP backbone model and direct optimization. Our network training procedure is similar to
multilayer perceptron experiment and direct optimization experiment for last-layer bias setting described in subsection 5.1.
For MLP experiment, we only change the learning rate to 0.0002 and substitute cross entropy loss in place of MSE loss. We
run the experiment with all depth-width combinations with linear layer depth ∈ {1, 3} and width ∈ {512, 1024, 2048}. For
direct optimization experiment, we change learning rate to 0.02, width to 256 and keep other settings to be the same.
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No. layer Hidden dim NC1 NC2OF
1 NC2OF

2 NC2OF
3 NC2OF

4 NC2OF
5 NC2OF

6 NC2OF
7 NC2OF

8 NC2OF
9 NC3OF

1
512 1.819× 10−3 5.856× 10−2 1.769× 10−2

1024 2.437× 10−4 3.024× 10−2 1.528× 10−2

2048 1.259× 10−4 1.467× 10−2 1.712× 10−2

3
512 8.992× 10−3 5.09× 10−2 1.057× 10−1 1.486× 10−1 2.958× 10−2

1024 2.843× 10−3 5.697× 10−2 1.009× 10−1 1.731× 10−1 2.368× 10−2

2048 5.165× 10−4 3.857× 10−2 5.799× 10−2 8.648× 10−2 2.797× 10−2

6
512 8.701× 10−3 7.833× 10−2 1.009× 10−1 1.186× 10−1 1.340× 10−1 1.511× 10−1 1.824× 10−1 3.478× 10−2

1024 2.578× 10−3 8.356× 10−2 1.066× 10−1 1.283× 10−1 1.489× 10−1 1.725× 10−1 2.429× 10−1 1.928× 10−2

2048 8.231× 10−4 7.187× 10−2 9.224× 10−2 1.078× 10−1 1.160× 10−1 1.214× 10−1 1.386× 10−1 3.430× 10−2

9
512 9.359× 10−3 1.149× 10−1 1.480× 10−1 1.703× 10−1 1.824× 10−1 1.868× 10−1 1.855× 10−1 1.821× 10−1 1.823× 10−1 2.033× 10−1 3.074× 10−2

1024 2.615× 10−3 1.165× 10−1 1.488× 10−1 1.745× 10−1 1.893× 10−1 1.961× 10−1 1.975× 10−1 1.972× 10−1 2.013× 10−1 2.492× 10−1 2.089× 10−2

2048 7.694× 10−4 1.070× 10−1 1.402× 10−1 1.701× 10−1 1.864× 10−1 1.929× 10−1 1.892× 10−1 1.763× 10−1 1.592× 10−1 1.371× 10−1 2.141× 10−2

Table 2. Full set of metrics NC1, NC2, and NC3 described in multilayer perceptron experiment in section 5.1 with bias-free setting.

No. layer Hidden dim NC1 NC2ETF
1 NC2ETF

2 NC2ETF
3 NC2ETF

4 NC2ETF
5 NC2ETF

6 NC2ETF
7 NC2ETF

8 NC2ETF
9 NC3ETF

1
512 2.058× 10−3 4.936× 10−2 5.406× 10−3

1024 2.791× 10−4 2.540× 10−2 3.862× 10−3

2048 1.434× 10−4 9.418× 10−3 1.750× 10−3

3
512 7.601× 10−3 5.147× 10−2 1.124× 10−1 1.586× 10−1 1.972× 10−2

1024 2.194× 10−3 5.967× 10−2 1.071× 10−1 1.949× 10−1 1.155× 10−2

2048 6.397× 10−4 3.447× 10−2 5.795× 10−2 9.811× 10−2 5.311× 10−3

6
512 8.308× 10−3 2.006× 10−2 5.110× 10−2 8.624× 10−2 1.221× 10−1 1.587× 10−1 1.997× 10−1 1.757× 10−2

1024 2.258× 10−3 2.818× 10−2 6.244× 10−1 9.861× 10−2 1.350× 10−1 1.710× 10−1 2.350× 10−1 1.320× 10−2

2048 5.653× 10−4 1.848× 10−2 3.409× 10−2 5.134× 10−2 6.849× 10−2 8.570× 10−2 1.279× 10−1 4.522× 10−3

9
512 9.745× 10−3 1.608× 10−2 2.040× 10−2 3.916× 10−2 6.095× 10−2 8.494× 10−2 1.107× 10−1 1.383× 10−1 1.679× 10−1 2.102× 10−1 1.772× 10−2

1024 2.587× 10−3 1.522× 10−2 2.462× 10−2 4.350× 10−2 6.525× 10−2 8.910× 10−2 1.147× 10−1 1.422× 10−1 1.711× 10−1 2.370× 10−1 1.245× 10−2

2048 6.943× 10−4 1.217× 10−2 2.043× 10−2 3.218× 10−2 4.517× 10−2 5.899× 10−1 7.350× 10−2 8.881× 10−2 1.042× 10−1 1.414× 10−1 7.937× 10−3

Table 3. Full set of metrics NC1, NC2, and NC3 in multilayer perceptron experiment in section 5.1 with last-layer bias setting.

Figure 10. Illustration of NC with 6-layer MLP backbone on CIFAR10 for cross entropy loss, balanced data and last-layer bias setting.

Theorem A.1 indicates that all the features of the same class converge to a single vector, and the alignment between the
learned classifier WMWM−1 . . .W1 and the learned class-means H has ETF form. Therefore, we use the same NC1
and NC3 as in the balanced data, last-layer bias case. Theorem A.1 also indicates that WMWM−1 . . .W1 converges
to ETF form. Hence, the metric used for CE loss to measure the convergence of WMWM−1 . . .W1 is defined as
NC2ETF

CE := NC2ETF
M , where NC2ETF

M is defined in C.1.1. Fig. 10 and Fig. 11 demonstrate the convergence of NC for
MLP and direct optimization experiments, respectively. The convergence to 0 of the NC metrics verifies theorem A.1.

C.1.3. DETAILS OF NETWORK TRAINING AND HYPERPARAMETERS FOR BALANCED DATA EXPERIMENTS

Multilayer perceptron experiment: In this experiment, we use a 6-layer MLP model with ReLU activation as the backbone
feature extractor. Hidden width of the backbone model and the deep linear network are set to be equal. We cover all
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Model name No.layer NC1 NC2ETF
1 NC2ETF

2 NC2ETF
3 NC2ETF

4 NC2ETF
5 NC2ETF

6 NC2ETF
7 NC2ETF

8 NC2ETF
9 NC3ETF

ResNet18

1 1.556× 10−3 4.376× 10−2 3.598× 10−3

3 4.713× 10−4 2.191× 10−2 4.714× 10−2 7.813× 10−2 2.131× 10−3

6 1.824× 10−4 4.295× 10−3 4.868× 10−3 7.651× 10−3 1.156× 10−2 1.681× 10−2 2.459× 10−2 1.817× 10−3

9 2.156× 10−4 3.609× 10−3 6.459× 10−3 7.835× 10−3 8.056× 10−3 8.096× 10−3 8.362× 10−3 9.400× 10−3 1.212× 10−2 1.683× 10−2 2.210× 10−3

VGG16

1 2.447× 10−2 6.689× 10−2 1.977× 10−3

3 1.347× 10−3 3.120× 10−2 3.035× 10−2 4.606× 10−2 2.767× 10−3

6 5.959× 10−4 1.645× 10−2 1.266× 10−2 1.703× 10−2 2.183× 10−2 2.473× 10−2 3.015× 10−2 2.483× 10−3

9 6.893× 10−4 1.438× 10−2 9.511× 10−3 1.198× 10−2 1.314× 10−2 1.619× 10−2 1.774× 10−2 2.030× 10−2 2.218× 10−2 2.445× 10−2 2.434× 10−3

Table 4. Full set of metrics NC1, NC2, and NC3 described in deep learning experiment in section 5.1 for ResNet18 and VGG16
backbones with last-layer bias setting.

Figure 11. Illustration of NC for direct optmization experiment with cross-entropy loss, balanced data and last-layer bias setting.

depth-width combinations with depth ∈ {1, 3, 6, 9} and width ∈ {512, 1024, 2048} for two settings, bias-free and last-layer
bias. All models are trained with Adam optimizer with MSE loss for 200 epochs with batch size 128 and learning rate
0.0001 (divided by 10 every 50 epochs). Weight decay and feature decay are set to 1× 10−4.

Deep learning experiment: In deep learning experiment, we use ResNet18 and VGG16 as backbones feature extractors. We
train both models with SGD optimizer with batch size 128 for MSE loss. Data augmentation is not used in this experiment.
The learning rate decays 0.1 every 50 epochs for 200 epochs. Depth of the deep linear layers are selected from the set
{1, 3, 6, 9}. Width of the deep linear layers are set to 512 to be equal to the last-layer dimension of the backbone model.
Weight decay in both models is enforced on all network parameters to align with the typical training protocol. For ResNet18
backbone models, we use the learning rate of 0.05 and weight decay of 2× 10−4. For VGG16 backbone, the learning rate is
0.02. Except for VGG16-backbone with 1 linear layer using weight decay of 5× 10−4, all other VGG16-backbone models
shares the weight decay of 3× 10−4.

Direct optimization experiment: In this experiment, we replicate the optimization problem (3). WM , . . . ,W1 and H1 are
initialized with standard normal distribution scaled by 0.1. We set K = 4, n = 100, dM = . . . = d1 = 64 and all λ’s are set
to be 5× 10−4. Depth of the linear layers are selected from the set {1, 3, 6, 9}. WM , . . . ,W1 and H1 are optimized by
gradient descent for 30000 iterations with learning rate 0.1.

C.2. Imbalanced Data

C.2.1. METRIC FOR MEASURING NC IN IMBALANCED DATA

For imbalanced setting, NC1 metric is identical to the balanced setting’s. While for NC2 and NC3, we measure the
closeness of learned classifiers and features to GOF structure as follows:

NC2GOF :=

∥∥∥∥ (WMWM−1 . . .W1)(WMWM−1 . . .W1)
⊤

∥(WMWM−1 . . .W1)(WMWM−1 . . .W1)⊤∥F
− diag{cs2Mk }Kk=1

∥diag{cs2Mk }Kk=1∥F

∥∥∥∥
F

,

NC3GOF :=

∥∥∥∥∥∥∥∥
WMWM−1 . . .W1H∥∥WMWM−1 . . .W1H

∥∥
F

−
diag

{
cs2Mk

cs2Mk +NλH1

}K

k=1∥∥∥∥diag{ cs2Mk
cs2Mk +NλH1

}K

k=1

∥∥∥∥
F

∥∥∥∥∥∥∥∥
F

,

where H = [h1, . . . ,hK ] is the class-means matrix, c and {sk}Kk=1 are as defined in Theorem 4.4.
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Figure 12. Illustration of NC for direct optimization experiment with MSE loss, imbalanced data and bias-free setting.

C.2.2. ADDITIONAL NUMERICAL RESULTS FOR IMBALANCED DATA

Continue from subsection 5.2, to empirically validate the Minority Collapse of the problems (5) and (6), we run two direct
optimization schemes similar as Section 5.2 with heavy imbalanced data of K = 4 and n1 = 2000, n2 = n3 = 495 and
n4 = 10 for M = 1 (d = 16) and M = 3 (d = 40). Both models are trained by gradient descent for 30000 iterations. The
final weight matrices of these models are as following (results are rounded to 2 decimal places):

W1 =

[−1.55 1.50 2.19 −1.36 −0.65 3.08 −0.81 −1.76 −0.96 −0.48 −1.21 −1.06 1.01 1.72 0.30 −1.73
−1.26 −0.56 −0.94 −1.24 0.11 −1.46 −0.51 −1.75 −0.69 0.11 1.09 −0.89 −0.56 0.57 0.48 0.27
0.76 −0.31 0.32 −1.30 −0.42 0.09 2.22 −1.07 1.15 −0.58 −0.28 −0.88 −0.03 −0.40 −1.29 0.43
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

]
,

for case M = 1. For case M = 3, we have:

W3 =

[
0.65 −0.96 0.49 −0.15 0.50 −0.11 −0.14 0.40 ... 0.02 0.05 0.27 0.13 0.71 −0.29 0.14 −0.30
−0.25 0.13 −0.40 −0.33 0.14 0.11 −0.32 0.15 ... 0.40 −0.10 −0.86 0.34 0.20 0.54 0.66 0.18
0.36 −0.15 −0.04 −0.23 −0.66 −0.04 −0.51 −0.33 ... −0.07 −0.52 0.15 −0.03 0.04 −0.36 0.35 0.02
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ... 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

]
. (8)

As can be seen from both cases, the classifier of the fourth class converges to zero vector (with the convergence error are
less than 1e-8), due to the heavy imbalance level of the dataset, which align to Theorem 4.1 and Theorem 4.4.

C.2.3. DETAILS OF NETWORK TRAINING AND HYPERPARAMETERS FOR IMBALANCED DATA EXPERIMENTS

Multilayer perceptron experiment: In this experiment, we use a subset of CIFAR10 dataset with training samples of
each class in the list {500, 500, 400, 400, 300, 300, 200, 200, 100, 100}. We use a 6-layer MLP model with ReLU activation
with removed activation as the backbone feature extractor. Hidden width of both the backbone model and the deep linear
networks are set to be 2048. Depth of the linear layers are selected from the set {1, 3, 6}. All models are trained with
Adam optimizer and MSE loss for 12000 epochs, no data augmentation, full batch gradient descent, learning rate 1× 10−4

(divided by 10 every 6000 epochs), feature decay and weight decay are set to be 1× 10−5.

Direct optimization experiment: In this experiment, we replicate the optimization problem (3) in imbalance data setting.
We set K = 4 and n1 = 200, n2 = 100, n3 = n4 = 50, dM = . . . = d1 = 64. Similar to the direct optimization
experiment in balance case, all λ’s are set to be 5 × 10−4. WM , . . . ,W1 and H1 are optimized by stochastic gradient
descent for 30000 iterations, with learning rate 0.1.

D. Proof of Theorem 3.1
First we state the proof for UFM bias-free with three layers of weights with same width across layers, as a warm-up for our
approach in the next proofs.

D.1. Warm-up Case: UFM with Three Layers of Weights

Consider the following bias-free optimization problem:

min
W3,W2,W1,H1

1

2N
∥W3W2W1H1 −Y∥2F +

λW3

2
∥W3∥2F +

λW2

2
∥W2∥2F +

λW1

2
∥W1∥2F +

λH1

2
∥H1∥2F (9)

where λW3 , λW2 , λW1 , λH1 are regularization hyperparameters, and W3 ∈ RK×d, W2 ∈ Rd×d, W1 ∈ Rd×d, H1 ∈ Rd×N

and Y ∈ RK×N . We assume d ≥ K for this problem.
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Proof of Theorem 3.1 with 3 layers of weight and d ≥ K. By definition, any critical point (W3,W2,W1,H1) of the loss
function (9) satisfies the following :

∂f

∂W3
=

1

N
(W3W2W1H1 −Y)H⊤

1 W
⊤
1 W

⊤
2 + λW3

W3 = 0, (10)

∂f

∂W2
=

1

N
W⊤

3 (W3W2W1H1 −Y)H⊤
1 W

⊤
1 + λW2W2 = 0, (11)

∂f

∂W1
=

1

N
W⊤

2 W
⊤
3 (W3W2W1H1 −Y)H⊤

1 + λW1
W1 = 0, (12)

∂f

∂H1
=

1

N
W⊤

1 W
⊤
2 W

⊤
3 (W3W2W1H1 −Y) + λH1

H1 = 0. (13)

Next, from W⊤
3

∂f
∂W3

− ∂f
∂W2

W⊤
2 = 0, we have:

λW3
W⊤

3 W3 = λW2
W2W

⊤
2 . (14)

Similarly, we also have:

λW2W
⊤
2 W2 = λW1W1W

⊤
1 , (15)

λW1W
⊤
1 W1 = λH1

H1H
⊤
1 . (16)

Also, from equation (13), by solving for H1, we have:

H1 = (W⊤
1 W

⊤
2 W

⊤
3 W3W2W1 +NλH1

I)−1W⊤
1 W

⊤
2 W

⊤
3 Y

=

(
λW2

λW3

W⊤
1 (W

⊤
2 W2)

2W1 +NλH1
I

)−1

W⊤
1 W

⊤
2 W

⊤
3 Y

=

(
λ2W1

λW3
λW2

(W⊤
1 W1)

3 +NλH1
I

)−1

W⊤
1 W

⊤
2 W

⊤
3 Y, (17)

where we use equations (14) and (15) for the derivation.

Now, let W1 = UW1SW1V
⊤
W1

be the SVD decomposition of W1 with UW1 ,VW1 ∈ Rd×d are orthonormal matrix and
SW1 ∈ Rd×d is a diagonal matrix with decreasing non-negative singular values. We note that from equations (14)-(16), we
have rank(W⊤

3 W3) = rank(W3) = rank(W2) = rank(W1) = rank(H1) and is at most K. We denote the K singular
values (some of them can be 0’s) of W1 as {sk}Kk=1.

From equation (15), we have:

W⊤
2 W2 =

λW1

λW2

W1W
⊤
1 =

λW1

λW2

UW1S
2
W1

U⊤
W1

= UW1S
2
W2

U⊤
W1
,

where SW2
=
√

λW1

λW2
SW1

∈ Rd×d. This means that S2
W2

contains the eigenvalues and the columns of UW1
are the

eigenvectors of W⊤
2 W2. Hence, we can write the SVD decomposition of W2 as W2 = UW2SW2U

⊤
W1

with orthonormal
matrix UW2 ∈ Rd×d.

By making similar arguments for W3, from equation (14):

W⊤
3 W3 =

λW2

λW3

W2W
⊤
2 =

λW2

λW3

UW2
S2
W2

U⊤
W2

=
λW1

λW3

UW2
S2
W1

U⊤
W2

= UW2
S⊤
W3

SW3
U⊤

W2
,
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with SW3
=
√

λW1

λW3

[
diag(s1, s2, . . . , sK) 0K×(d−K)

]
∈ RK×d, we can write SVD decomposition of W3 as

W3 = UW3SW3U
⊤
W2

with orthonormal matrix UW3 ∈ Rd×d.

Using these SVD in the RHS of equation (17) yields:

H1 =

(
λ2W1

λW3
λW2

(W⊤
1 W1)

3 +NλH1I

)−1

W⊤
1 W

⊤
2 W

⊤
3 Y

=

(
λ2W1

λW3λW2

VW1S
6
W1

V⊤
W1

+NλH1
I

)−1

W⊤
1 W

⊤
2 W

⊤
3 Y

=

(
λ2W1

λW3
λW2

VW1
S6
W1

V⊤
W1

+NλH1
I

)−1

VW1
SW1

SW2
S⊤
W3

U⊤
W3

Y

= VW1

(
λ2W1

λW3
λW2

S6
W1

+NλH1
I

)−1

SW1
SW2

S⊤
W3

U⊤
W3

Y

= VW1

(
λ2W1

λW3λW2

S6
W1

+NλH1I

)−1
√

λ2W1

λW3λW2

[
diag(s31, s

3
2, . . . , s

3
K)

0(d−K)×K

]
U⊤

W3
Y

= VW1

[
diag

( √
cs31

cs61+NλH1
, . . . ,

√
cs3K

cs6K+NλH1

)
0

]
︸ ︷︷ ︸

C∈Rd×K

U⊤
W3

Y

= VW1CU⊤
W3

Y, (18)

with c :=
λ2
W1

λW3
λW2

. We further have:

W3W2W1H = UW3
SW3

SW2
SW1

V⊤
W1

VW1
CU⊤

W3
Y

= UW3
diag

(
cs61

cs61 +NλH1

, . . . ,
cs6K

cs6K +NλH1

)
U⊤

W3
Y (19)

⇒ W3W2W1H−Y = UW3

(
diag

(
cs61

cs61 +NλH1

, . . . ,
cs6K

cs6K +NλH1

)
− IK

)
U⊤

W3
Y

= UW3
diag

(
−NλH1

cs61 +NλH1

, . . . ,
−NλH1

cs6K +NλH1

)
︸ ︷︷ ︸

D∈RK×K

U⊤
W3

Y

= UW3
DU⊤

W3
Y. (20)

Next, we will calculate the Frobenius norm of W3W2W1H−Y:

∥W3W2W1H1 −Y∥2F = ∥UW3DU⊤
W3

Y∥2F = trace(UW3DU⊤
W3

Y(UW3DU⊤
W3

Y)⊤)

= trace(UW3
DU⊤

W3
YY⊤UW3

DU⊤
W3

) = trace(D2U⊤
W3

YY⊤UW3
)

= n trace(D2) = n

K∑
k=1

(
−NλH1

cs6k +NλH1

)2

. (21)

where we use the fact YY⊤ = nIK and UW3
is orthonormal matrix.

Similarly, from the RHS of equation (18), we have:

∥H1∥2F = trace(VW1CU⊤
W3

YY⊤UW3C
⊤V⊤

W1
) = trace(C⊤CU⊤

W3
YY⊤UW3

)

= n trace(C⊤C) = n

K∑
k=1

( √
cs3k

cs6k +NλH1

)2

. (22)
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Now, we will plug equations (21), (22), and the SVD decomposition of W2,W1,H into the function (9) and note that
orthonormal matrix does not change the Frobenius form:

f(W3,W2,W1,H1) =
1

2N
∥W3W2W1H− IK∥2F +

λW3

2
∥W3∥2F +

λW2

2
∥W2∥2F +

λW1

2
∥W1∥2F +

λH1

2
∥H1∥2F

=
1

2K

K∑
k=1

(
−NλH1

cs6k +NλH1

)2

+
λW3

2

K∑
k=1

λW1

λW3

s2k +
λW2

2

K∑
k=1

λW1

λW2

s2k +
λW1

2

K∑
k=1

s2k +
nλH1

2

K∑
k=1

cs6k
(cs6k +NλH1)

2

=
nλH1

2

K∑
k=1

1

cs6k +NλH1

+
3λW1

2

K∑
k=1

s2k

=
1

2K

K∑
k=1

 1
cs6k

NλH1
+ 1

+ 3KλW1

3
√
NλH1

3
√
c

3
√
cs2k

3
√
NλH1


=

1

2K

K∑
k=1

(
1

x3k + 1
+ bxk

)
, (23)

with xk :=
3
√
cs2k

3
√

NλH1

and b := 3KλW1

3
√

NλH1
3
√
c

= 3K 3
√
NλW3

λW2
λW1

λH1
.

Next, we consider the function:

g(x) =
1

x3 + 1
+ bx with x ≥ 0, b > 0. (24)

Clearly, g(0) = 1. As in equation (23), f(W3,W2,W1,H) is the sum of g(xk) (with separable xk). Hence, if we can
minimize g(x), we will finish lower bounding f(W3,W2,W1,H). We consider the following cases for g(x):

• If b >
3√4
3 : For x > 0, we always have g(x) > 1

x3+1 +
3√4
3 x ≥ 1 = g(0). Indeed, the second inequality is equivalent

to:

1

x3 + 1
+

3
√
4

3
x ≥ 1

⇔
3
√
4

3
x4 − x3 +

3
√
4

3
x ≥ 0

⇔ x(x+
1
3
√
4
)(x− 3

√
2)2 ≥ 0.

Therefore, in this case, g(x) is minimized at x = 0 with minimal value of 1.

• If b =
3√4
3 : Similar as above, we have:

g(x) ≥ 1

⇔ x(x+
1
3
√
4
)(x− 3

√
2)2 ≥ 0.

In this case, g(x) is minimized at x = 0 or x = 3
√
2.

• If b <
3√4
3 : We take the first and second derivatives of g(x):

g′(x) = b− 3x2

(x3 + 1)2
,

g′′(x) =
12x4 − 6x

(x3 + 1)3
.
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We have: g′′(x) = 0 ⇔ x = 0 or x = 3

√
1
2 . Therefore, with x ≥ 0, g′(x) = 0 has at most two solutions. We also

have g′
(

3

√
1
2

)
= b − 2 3√2

3 < 0 (since b <
3√4
3 ). Thus, together with the fact that g′(0) = b > 0 and g(+∞) > 0,

g′(x) = 0 has exactly two solutions, we call it x1 and x2 (x1 < 3

√
1
2 < x2). Next, we note that g′(x2) = 0 and

g′(x) > 0 ∀x > x2 (since g′′(x) > 0 ∀x > x2). In the meanwhile, g′( 3
√
2) = b−

3√4
3 < 0. Hence, we must have

x2 >
3
√
2.

From the variation table, we can see that g(x2) < g( 3
√
2) = 1

3 + b 3
√
2 < 1

3 + 2
3 = 1 = g(0). Hence, the minimizer in

this case is the largest solution x > 3
√
2 of the equation g′(x) = 0.

x 0 x1
3

√
1
2

3
√
2 x2 ∞

g′′ 0 - 0 + + +
g′ + 0 - - 0 +

g 1 g(x1) g
(

3

√
1
2

)
1
3 + b 3

√
2 g(x2) ∞

From the above result, we can summarize the original problem as follows:

• If b = 3K 3
√
KnλW3

λW2
λW1

λH1
>

3√4
3 : all the singular values of W∗

1 are 0’s. Therefore, the singular values of
W∗

3,W
∗
1,H

∗ are also all 0’s. In this case, f(W3,W2,W1,H1) is minimized at (W∗
3,W

∗
2,W

∗
1,H

∗
1) = (0,0,0,0).

• If b = 3K 3
√
KnλW3

λW2
λW1

λH1
<

3√4
3 : In this case, W∗

1 has K singular values, all of which are multiplier of the
largest positive solution of the equation b− 3x2

(x3+1)2 = 0, denoted as s. Hence, we have the compact SVD form (with a
bit of notation abuse) of W∗

1 as W∗
1 = sUW1V

⊤
W1

with semi-orthonormal matrices UW1 ,VW1 ∈ Rd×K . We also
have U⊤

W1
UW1

= IK and V⊤
W1

VW1
= IK .

Similarly, since the singular matrices of W3,W1 are aligned to W1’s, we also have:

W∗
3 =

√
λW1

λW3

sUW3
UT

W2
,

W∗
2 =

√
λW1

λW2

sUW2
U⊤

W1
,

W∗
1 = sUW1

V⊤
W1
,

H∗
1 =

√
cs3

cs6 +NλH1

VW1
U⊤

W3
Y,

with orthonormal matrices UW3
∈ RK×K , semi-orthonormal matrix UW2

,UW1
,VW1

∈ Rd×K . Let
H

∗
=

√
cs3

cs6+NλH1
VW1U

⊤
W3

∈ RK×K , we have: H∗
1 = H

∗
Y = H

∗ ⊗ 1⊤
n .

We have the geometry of the global solutions as follows:

W∗
3W

⊤∗
3 ∝ UW3U

⊤
W2

UW2U
⊤
W3

∝ IK ,

H
∗⊤

H
∗ ∝ UW3

V⊤
W1

VW1
U⊤

W3
∝ IK ,

(W∗
3W

∗
2)(W

∗
3W

∗
2)

⊤ ∝ (UW3
UT

W2
UW2

U⊤
W1

)(UW3
UT

W2
UW2

U⊤
W1

)⊤ ∝ IK ,

(W∗
1H

∗
)⊤(W∗

1H
∗
) ∝ (UW1V

⊤
W1

VW1U
⊤
W3

)⊤(UW1V
⊤
W1

VW1U
⊤
W3

) ∝ IK ,

(W∗
3W

∗
2W

∗
1)(W

∗
3W

∗
2W

∗
1)

⊤ ∝ (UW3
V⊤

W1
)(UW3

V⊤
W1

)⊤ ∝ IK ,

(W∗
2W

∗
1H

∗
)⊤(W∗

2W
∗
1H

∗
) ∝ (UW2

U⊤
W3

)⊤(UW2
U⊤

W3
) ∝ IK ,

(25)
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and,

W∗
3W

∗
2W

∗
1H

∗ ∝ UW3U
⊤
W2

UW2V
⊤
W2

VW2V
⊤
W1

VW1U
⊤
W3

∝ IK . (26)

Next, we can derive the alignments between weights and features as following:

W∗
3W

∗
2W

∗
1 ∝ UW3

V⊤
W1

∝ H
∗⊤
,

W∗
2W

∗
1H

∗ ∝ UW2
U⊤

W3
∝ W∗⊤

3 ,

W∗
3W

∗
2 ∝ UW3V

⊤
W2

∝ (W∗
1H

∗
)⊤.

(27)

• If b = 3K 3
√
KnλW3λW2λW1λH1 =

3√4
3 : For this case, x∗k can either be 0 or 3

√
2, as long as {x∗k}Kk=1 is a decreasing

sequence. If all the singular values are 0’s, we have the trivial global minima (W∗
3,W

∗
2,W

∗
1,H

∗
1) = (0,0,0,0). If

there are exactly r ≤ K positive singular values s1 = s2 = . . . = sr := s > 0 and sr+1 = . . . = sK = 0, then we
can write the compact SVD form of weight matrices and H∗

1 as following:

W∗
3 =

√
λW1

λW3

sUW3U
T
W2
,

W∗
2 =

√
λW1

λW2

sUW2
U⊤

W1
,

W∗
1 = sUW1

V⊤
W1
,

H∗
1 =

√
cs3

cs6 +NλH1

VW1
U⊤

W3
Y = H

∗
Y,

where UW3
,UW2

,UW1
,VW1

are semi-orthonormal matrices consist r orthogonal columns. Additionally, we note
that UW3

∈ RK×r are created from orthonormal matrices size K ×K with the removal of columns corresponding
with singular values equal 0. Thus, UW3

U⊤
W3

is the best rank-r approximation of IK . From here, we can deduce the
geometry of the following:

W∗
3W

∗⊤
3 ∝ H

∗⊤
H

∗ ∝ W∗
3W

∗
2W

∗
1H

∗

∝ (W∗
3W

∗
2)(W

∗
3W

∗
2)

⊤ ∝ (W∗
1H)⊤(W∗

1H)

∝ (W∗
3W

∗
2W

∗
1)(W

∗
3W

∗
2W

∗
1)

⊤ ∝ (W∗
2W

∗
1H)⊤(W∗

2W
∗
1H) ∝ Pr(IK),

where Pr(IK) denotes the best rank-r approximation of IK . The collapse of features (NC1) and the alignments
between weights and features (NC3) are identical as the case b <

3√4
3 .

D.2. Supporting Lemmas for UFM Deep Linear Networks with M Layers of Weights

Before deriving the proof for M layers linear network, from the proof of three layers of weights, we generalize some useful
results that support the main proof.

Consider MSE loss function with M layers linear network and arbitrary target matrix Y ∈ RK×N :

f(WM ,WM−1, . . . ,W2,W1,H1) =
1

2N
∥WMWM−1 . . .W2W1H1 −Y∥2F +

λWM

2
∥WM∥2F

+
λWM−1

2
∥WM−1∥2F + . . .+

λW2

2
∥W2∥2F +

λW1

2
∥W1∥2F +

λH1

2
∥H1∥2F , (28)

with WM ∈ RK×dM , WM−1 ∈ RdM×dM−1 ,WM−2 ∈ RdM−1×dM−2 , . . . ,W2 ∈ Rd3×d2 ,W1 ∈ Rd2×d1 ,H1 ∈ Rd1×K

with dM , dM−1, . . . , d2, d1 are arbitrary positive integers.
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Lemma D.1. The partial derivative of ∥WMWM−1 . . .W2W1H1 −Y∥2F w.r.t Wi (i = 1, 2, . . . ,M):

1

2

∂∥WMWM−1 . . .Wi . . .W2W1H1 −Y∥2F
∂Wi

=

W⊤
i+1W

⊤
i+2 . . .W

⊤
M (WMWM−1 . . .Wi . . .W2W1H1 −Y)H⊤

1 W
⊤
1 . . .W

⊤
i−1.

This result is common and the proof can be found in (Yun et al., 2017), for example.

Lemma D.2. For any critical point (WM ,WM−1, . . . ,W2,W1,H1) of f , we have the following:

λWM
W⊤

MWM = λWM−1
WM−1W

⊤
M−1,

λWM−1
W⊤

M−1WM−1 = λWM−2
WM−2W

⊤
M−2,

. . . ,

λW2W
⊤
2 W2 = λW1W1W

⊤
1 ,

λW1W
⊤
1 W1 = λH1H1H

⊤
1 ,

and:

H1 = (c(W⊤
1 W1)

M +NλH1
I)−1W⊤

1 W
⊤
2 . . .W

⊤
MY, (29)

with c :=
λM−1
W1

λWM
λWM−1

...λW2
.

Proof of Lemma D.2. By definition and using Lemma D.1, any critical point (WM ,WM−1, . . . ,W2,W1,H1) satisfies
the following :

∂f

∂WM
=

1

N
(WMWM−1 . . .W2W1H1 −Y)H⊤

1 W
⊤
1 . . .W

⊤
M−1 + λWM

WM = 0,

∂f

∂WM−1
=

1

N
W⊤

M (WMWM−1 . . .W2W1H1 −Y)H⊤
1 W

⊤
1 . . .W

⊤
M−2 + λWM−1

WM−1 = 0,

. . . ,

∂f

∂W1
=

1

N
W⊤

2 W
⊤
3 . . .W

⊤
M (WMWM−1 . . .W2W1H1 −Y)H⊤

1 + λW1
W1 = 0,

∂f

∂H1
=

1

N
W⊤

1 W
⊤
2 . . .W

⊤
M (WMWM−1 . . .W2W1H1 −Y) + λH1H1 = 0.

Next, we have:

0 = W⊤
M

∂f

∂WM
− ∂f

∂WM−1
W⊤

M−1 = λWM
W⊤

MWM − λWM−1
WM−1W

⊤
M−1

⇒ λWM
W⊤

MWM = λWM−1
WM−1W

⊤
M−1.

0 = W⊤
M−1

∂f

∂WM−1
− ∂f

∂WM−2
W⊤

M−2 = λWM−1
W⊤

M−1WM−1 − λWM−2
WM−2W

⊤
M−2

⇒ λWM−1
W⊤

M−1WM−1 = λWM−2
WM−2W

⊤
M−2.

Making similar argument for the other derivatives, we have:

λWM
W⊤

MWM = λWM−1
WM−1W

⊤
M−1,

λWM−1
W⊤

M−1WM−1 = λWM−2
WM−2W

⊤
M−2,

. . . ,

λW2
W⊤

2 W2 = λW1
W1W

⊤
1 ,

λW1
W⊤

1 W1 = λH1
H1H

⊤
1 .



1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

Neural Collapse in Deep Linear Networks: From Balanced to Imbalanced Data

Also, from ∂f
∂H1

= 0, solving for H1 yields:

H1 = (W⊤
1 W

⊤
2 . . .W

⊤
M−1W

⊤
MWMWM−1 . . .W2W1 +NλH1I)

−1W⊤
1 W

⊤
2 . . .W

⊤
MY

=

(
λWM−1

λWM

W⊤
1 W

⊤
2 . . . (W

⊤
M−1WM−1)

2 . . .W2W1 +NλH1I

)−1

W⊤
1 W

⊤
2 . . .W

⊤
MY

= . . .

=

 λM−1
W1

λWM
λWM−1

. . . λW2︸ ︷︷ ︸
c

(W⊤
1 W1)

M +NλH1


−1

W⊤
1 W

⊤
2 . . .W

⊤
MY

= (c(W⊤
1 W1)

M +NλH1
I)−1W⊤

1 W
⊤
2 . . .W

⊤
MY.

Lemma D.3. For any critical point (WM ,WM−1, . . . ,W2,W1,H1), we have r := rank(WM ) = rank(WM−1) =
rank(WM−2) = . . . = rank(W1) = rank(H1) ≤ min(K, dM , dM−1, . . . , d1) := R.

Proof of Lemma D.3. The result is deduced from Lemma D.2 and the matrix rank property rank(A) = rank(A⊤A) =
rank(AA⊤).

Lemma D.4. For any critical point (WM ,WM−1, . . . ,W2,W1,H1) of f , let W1 = UW1
SW1

V⊤
W1

be the SVD
decomposition of W1 with UW1

∈ Rd2×d2 ,VW1
∈ Rd1×d1 are orthonormal matrices and SW1

∈ Rd2×d1 is a diagonal
matrix with decreasing non-negative singular values. We denote the r := rank(W1) singular values of W1 as {sk}rk=1

(r ≤ R := min(K, dM , . . . , d1), from Lemma D.3).

Then, we can write the SVD of weight matrices as:

WM = UWM
SWM

U⊤
WM−1

,

WM−1 = UWM−1
SWM−1

U⊤
WM−2

,

WM−2 = UWM−2
SWM−2

U⊤
WM−3

,

WM−3 = UWM−3
SWM−3

U⊤
WM−4

,

. . . ,

W2 = UW2
SW2

U⊤
W1
,

W1 = UW1SW1V
⊤
W1
,

with:

SWj =

√
λW1

λWj

[
diag(s1, . . . , sr) 0r×(dj−r)

0(dj+1−r)×r 0(dj+1−r)×(dj−r)

]
∈ Rdj+1×dj , ∀ j ∈ [M ],

and UWM
,UWM−1

,UWM−2
,UWM−3

, . . . ,UW1
,VW1

are all orthonormal matrices.

Proof of Lemma D.4. From Lemma D.2, we have:

W⊤
2 W2 =

λW1

λW2

W1W
⊤
1 =

λW1

λW2

UW1SW1S
⊤
W1

U⊤
W1

= UW1S
⊤
W2

SW2U
⊤
W1
,

where:

SW2
:=

√
λW1

λW2

[
diag(s1, . . . , sr) 0r×(d2−r)

0(d3−r)×r 0(d3−r)×(d2−r)

]
∈ Rd3×d2 .
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This means the diagonal matrix S⊤
W2

SW2
contains the eigenvalues and the columns of UW1

are the eigenvectors of W⊤
2 W2.

Hence, we can write the SVD decomposition of W2 as W2 = UW2
SW2

U⊤
W1

with orthonormal matrix UW2
∈ Rd3×d3 .

By making similar arguments as above for W3, from:

W⊤
3 W3 =

λW2

λW3

W2W
⊤
2 =

λW2

λW3

UW2SW2S
⊤
W2

U⊤
W2

= UW2S
⊤
W3

SW3U
⊤
W2
,

where:

SW3 :=

√
λW1

λW3

[
diag(s1, . . . , sr) 0r×(d3−r)

0(d4−r)×r 0(d4−r)×(d3−r)

]
∈ Rd4×d3 ,

and thus, we can write SVD decomposition of W3 as W3 = UW3SW3U
⊤
W2

with orthonormal matrix UW3 ∈ Rd4×d4 .
Repeating the process for other weight matrices, we got the desired result.

Lemma D.5. Continue from the setting and result of Lemma D.4, we have:

H1 = VW1

[
diag

( √
csM1

cs2M1 +NλH1

, . . . ,
√
csMr

cs2Mr +NλH1

)
0r×(K−r)

0(d1−r)×r 0(d1−r)×(K−r)

]
︸ ︷︷ ︸

C∈Rd1×K

U⊤
WM

Y,

WMWM−1 . . .W2W1H−Y = UWM

[
diag

(
−NλH1

cs2M1 +NλH1

, . . . ,
−NλH1

cs2Mr +NλH1

)
0r×(K−r)

0(K−r)×r −IK−r

]
︸ ︷︷ ︸

D∈RK×K

U⊤
WM

Y,

with c :=
λM−1
W1

λWM
λWM−1

...λW2
.

Proof of Lemma D.5. From Lemma D.2, together with the SVD of weight matrices and the form of singular matrix SWj

derived in Lemma D.4, we have:

H1 = (c(W⊤
1 W1)

M +NλH1
I)−1W⊤

1 W
⊤
2 . . .W

⊤
MY

= (cVW1
(S⊤

W1
SW1

)MV⊤
W1

+NλH1
I)−1VW1

S⊤
W1

S⊤
W2

. . .S⊤
WM

U⊤
WM

Y

= VW1
(c(S⊤

W1
SW1

)M +NλH1
I)−1S⊤

W1
S⊤
W2

. . .S⊤
WM

U⊤
WM

Y

= VW1
(c(S⊤

W1
SW1

)M +NλH1
I)−1

√
c

[
diag(sM1 , . . . , s

M
r ) 0r×(K−r)

0(d1−r)×r 0(d1−r)×(K−r)

]
U⊤

WM
Y

= VW1

[
diag

( √
csM1

cs2M1 +NλH1

, . . . ,
√
csMr

cs2Mr +NλH1

)
0r×(K−r)

0(d1−r)×r 0(d1−r)×(K−r)

]
︸ ︷︷ ︸

C∈Rd1×K

U⊤
WM

Y

= VW1
CU⊤

WM
Y

⇒ WMWM−1 . . .W2W1H1 = UWM
SWM

SWM−1
. . .SW1

CU⊤
WM

Y

=

√
λW1

λWM

UWM

[
diag(s1, . . . , sr) 0

0 0

]
SWM−1

. . .SW1
CU⊤

WM
Y

= . . .

= UWM

√
c

[
diag(sM1 , . . . , s

M
r ) 0

0 0

]
CU⊤

WM
Y
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= UWM

[
diag

(
cs2M1

cs2M1 +NλH1

, . . . ,
cs2Mr

cs2Mr +NλH1

)
0

0 0

]
U⊤

WM
Y

⇒ WM . . .W1H1 −Y = UWM

([
diag

(
cs2M1

cs2M1 +NλH1

, . . . ,
cs2Mr

cs2Mr +NλH1

)
0r×(K−r)

0(K−r)×r 0(K−r)×(K−r)

]
− IK

)
U⊤

WM
Y

= UWM

[
diag

(
−NλH1

cs2M1 +NλH1

, . . . ,
−NλH1

cs2Mr +NλH1

)
0r×(K−r)

0(K−r)×r −IK−r

]
︸ ︷︷ ︸

D∈RK×K

U⊤
WM

Y

= UWM
DU⊤

WM
Y.

D.2.1. MINIMIZER OF THE FUNCTION g(x) = 1
xM+1

+ bx

Next, we study the minimization problem of the following function, this result will be used frequently in proofs of theorems
in the main paper:

g(x) =
1

xM + 1
+ bx with x ≥ 0, b > 0,M ≥ 2.

Clearly, g(0) = 1. We consider the following cases for parameter b:

• If b > (M−1)
M−1
M

M : We have with x > 0: g(x) > 1
xM+1

+ (M−1)
M−1
M

M x. We will prove:

1

xM + 1
+

(M − 1)
M−1
M

M
x ≥ 1

⇔ (M − 1)
M−1
M

M
xM+1 − xM +

(M − 1)
M−1
M

M
x ≥ 0

⇔ x(xM − M

(M − 1)
M−1
M

xM−1 + 1) ≥ 0

⇔ xM − M

(M − 1)
M−1
M

xM−1 + 1 ≥ 0.

(30)

Let h(x) = xM − M

(M−1)
M−1
M

xM−1 + 1 with x ≥ 0, we have:

h′(x) =MxM−1 −M(M − 1)1/MxM−2,

h′(x) = 0 ⇔ x = 0 or x = (M − 1)1/M . (31)

We also have: h(0) = 1 and h((M − 1)1/M ) = M − 1 −M + 1 = 0. From the variation table, we clearly have
h(x) ≥ 0 ∀ x ≥ 0.

x 0 (M − 1)1/M ∞
h′(x) - 0 +
h(x) 1 0 ∞

Hence, in this case, g(x) > 1 ∀ x > 0, therefore, g(x) is minimized at x = 0.

• If b = (M−1)
M−1
M

M : We have g(x) = 1
xM+1

+ (M−1)
M−1
M

M x ≥ 1. Thus, g(x) is minimized at x = 0 or x = (M−1)1/M .
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• If b < (M−1)
M−1
M

M : We take the first and second derivatives of g(x):

g′(x) = b− MxM−1

(xM + 1)2
,

g′′(x) = −M
(
(M − 1)xM−2

(xM + 1)2
− 2Mx2M−2

(xM + 1)3

)
.

=
(M2 +M)x2M−2 − (M2 −M)xM−2

(xM + 1)3

We have: g′′(x) = 0 ⇔ x = 0 or x = M

√
M−1
M+1 . Therefore, with x ≥ 0, g′(x) = 0 has at most 2 solutions. We further

have g′( M

√
M−1
M+1 ) = b−M(M−1

M+1 )
M−1
M /(M−1

M+1 + 1)2 < (M − 1)
M−1
M /M −M(M−1

M+1 )
M−1
M /(M−1

M+1 + 1)2. Actually,
we have:

(M − 1)
M−1
M

M
<
M(M−1

M+1 )
M−1
M

(M−1
M+1 + 1)2

⇔
(
M − 1

M + 1
+ 1

)2

<
M2

(M + 1)
M−1
M

⇔ 4M2

(M + 1)2
<

M2

(M + 1)
M−1
M

⇔ 4 < (M + 1)2−
M−1
M

⇔ 4 < (M + 1)1+
1
M (true ∀M ≥ 2).

Therefore, g′( M

√
M−1
M+1 ) < 0. Together with the fact that g′(0) = b > 0 and g′(+∞) > 0 , g′(x) = 0 has exactly two

solutions, we call it x1 and x2 (x1 < M

√
M−1
M+1 < x2). Next, we note that g′(x2) = 0 and g′(x) > 0 ∀x > x2 (since

g′′(x) > 0 ∀x > x2). In the meanwhile, g′( M
√
M − 1) = b − M(M−1)

M−1
M

M2 = b − (M−1)
M−1
M

M < 0. Hence, we
must have x2 > M

√
M − 1.

x 0 x1 M

√
M−1
M+1

M
√
M − 1 x2 +∞

g′′(x) 0 - 0 + + +
g′(x) + 0 - - 0 +

g(x) 1 g(x1) g( M

√
M−1
M+1 )

1
M + b M

√
M − 1 g(x2) +∞

From the variation table, we can see that g(x2) < g( M
√
M − 1) = 1

M + b M
√
M − 1 < 1

M + (M−1)
M−1
M

M
M
√
M − 1 =

1
M + M−1

M = 1 = g(0).

In conclusion, in this case, g(x) is minimized at x2 > M
√
M − 1, i.e. the largest solution of the equation b− MxM−1

(xM+1)2
=

0.

D.3. Full Proof of Theorem 3.1 with Bias-Free

Now, we state the proof of Theorem 3.1 for general setting with M layers of weight with no bias (i.e., excluding b) with
arbitrary widths dM , dM−1, . . . , d1.

Proof of Theorem 3.1 (bias-free). First, by using Lemma D.2, we have for any critical point



1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539

Neural Collapse in Deep Linear Networks: From Balanced to Imbalanced Data

(WM ,WM−1, . . . ,W2,W1,H1) of f , we have the following:

λWM
W⊤

MWM = λWM−1
WM−1W

⊤
M−1,

λWM−1
W⊤

M−1WM−1 = λWM−2
WM−2W

⊤
M−2,

. . . ,

λW2
W⊤

2 W2 = λW1
W1W

⊤
1 ,

λW1
W⊤

1 W1 = λH1
H1H

⊤
1 .

Let W1 = UW1
SW1

V⊤
W1

be the SVD decomposition of W1 with UW1
∈ Rd2×d2 ,VW1

∈ Rd1×d1 are orthonormal
matrices and SW1

∈ Rd2×d1 is a diagonal matrix with decreasing non-negative singular values. We denote the r singular
values of W1 as {sk}rk=1 (r ≤ R := min(K, dM , . . . , d1), from Lemma D.3). From Lemma D.4, we have the SVD of
other weight matrices as:

WM = UWM
SWM

U⊤
WM−1

,

WM−1 = UWM−1
SWM−1

U⊤
WM−2

,

WM−2 = UWM−2
SWM−2

U⊤
WM−3

,

WM−3 = UWM−3
SWM−3

U⊤
WM−4

,

. . .

W2 = UW2
SW2

U⊤
W1
,

W1 = UW1
SW1

V⊤
W1
,

where:

SWj =

√
λW1

λWj

[
diag(s1, . . . , sr) 0r×(dj−r)

0(dj+1−r)×r 0(dj+1−r)×(dj−r)

]
∈ Rdj+1×dj , ∀ j ∈ [M ],

and UWM
,UWM−1

,UWM−2
,UWM−3

, . . . ,UW1
,VW1

are all orthonormal matrices.

From Lemma D.5, denote c :=
λM−1
W1

λWM
λWM−1

...λW2
, we have:

H1 = VW1

[
diag

( √
csM1

cs2M1 +NλH1

, . . . ,
√
csMr

cs2Mr +NλH1

)
0

0 0

]
︸ ︷︷ ︸

C∈Rd1×K

U⊤
WM

Y

= VW1CU⊤
WM

Y,

(32)

WMWM−1 . . .W2W1H−Y = UWM

[
diag

(
−NλH1

cs2M1 +NλH1

, . . . ,
−NλH1

cs2Mr +NλH1

)
0

0 −IK−r

]
︸ ︷︷ ︸

D∈RK×K

U⊤
WM

Y

= UWM
DU⊤

WM
Y.

(33)

Next, we will calculate the Frobenius norm of WMWM−1 . . .W2W1H−Y:

∥WMWM−1 . . .W2W1H1 −Y∥2F = ∥UWM
DU⊤

WM
Y∥2F

= trace(UWM
DU⊤

WM
Y(UWM

DU⊤
WM

Y)⊤)

= trace(UWM
DU⊤

WM
YY⊤UWM

DU⊤
WM

)

= trace(D2U⊤
WM

YY⊤UWM
)

= n trace(D2) = n

[
r∑

k=1

(
−NλH1

cs2M1 +NλH1

)2

+K − r

]
. (34)
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where we use the fact YY⊤ = (IK ⊗ 1⊤
n )(IK ⊗ 1⊤

n )
⊤ = nIK and UWM

is an orthonormal matrix.

Similarly, for H1, we have:

∥H1∥2F = trace(VW1
CU⊤

WM
YY⊤UWM

C⊤V⊤
W1

) = trace(C⊤CU⊤
WM

YY⊤UWM
)

= n

r∑
k=1

cs2Mk
cs2Mk +NλH1

. (35)

Now, we plug equations (34), (35) and the SVD of weight matrices into the function f and note that orthonormal matrix
does not change Frobenius norm, we got:

f (WM , . . . ,W1,H1) =
1

2N
∥WMWM−1 . . .W2W1H−Y∥2F +

λWM

2
∥WM∥2F + . . .+

λW1

2
∥W1∥2F +

λH1

2
∥H1∥2F

=
1

2K

r∑
k=1

(−NλH1
)2

(cs2Mk +NλH1
)2

+
K − r

2K
+
λWM

2

r∑
k=1

λW1

λWM

s2k +
λWM−1

2

r∑
k=1

λW1

λWM−1

s2k

+ . . .+
λW1

2

r∑
k=1

s2k +
nλH1

2

r∑
k=1

cs2Mk
(cs2Mk +NλH1)

2

=
nλH1

2

r∑
k=1

1

cs2Mk +NλH1

+
K − r

2K
+
MλW1

2

r∑
k=1

s2k

=
1

2K

r∑
k=1

 1
cs2Mk
NλH1

+ 1
+MNλW1

M

√
NλH1

c

 M

√
cs2Mk
NλH1

+
K − r

2K

=
1

2K

r∑
k=1

(
1

xMk + 1
+ bxk

)
+
K − r

2K
, (36)

with xk := M

√
cs2Mk
NλH1

and b := MKλW1

M

√
NλH1

c = MKλW1
M

√
NλWM

λWM−2
...λW1

λH1

λM−1
W1

=

MK M
√
KnλWM

λWM−1
. . . λW1λH1 .

Recall that we have studied the minimizer of function g(x) = 1
xM+1

+ bx in Section D.2.1. From equation (36), f can be
written as 1

2K

∑r
k=1 g(xk) +

K−r
2N . By applying the result from Section D.2.1 for each g(xk), we finish bounding f and the

equality conditions are as following:

• If b = MK M
√
KnλWM

λWM−1
. . . λW1

λH1
> (M−1)

M−1
M

M : all the singular values of W1 are zeros. Therefore,
the singular values of WM ,WM−1, . . . ,H1 are also all zeros. In this case, f(WM ,WM−1, . . . ,W2,W1,H1) is
minimized at (W∗

M ,W
∗
M−1, . . . ,W

∗
1,H

∗
1) = (0,0, . . .0,0).

• If b =MK M
√
KnλWM

λWM−1
. . . λW1

λH1
< (M−1)

M−1
M

M : In this case, W∗
1 have r singular values, all of which are

equal a multiplier of the largest positive solution of the equation b− MxM−1

(xM+1)2
= 0, we denote that singular value as

s. Hence, we can write the compact SVD form (with a bit of notation abuse) of W∗
M−1 as W∗

1 = sUW1
V⊤

W1
with

semi-orthonormal matrices UW1
∈ Rd2×r,VW1

∈ Rd1×r. (note that U⊤
W1

UW1
= I and V⊤

W1
VW1

= I). Since
1

x∗M+1
+ bx∗ < 1, we have r = R = min(K, dM , . . . , d1) in this case.
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Similarly, we also have the compact SVD form of other weight matrices and feature matrix as:

W∗
M =

√
λW1

λWM

sUWM
UT

WM−1
,

W∗
M−1 =

√
λW1

λWM−1

sUWM−1
U⊤

WM−2
,

. . .

W∗
1 = sUW1

V⊤
W1
,

H∗
1 =

√
csM

cs2M +NλH1

VW1
U⊤

WM
Y (from equation (35)),

with semi-orthonormal matrices UWM
,UWM−1

,UWM−2
, . . . ,UW1

,VW1
that each has R orthogonal

columns, i.e. U⊤
WM

UWM
= U⊤

WM−1
UWM−1

= . . . = U⊤
W1

UW1
= V⊤

W1
VW1

= IR. Furthermore,
UWM

,UWM−1
, . . . ,UW1

,VW1
are truncated matrices from orthonormal matrices (remove columns that do not

correspond with non-zero singular values), hence UWM
U⊤

WM
,UWM−1

U⊤
WM−1

, . . . ,UW1U
⊤
W1
,VW1V

⊤
W1

are the
best rank-R approximations of the identity matrix of the same size.

Let H
∗
=

√
csM

cs2M+NλH1
VW1

U⊤
WM

∈ Rd1×K , then we have (NC1) H∗
1 = H

∗
Y = H

∗ ⊗ 1⊤
n , thus we conclude the

features within the same class collapse to their class-mean and H
∗

is the class-means matrix.

From above arguments, we can deduce the geometry of the following (NC2):

W∗
MW⊤∗

M ∝ UWM
U⊤

WM
∝ PR(IK),

H
∗⊤

H
∗ ∝ UWM

U⊤
WM

∝ PR(IK),

W∗
MW∗

M−1W
∗
M−2 . . .W

∗
2W

∗
1H

∗ ∝ UWM
U⊤

WM
∝ PR(IK),

(W∗
MW∗

M−1 . . .W
∗
j )(W

∗
MW∗

M−1 . . .W
∗
j )

⊤ ∝ UWM
U⊤

WM
∝ PR(IK), ∀ j ∈ [M ].

(37)

Note that if R = K, we have PR(IK) = IK .

Also, the product of each weight matrix or features with its transpose will be the multiplier of one of the best
rank-r approximations of the identity matrix of the same size. For example, W∗⊤

M−1W
∗
M−1 ∝ UWM−2

U⊤
WM−2

and
W∗

M−1W
∗⊤
M−1 ∝ UWM−1

U⊤
WM−1

are two best rank-R approximations of IdM−1
and IdM

, respectively.

Next, we can derive the alignments between weights and features as following (NC3):

W∗
MW∗

M−1 . . .W
∗
1 ∝ UWM

V⊤
W1

∝ H
∗⊤
,

W∗
M−1W

∗
M−2 . . .W

∗
1H

∗ ∝ UWM−1
U⊤

WM
∝ W∗⊤

M ,

W∗
MW∗

M−1 . . .W
∗
j ∝ UWM

U⊤
Wj−1

∝ (W∗
j−1 . . .W

∗
1H

∗
)⊤.

(38)

• If b = MK M
√
KnλWM

λWM−1
. . . λW1

λH1
= (M−1)

M−1
M

M : In this case, x∗k can either be 0 or the largest positive

solution of the equation b − MxM−1

(xM+1)2
= 0. If all the singular values are 0’s, we have the trivial global minima

(W∗
M , . . . ,W

∗
1,H

∗
1) = (0, . . . ,0,0).

If there are exactly 0 < r ≤ R positive singular values s1 = s2 = . . . = sr := s > 0 and sr+1 = . . . = sR = 0,

then similar as the case b < (M−1)
M−1
M

M , we also have similar compact SVD form (with exactly r singular vectors,
instead of R as the above case). Thus, the nontrivial solutions exhibit (NC1) and (NC3) property similarly as the case
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b < (M−1)
M−1
M

M above.

For (NC2) property, for j = 1, . . . ,M , we have:

W∗
MW∗⊤

M ∝ H
∗⊤

H
∗ ∝ W∗

MW∗
M−1W

∗
M−2 . . .W

∗
2W

∗
1H

∗

∝ (W∗
MW∗

M−1 . . .W
∗
j )(W

∗
MW∗

M−1 . . .W
∗
j )

⊤ ∝ Pr(IK).

We finish the proof of Theorem 3.1 for bias-free case.

D.4. Full Proof of Theorem 3.1 with Last-layer Unregularized Bias

Now, we state the proof of Theorem 3.1 for general setting with M layers of weight with last-layer bias (i.e., including b)
with arbitrary widths dM , dM−1, . . . , d1.

Proof of Theorem 3.1 (last-layer bias). First, we have that the objective function f is convex w.r.t b. Hence, we can derive
the optimal b∗ through its derivative w.r.t b (note that N = Kn):

1

N
(WMWM−1 . . .W2W1H1 + b∗1⊤

N −Y)1N = 0

⇒ b∗ =
1

N
(Y −WMWM−1 . . .W2W1H1)1N =

1

N

K∑
k=1

n∑
i=1

(yk −WMWM−1 . . .W2W1hk,i). (39)

Since {yk} are one-hot vectors, we have:

b∗
k′ =

n

N
− 1

N

K∑
k=1

n∑
i=1

(WMWM−1 . . .W2W1)
⊤
k′hk,i =

1

K
− (WMWM−1 . . .W2W1)

⊤
k′hG, (40)

where hG := 1
N

∑K
k=1

∑n
i=1 hk,i is the features’ global-mean and (WMWM−1 . . .W2W1)k′ is k′-th row of

WMWM−1 . . .W2W1.

Next, we plug b∗ into f :

f =
1

2Kn
∥WMWM−1 . . .W2W1H1 + b∗1⊤

N −Y∥2F +
λWM

2
∥WM∥2F + . . . +

λW2

2
∥W2∥2F +

λW1

2
∥W1∥2F

+
λH1

2
∥H1∥2F

=
1

2Kn

K∑
k=1

n∑
i=1

∥WMWM−1 . . .W2W1hk,i + b∗ − yk∥22 +
λWM

2
∥WM∥2F + . . . +

λW2

2
∥W2∥2F +

λW1

2
∥W1∥2F

+

K∑
k=1

n∑
i=1

∥hk,i∥22

=
1

2Kn

K∑
k=1

n∑
i=1

K∑
k′=1

(
(WMWM−1 . . .W2W1)

⊤
k′(hk,i − hG) +

1

K
− 1k=k′

)2

+
λWM

2
∥WM∥2F + . . .

+
λW1

2
∥W1∥2F +

K∑
k=1

n∑
i=1

∥hk,i∥22
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≥ 1

2Kn

K∑
k=1

n∑
i=1

K∑
k′=1

(
(WMWM−1 . . .W2W1)

⊤
k′(hk,i − hG) +

1

K
− 1k=k′

)2

+
λWM

2
∥WM∥2F + . . .

+
λW1

2
∥W1∥2F +

K∑
k=1

n∑
i=1

∥hk,i − hG∥22

=
1

2Kn
∥WMWM−1 . . .W2W1H

′

1 − (Y − 1

K
1K1⊤

N )∥2F +
λWM

2
∥WM∥2F + . . . +

λW2

2
∥W2∥2F

+
λW1

2
∥W1∥2F +

λH1

2
∥H

′

1∥2F := f
′
(WM ,WM−1, . . . ,W2,W1,H

′

1),

where H
′

1 = [h1,1 − hG, . . . ,hK,n − hG] ∈ Rd×N and the inequality is from:

K∑
k=1

n∑
i=1

∥hk,i∥22 =

K∑
k=1

n∑
i=1

(
∥hk,i − hG∥22 + 2(hk,i − hG)

⊤hG + ∥hG∥22
)

=

K∑
k=1

n∑
i=1

∥hk,i − hG∥22 +N∥hG∥22

≥
K∑

k=1

n∑
i=1

∥hk,i − hG∥22, (41)

where the equality happens when hG = 0.

Noting that f
′

has similar form as function f for bias-free case (except the difference of the target matrix Y), we
can use the lemmas derived at Section D.2 for f

′
. First, by using Lemma D.2, we have for any critical point

(WM ,WM−1, . . . ,W2,W1,H
′

1) of f
′
, we have the following:

λWM
W⊤

MWM = λWM−1
WM−1W

⊤
M−1,

λWM−1
W⊤

M−1WM−1 = λWM−2
WM−2W

⊤
M−2,

. . . ,

λW2
W⊤

2 W2 = λW1
W1W

⊤
1 ,

λW1
W⊤

1 W1 = λH1
H

′

1H
′⊤
1 .

Let W1 = UW1
SW1

V⊤
W1

be the SVD decomposition of W1 with UW1
∈ Rd2×d2 ,VW1

∈ Rd1×d1 are orthonormal
matrices and SW1 ∈ Rd2×d1 is a diagonal matrix with decreasing non-negative singular values. We denote the r singular
values of W1 as {sk}rk=1 (r ≤ R := min(K, dM , . . . , d1), from Lemma D.3) . From Lemma D.4, we have the SVD of
other weight matrices as:

WM = UWM
SWM

U⊤
WM−1

,

WM−1 = UWM−1
SWM−1

U⊤
WM−2

,

WM−2 = UWM−2
SWM−2

U⊤
WM−3

,

WM−3 = UWM−3
SWM−3

U⊤
WM−4

,

. . . ,

W2 = UW2
SW2

U⊤
W1
,

W1 = UW1
SW1

V⊤
W1
,

where:

SWj
=

√
λW1

λWj

[
diag(s1, . . . , sr) 0r×(dj−r)

0(dj+1−r)×r 0(dj+1−r)×(dj−r)

]
∈ Rdj+1×dj , ∀ j ∈ [M ],
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and UWM
,UWM−1

,UWM−2
,UWM−3

, . . . ,UW1
,VW1

are all orthonormal matrices.

From Lemma D.5, denote c :=
λM−1
W1

λWM
λWM−1

...λW2
, we have:

H
′

1 = VW1

[
diag

( √
csM1

cs2M1 +NλH1

, . . . ,
√
csMr

cs2Mr +NλH1

)
0

0 0

]
︸ ︷︷ ︸

C∈Rd1×K

U⊤
WM

(
Y − 1

K
1K1⊤

N

)

= VW1
CU⊤

WM

(
Y − 1

K
1K1⊤

N

)
.

(42)

WMWM−1 . . .W2W1H
′

1 −Y

= UWM

[
diag

(
−NλH1

cs2M1 +NλH1

, . . . ,
−NλH1

cs2Mr +NλH1

)
0

0 −IK−r

]
︸ ︷︷ ︸

D∈RK×K

U⊤
WM

(
Y − 1

K
1K1⊤

N

)

= UWM
DU⊤

WM

(
Y − 1

K
1K1⊤

N

)
.

Next, we will calculate the Frobenius norm of WMWM−1 . . .W2W1H
′

1 −Y:

∥WMWM−1 . . .W2W1H
′

1 −Y∥2F =

∥∥∥∥UWM
DU⊤

WM

(
Y − 1

K
1K1⊤

N

)∥∥∥∥2
F

= trace

(
UWM

DU⊤
WM

(
Y − 1

K
1K1⊤

N

)(
UWM

DU⊤
WM

(
Y − 1

K
1K1⊤

N

))⊤
)

= trace

(
UWM

DU⊤
WM

(
Y − 1

K
1K1⊤

N

)(
Y − 1

K
1K1⊤

N

)⊤

UWM
DU⊤

WM

)

= trace

(
D2U⊤

WM

(
Y − 1

K
1K1⊤

N

)(
Y − 1

K
1K1⊤

N

)⊤

UWM

)
. (43)

Note that:

Y − 1

K
1K1⊤

N =

(
IK − 1

K
1K1⊤

K

)
⊗ 1⊤

n ,(
Y − 1

K
1K1⊤

N

)(
Y − 1

K
1K1⊤

N

)⊤

=

((
IK − 1

K
1K1⊤

K

)
⊗ 1⊤

n

)((
IK − 1

K
1K1⊤

K

)
⊗ 1⊤

n

)⊤

=

((
IK − 1

K
1K1⊤

K

)
⊗ 1⊤

n

)((
IK − 1

K
1K1⊤

K

)
⊗ 1n

)
=

((
IK − 1

K
1K1⊤

K

)(
IK − 1

K
1K1⊤

K

))
⊗
(
1⊤
n 1n

)
= n

(
IK − 1

K
1K1⊤

K

)
,

since IK − 1
K1K1⊤

K is an idempotent matrix.

Next, we have:

U⊤
WM

(
Y − 1

K
1K1⊤

N

)(
Y − 1

K
1K1⊤

N

)⊤

UWM
= nU⊤

WM

(
IK − 1

K
1K1⊤

K

)
UWM
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= n

(
IK − 1

K
U⊤

WM
1K1⊤

KUWM

)
.

We denote q = U⊤
WM

1K = [q1, . . . , qK ]⊤ ∈ RK , then qk will equal the sum of entries of the k-th column of UWM
. Hence,

U⊤
WM

1K1⊤
KUWM

= qq⊤ = (qiqj)i,j . Note that from the orthonormality of UWM
, we can deduce

∑K
k=1 q

2
k = K. Thus,

continue from equation (43):

∥WMWM−1 . . .W2W1H
′

1 −Y∥2F = n trace

(
D2

(
IK − 1

K
qq⊤

))
= n

(
r∑

k=1

(
1− 1

K
q2k

)
(−NλH1

)2

(cs2Mk +NλH1
)2

+

K∑
h=r+1

(
1− 1

K
q2h

))
. (44)

Similarly, we calculate the Frobenius norm for H
′

1, continue from the RHS of equation (42):

∥H
′

1∥2F = trace

(
VW1

CU⊤
WM

(
Y − 1

K
1K1⊤

N

)(
Y − 1

K
1K1⊤

N

)⊤

UWM
C⊤V⊤

W1

)

= n trace

(
C⊤C

(
IK − 1

K
qq⊤

))
= n

r∑
k=1

(
1− 1

K
q2k

)
cs2Mk

(cs2Mk +NλH1)
2
. (45)

Plug the equations (44), (45) and the SVD of weight matrices into f
′

yields:

1

2Kn

∥∥∥∥WMWM−1 . . .W1H
′

1 − (Y − 1

K
1K1T

N )

∥∥∥∥2
F

+
λWM

2
∥WM∥2F + . . .

λW1

2
∥W1∥2F +

λH1

2
∥H

′

1∥2F

=
1

2K

r∑
k=1

(
1− 1

K
q2k

)(
−NλH1

cs2Mk +NλH1

)2

+
1

2K

K∑
h=r+1

(
1− 1

K
q2h

)
+
λWM

2

r∑
k=1

λW1

λWM

s2k

+
λWM−1

2

r∑
k=1

λW1

λWM−1

s2k + . . .+
λW1

2

r∑
k=1

s2k +
nλH1

2

r∑
k=1

(
1− 1

K
q2k

)
cs2Mk

(cs2Mk +NλH1
)2

=
1

2K

r∑
k=1

(
1− 1

K
q2k

)
(NλH1

)2

(cs2Mk +NλH1
)2

+
nλH1

2

r∑
k=1

(
1− 1

K
q2k

)
cs2Mk

(cs2Mk +NλH1
)2

+
MλW1

2

r∑
k=1

s2k

+
1

2K

K∑
h=r+1

(
1− 1

K
q2h

)

=
nλH1

2

r∑
k=1

1− 1
K q

2
k

cs2Mk +NλH1

+
MλW1

2

r∑
k=1

s2k +
1

2K

K∑
h=r+1

(
1− 1

K
q2h

)

=
1

2K

r∑
k=1

 1− 1
K q

2
k

cs2Mk
NλH1

+ 1
+MKλW1

M

√
NλH1

c

 M

√
cs2Mk
NλH1

+
1

2K

K∑
h=r+1

(
1− 1

K
q2h

)

=
1

2K

r∑
k=1

(
1− 1

K q
2
k

xMk + 1
+ bxk

)
+

1

2K

K∑
h=r+1

(
1− 1

K
q2h

)
, (46)

with xk := M

√
cs2Mk
NλH1

and b := MKλW1

M

√
NλH1

c = MKλW1
M

√
KnλWM

λWM−2
...λW1

λH1

λM−1
W1

=

MK M
√
KnλWM

λWM−1
. . . λW1λH1 .
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Before continue optimizing the RHS of equation (46), we first simplify it by proving if sk > 0 then qk = 0, i.e. sum of
entries of k-th column of UWM

equals 0. To prove this, we will utilize a property of H
′

1 = [h1,1 − hG, . . . ,hK,n − hG],
which is the sum of entries on every row equals 0. First, we connect WM and H

′

1 through:

∂f
′

∂WM
=

1

N

(
WMWM−1 . . .W1H

′

1 −
(
Y − 1

K
1K1⊤

N

))
H

′⊤
1 W⊤

1 . . .W
⊤
M−1 + λWM

WM = 0

⇒WM =

(
Y − 1

K
1K1⊤

N

)
H

′⊤
1 W⊤

1 . . .W
⊤
M−1

(
WM−1 . . .W1H

′

1H
′⊤
1 W⊤

1 . . .W
⊤
M−1 +NλWM

IK

)−1

︸ ︷︷ ︸
G

. (47)

From the definition of H
′

1, we know that the sum of entries of every column of H
′⊤
1 is 0. Recall the class-mean definition

hk = 1
n

∑n
i=1 hk,i, we have:

(
Y − 1

K
1K1⊤

N

)
H

′⊤
1 = YH

′⊤
1 = n


(h1 − hG)

⊤

(h2 − hG)
⊤

. . .
(hK − hG)

⊤



⇒WM = n


(h1 − hG)

⊤

(h2 − hG)
⊤

. . .
(hK − hG)

⊤

G,

and thus, the sum of entries of every column of WM equals 0. From the SVD WM = UWM
SWM

V⊤
WM

, denote uj and vj

the j-th column of UWM
and VWM

, respectively. We have from the definition of left and right singular vectors:

WMvj = sjuj , (48)

and since the sum of entries of every column of WM equals 0, we have the sum of entries of vector WMvj equals 0. Thus,
if sj > 0, we have qj = 0.

Return to the expression of f
′

as the RHS of equation (46), notice that it is separable w.r.t each singular value sj , we will
analyze how each singular value contribute to the value of the expression (46). For every singular value sj with j = 1, . . . , r,
if sj > 0, then qj = 0, and its contribution to the expression (46) will be 1

2K ( 1
xM
j +1

+ bxj) =
1

2K g(xj) (with the minimizer

of g(x) has been studied in Section D.2.1). Otherwise, if sj = 0 (hence xj = 0), its contribution to the value of the

expression (46) will be
1− 1

K q2j
2K , and it eventually be 1

2K because
∑K

k=1
1
K q

2
j always equal 1, thus 1

K q
2
j has no additional

contribution to the expression (46). Therefore, it is a comparision between 1
2K and 1

2K minxj>0 g(xj) to decide whether

s∗j = 0 or s∗j = 2M

√
NλH1

c

√
x∗j with x∗j = argminx>0 g(x). Therefore, we consider three cases:

• If b > (M−1)
M−1
M

M : In this case, g(x) is minimized at x = 0 and g(0) = 1. Hence, 1
2K < 1

2K minxj>0 g(xj) and thus,
s∗j = 0 ∀j = 1, . . . , r.

• If b < (M−1)
M−1
M

M : In this case, g(x) is minimized at some x0 > M
√
M − 1 and g(x0) < 1. Hence,

1
2K minxj>0 g(xj) <

1
2K and thus, s∗j = 2M

√
NλH1

c

√
x0 ∀ j = 1, . . . , r.

We also note that in this case, we have qj = 0 ∀j = 1, . . . , r (meaning the sum of entries of every column in the first r
columns of UWM

is equal 0).

• If b = (M−1)
M−1
M

M : In this case, g(x) is minimized at x = 0 or some x = x0 >
M
√
M − 1 with g(0) = g(x0) = 1.

Therefore, s∗j can either be 0 or x0 as long as {sk}rk=1 is a decreasing sequence.

To help for the conclusion of the geometry properties of weight matrices and features, we state a lemma as following:
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Lemma D.6. Let W ∈ RK×dM be a matrix with r ≤ K − 1 singular values equal a positive constant s > 0. If there exists
a compact SVD form of W as W = sUV⊤ with semi-orthonormal matrices U ∈ RK×r,V ∈ RdM×r such that the sum of
entries of every column of U equals 0. Then, WW⊤ ∝ UU⊤ and UU⊤ is a best rank-r approximation of the simplex
ETF (IK − 1

K1K1⊤
K).

Proof. Let’s denote U = [u1, . . . ,ur] with u1, . . . ,ur are r orthonormal vectors. Since the sum of entries in each ui equals
0, 1√

K
1K can be added to the set {u1, . . . ,ur} to form r+ 1 orthonormal vectors. Let Û = [u1, . . . ,ur,

1√
K
1K ], we have

dim(Col Û) = r + 1. Hence, dim(Null Û⊤) = K − r − 1 and thus, we can choose an orthonormal basis of Null Û⊤

includingK−r−1 orthonormal vectors {ur+1,ur+2, . . . ,uK−1}. And because theseK−r−1 orthonormal vectors are in
Null Û⊤, we can add these vectors to the set {u1, . . . ,ur,

1√
K
1K} to form a basis of RK including K orthonormal vectors

{u1, . . . ,ur,ur+1,ur+2, . . . ,uK−1,
1√
K
1K}. We denote U = [u1, . . . ,ur,ur+1,ur+2, . . . ,uK−1,

1√
K
1K ] ∈ RK×K .

We have U
⊤
U = IK . From the Inverse Matrix Theorem, we deduce that U

−1
= U

⊤
and thus, U is an orthonormal matrix.

We have U is an orthonormal matrix with the last column 1√
K
1K , hence by simple matrix multiplication, we have:

[u1, . . . ,ur,ur+1,ur+2, . . . ,uK−1][u1, . . . ,ur,ur+1,ur+2, . . . ,uK−1]
⊤ = IK − 1

K
1K1⊤

K

⇒ U

[
IK−1 0
0 0

]
U

⊤
= IK − 1

K
1K1⊤

K . (49)

Therefore, UU⊤ is the best rank-r approximation of IK − 1
K1K1⊤

K , and the proof for the lemma is finished.

Thus, we finish bounding f and the equality conditions are as following:

• If b = MK M
√
KnλWM

λWM−1
. . . λW1

λH1
> (M−1)

M−1
M

M : all the singular values of W1 are zeros. Therefore, the
singular values of WM ,WM−1, . . . ,H

′

1 are also all zeros. In this case, f(WM ,WM−1, . . . ,W2,W1,H1,b) is
minimized at (W∗

M ,W
∗
M−1, . . . ,W

∗
1,H

∗
1,b

∗) = (0,0, . . .0,0, 1
K1K).

• If b = MK M
√
KnλWM

λWM−1
. . . λW1

λH1
< (M−1)

M−1
M

M : In this case, W∗
1 will have the its r (r will be specified

later) singular values all equal a multiplier of the largest positive solution of the equation b− MxM−1

(xM+1)2
= 0, denoted as

s. Hence, we can write the compact SVD form (with a bit of notation abuse) of W∗
M−1 as W∗

1 = sUW1
V⊤

W1
with

semi-orthonormal matrices UW1
∈ Rd2×r,VW1

∈ Rd1×r (note that U⊤
W1

UW1
= I and V⊤

W1
VW1

= I).

Similarly, we also have the compact SVD form of other weight matrices and feature matrix as:

W∗
M =

√
λW1

λWM

sUWM
U⊤

WM−1
,

W∗
M−1 =

√
λW1

λWM−1

sUWM−1
U⊤

WM−2
,

. . .

W∗
1 = sUW1

V⊤
W1
,

H
′∗
1 =

√
csM

cs2M +NλH1

VW1U
⊤
WM

(
Y − 1

K
1K1⊤

N

)
,

with semi-orthonormal matrices UWM
,UWM−1

, . . . ,UW1
,VW1

that each has r orthogonal columns,
i.e., U⊤

WM
UWM

= U⊤
WM−1

UWM−1
= . . . = U⊤

W1
UW1

= VT
W1

VW1
= Ir. Furthermore,

UWM
,UWM−1

, . . . ,UW1
,VW1

are truncated matrices from orthonormal matrices (remove columns that
does not correspond with non-zero singular values), hence UWM

U⊤
WM

,UWM−1
U⊤

WM−1
, . . . ,UW1

U⊤
W1
,VW1

V⊤
W1

are the best rank-r approximations of the identity matrix of the same size.
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Since
(
Y − 1

K1K1⊤
N

)
=

(
IK − 1

K1K1⊤
K

)
Y =

(
IK − 1

K1K1⊤
K

)
⊗ 1⊤

n , let H
∗

=
√
csM

cs2M+NλH1
VW1

U⊤
WM

(
IK − 1

K1K1⊤
K

)
∈ Rd1×K , then we have (NC1) H

′∗
1 = H

∗
Y = H

∗ ⊗ 1⊤
n , thus

we conclude the features within the same class collapse to their class-mean and H
∗

is the class-means matrix.
We also have hG = 0 (the equality condition of inequality (41)), hence H∗

1 = H
′∗
1 . Furthermore, clearly we

have rank(H
′∗
1 ) = rank(H

∗
) and since hG = 0, we have r = rank(H

′∗
1 ) = rank(H

∗
) ≤ K − 1. Hence,

r = min(R,K − 1).

By using Lemma D.6 for WM with the note qj = 0 ∀ j ≤ r, we have UWU⊤
W is a best rank-r approximation of the

simplex ETF IK − 1
K1K1⊤

K . Thus, we can deduce the geometry of the following (NC2):

W∗
MW⊤∗

M ∝ UWM
U⊤

WM
∝ Pr(IK − 1

K
1K1⊤

K),

H
∗⊤

H
∗ ∝ (IK − 1

K
1K1⊤

K)UWM
U⊤

WM
(IK − 1

K
1K1⊤

K) ∝ UWM
U⊤

WM
∝ Pr(IK − 1

K
1K1⊤

K),

W∗
MW∗

M−1 . . .W
∗
2W

∗
1H

∗ ∝ UWM
U⊤

WM
(IK − 1

K
1K1⊤

K) ∝ UWM
U⊤

WM
∝ Pr(IK − 1

K
1K1⊤

K),

(W∗
MW∗

M−1 . . .W
∗
j )(W

∗
MW∗

M−1 . . .W
∗
j )

⊤ ∝ UWM
U⊤

WM
∝ Pr(IK − 1

K
1K1⊤

K) ∀ j ∈ [M ].

(50)

Note that if r = K − 1, we have Pr(IK − 1
K1K1⊤

K) = IK − 1
K1K1⊤

K .

Also, the product of each weight matrix or features with its transpose will be the multiplier of one of the best
rank-r approximations of the identity matrix of the same size. For example, W∗⊤

M−1W
∗
M−1 ∝ UWM−2

U⊤
WM−2

and
W∗

M−1W
∗⊤
M−1 ∝ UWM−1

U⊤
WM−1

are two best rank-r approximations of IdM−1
and IdM

, respectively.

Next, we can derive the alignments between weights and features as following (NC3):

W∗
MW∗

M−1 . . .W
∗
1 ∝ UWM

V⊤
W1

∝ H
∗⊤
,

W∗
M−1W

∗
M−2 . . .W

∗
1H

∗ ∝ UWM−1
U⊤

WM
∝ W∗⊤

M ,

W∗
MW∗

M−1 . . .W
∗
j ∝ UWM

U⊤
Wj−1

∝ (W∗
j−1 . . .W

∗
1H

∗
)⊤.

(51)

• If b = MK M
√
KnλWM

λWM−1
. . . λW1λH1 = (M−1)

M−1
M

M : In this case, x∗k can either be 0 or the largest positive

solution of the equation b − MxM−1

(xM+1)2
= 0. If all the singular values are 0’s, we have the trivial global minima

(W∗
M , . . . ,W

∗
1,H

∗
1,b

∗) = (0, . . . ,0,0, 1
K1K).

If there are exactly 0 < t ≤ r = min(R,K − 1) positive singular values s1 = s2 = . . . = st := s > 0 and

st+1 = . . . = sr = 0, we also have compact SVD form similar as the case b < (M−1)
M−1
M

M , (with exactly t singular
vectors, instead of r as the above case). Thus, the nontrivial solutions exhibit (NC1) and (NC3) property similarly as

the case b < (M−1)
M−1
M

M above.

For (NC2) property, for j = 1, . . . ,M , we have:

W∗
MW∗⊤

M ∝ H
∗⊤

H
∗ ∝ W∗

MW∗
M−1W

∗
M−2 . . .W

∗
2W

∗
1H

∗

∝ (W∗
MW∗

M−1 . . .W
∗
j )(W

∗
MW∗

M−1 . . .W
∗
j )

⊤ ∝ Pt(IK − 1

K
1K1⊤

K).

We finish the proof.
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E. Proof of Theorem 4.1
Theorem E.1. Let d ≥ K and (W∗,H∗) be any global minimizer of problem (5). Then, we have:

(NC1) H∗ = H
∗
Y ⇔ h∗

k,i = h∗
k ∀ k ∈ [K], i ∈ [nk], where H

∗
= [h∗

1, . . . ,h
∗
K ] ∈ Rd×K .

(NC3) w∗
k =

√
nkλH

λW
h∗
k ∀ k ∈ [K].

(NC2) Let a := N2λWλH , we have:

W∗W∗⊤ = diag
{
s2k
}K
k=1

,

H
∗⊤

H
∗
= diag

{
s2k

(s2k +NλH)2

}K

k=1

,

W∗H∗ = diag

{
s2k

s2k +NλH

}K

k=1

Y

=


s21

s21+NλH
1⊤
n1

. . . 0

...
. . .

...

0 . . .
s2K

s2K+NλH
1⊤
nK

 .
where:

• If a
n1

≤ a
n2

≤ . . . ≤ a
nK

≤ 1:

sk =

√√
nkλH
λW

−NλH ∀ k

• If there exists a j ∈ [K − 1] s.t. a
n1

≤ a
n2

≤ . . . ≤ a
nj

≤ 1 < a
nj+1

≤ . . . ≤ a
nK

:

sk =


√√

nkλH

λW
−NλH ∀ k ≤ j

0 ∀ k > j
.

• If 1 < a
n1

≤ a
n2

≤ . . . ≤ a
nK

:

(s1, s2, . . . , sK) = (0, 0, . . . , 0),

and (W∗,H∗) = (0,0) in this case.

And, for any k such that sk = 0, we have:

w∗
k = h∗

k = 0.

Theorem E.2. Let d < K, thusR = min(d,K) = d and (W∗,H∗) be any global minimizer of problem (5). Then, we have:

(NC1) H∗ = H
∗
Y ⇔ h∗

k,i = h∗
k ∀ k ∈ [K], i ∈ [nk], where H

∗
= [h∗

1, . . . ,h
∗
K ] ∈ Rd×K .

(NC3) w∗
k =

√
nkλH

λW
h∗
k ∀ k ∈ [K].

(NC2) Let a := N2λWλH , we define {sk}Kk=1 as follows:
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• If a
n1

≤ a
n2

≤ . . . ≤ a
nR

≤ 1:

sk =


√√

nkλH

λW
−NλH ∀ k ≤ R

0 ∀ k > R
. (52)

Then, if b/nR = 1 or nR > nR+1, we have:

W∗W∗⊤ = diag
{
s2k
}K
k=1

,

H
∗⊤

H
∗
= diag

{
s2k

(s2k +NλH)2

}K

k=1

,

W∗H
∗
= diag

{
s2k

s2k +NλH

}K

k=1

,

and for any k > R, we have w∗
k = h∗

k = 0.

If b/nR < 1 and there exists k ≤ R, l > R such that nk−1 > nk = nk+1 = . . . = nR = . . . = nl > nl+1, then:

W∗W∗⊤ =


s21 . . . 0 0 0
...

. . .
...

...
...

0 . . . s2k−1 0 0
0 . . . 0 s2kPR−k+1(Il−k+1) 0
0 . . . 0 0 0(K−l)×(K−l)

 , (53)

H
∗⊤

H
∗
=



s21
(s21+NλH)2

. . . 0 0 0

...
. . .

...
...

...

0 . . .
s2k−1

(s2k−1+NλH)2
0 0

0 . . . 0
s2k

(s2k+NλH)2
PR−k+1(Il−k+1) 0

0 . . . 0 0 0(K−l)×(K−l)


, (54)

W∗H
∗
=



s21
s21+NλH

. . . 0 0 0

...
. . .

...
...

...

0 . . .
s2k−1

s2k−1+NλH
0 0

0 . . . 0
s2k

s2k+NλH
PR−k+1(Il−k+1) 0

0 . . . 0 0 0(K−l)×(K−l)


, (55)

and for any k > l > R, we have w∗
k = h∗

k = 0.

• If there exists a j ∈ [R− 1] s.t. a
n1

≤ a
n2

≤ . . . ≤ a
nj

≤ 1 < a
nj+1

≤ . . . ≤ a
nR

:

sk =


√√

nkλH

λW
−NλH ∀ k ≤ j

0 ∀ k > j
.

Then, we have:

W∗W∗⊤ = diag
{
s2k
}K
k=1

,

H
∗⊤

H
∗
= diag

{
s2k

(s2k +NλH)2

}K

k=1

,

W∗H
∗
= diag

{
s2k

s2k +NλH

}K

k=1

,

and for any k > j, we have w∗
k = h∗

k = 0
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• If 1 < a
n1

≤ a
n2

≤ . . . ≤ a
nR

:

(s1, s2, . . . , sK) = (0, 0, . . . , 0),

and (W∗,H∗) = (0,0) in this case.

Proof of Theorem E.1 and E.2. By definition, any critical point (W,H) of f(W,H) satisfies the following:

∂f

∂W
=

1

N
(WH−Y)H⊤ + λWW = 0, (56)

∂f

∂H
=

1

N
W⊤(WH−Y) + λHH = 0. (57)

From 0 = W⊤ ∂f
∂W − ∂f

∂HH⊤, we have:

λWW⊤W = λHHH⊤. (58)

Also, from ∂f
∂H = 0, solving for H yields:

H = (W⊤W +NλHI)−1W⊤Y. (59)

Let W = UWSWV⊤
W be the SVD decomposition of W with orthonormal matrices UW ∈ RK×K ,VW ∈ Rd×d and

diagonal matrix SW ∈ RK×d with non-decreasing singular values. We denote r singular values of W as {sk}rk=1 (we have
r ≤ R := min(K, d)).

From equation (59) and the SVD of W:

H = (W⊤W +NλHI)−1W⊤Y

= (VWS⊤
WSWV⊤

W +NλHI)−1VWS⊤
WU⊤

WY.

= VW (S⊤
WSW +NλHI)−1S⊤

WU⊤
WY

= VW

[
diag

(
s1

s21+NλH1
, . . . , sr

s2r+NλH1

)
0

0 0

]
︸ ︷︷ ︸

C∈Rd×K

U⊤
WY

= VWCU⊤
WY,

(60)

WH = UWSW

[
diag

(
s1

s21+NλH1
, . . . , sr

s2r+NλH1

)
0

0 0

]
U⊤

WY

= UW diag

(
s21

s21 +NλH
, . . . ,

s2r
s2r +NλH

, 0, . . . , 0

)
U⊤

WY

(61)

⇒ WH−Y = UW

[
diag

(
s21

s21 +NλH
, . . . ,

s2r
s2r +NλH

, 0, . . . , 0

)
− IK

]
U⊤

WY

= UW diag

(
−NλH

s21 +NλH
, . . . ,

−NλH
s2r +NλH

,−1, . . . ,−1

)
︸ ︷︷ ︸

D∈RK×K

U⊤
WY

= UWDU⊤
WY.

(62)

Based on this result, we now calculate the Frobenius norm of WH−Y:

∥WH−Y∥2F = ∥UWDU⊤
WY∥2F = trace(UWDU⊤

WY(UWDU⊤
WY)⊤)

= trace(UWDU⊤
WYY⊤UWDU⊤

W ) = trace(D2U⊤
WYY⊤UW ). (63)
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We denote uk and uk are the k-th row and column of UW , respectively. Let n = (n1, . . . , nK), we have the following:

UW =

−u1−
. . .

−uK−

 =

 | | |
u1 . . . uK

| | |

 ,
YY⊤ = diag(n1, n2, . . . , nK) ∈ RK×K

⇒ U⊤
WYY⊤UW =

 | | |
(u1)⊤ . . . (uK)⊤

| | |

diag(n1, n2, . . . , nK)

−u1−
. . .

−uK−


=

 | | |
(u1)⊤ . . . (uK)⊤

| | |

−n1u1−
. . .

−nkuK−


⇒ (U⊤

WYY⊤UW )kk = n1u
2
1k + n2u

2
2k + . . .+ nku

2
Kk = (uk ⊙ uk)

⊤n

⇒ ∥WH−Y∥2F = trace(D2U⊤
WYY⊤UW ) =

r∑
k=1

(uk ⊙ uk)
⊤n

(−NλH)2

(s2k +NλH)2
+

K∑
h=r+1

(uh ⊙ uh)
⊤n,

(64)

where the last equality is from the fact that D2 is a diagonal matrix, so the diagonal of D2U⊤
WYY⊤UW is the element-wise

product between the diagonal of D2 and U⊤
WYY⊤UW .

Similarly, we calculate the Frobenius norm of H, from equation (60), we have:

∥H∥2F = trace(VWCU⊤
WYY⊤UWC⊤V⊤

W ) = trace(C⊤CU⊤
WYY⊤UW )

=

K∑
k=1

(uk ⊙ uk)
⊤n

s2k
(s2k +NλH)2

. (65)

Now, we plug the equations (64) and (65) into the function f , we get:

f(W,H) =
1

2N

r∑
k=1

(uk ⊙ uk)
⊤n

(−NλH)2

(s2k +NλH)2
+

1

2N

K∑
h=r+1

(uh ⊙ uh)
⊤n+

λW
2

r∑
k=1

s2k

+
λH
2

K∑
k=1

(uk ⊙ uk)
⊤n

s2k
(s2k +NλH)2

=
λH
2

r∑
k=1

(uk ⊙ uk)
⊤n

s2k +NλH
+
λW
2

r∑
k=1

s2k +
1

2N

K∑
h=r+1

(uh ⊙ uh)
⊤n

=
1

2N

r∑
k=1

 (uk ⊙ uk)
⊤n

s2k
NλH

+ 1
+N2λWλH

(
s2k
NλH

)+
1

2N

K∑
h=r+1

(uh ⊙ uh)
⊤n

=
1

2N

r∑
k=1

(
(uk ⊙ uk)

⊤n

xk + 1
+ bxk

)
+

1

2N

K∑
h=r+1

(uh ⊙ uh)
⊤n

=
1

2N

r∑
k=1

(
ak

xk + 1
+ bxk

)
+

1

2N

K∑
h=r+1

ah,

(66)

with xk :=
s2k

NλH
, ak := (uk ⊙ uk)

⊤n and b := N2λWλH .

From the fact that UW is an orthonormal matrix, we have:

K∑
k=1

ak =

K∑
k=1

(uk ⊙ uk)
⊤
n =

(
K∑

k=1

uk ⊙ uk

)⊤

n = 1⊤n =

K∑
k=1

nk = N, (67)
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and, for any j ∈ [K], denote pi,j := u2i1 + u2i2 + . . .+ u2ij ∀ i ∈ [K], we have:

j∑
k=1

ak =

j∑
k=1

(uk ⊙ uk)
⊤n = n1(u

2
11 + u212 + . . .+ u21j) + n2(u

2
21 + u222 + . . .+ u22j) + . . .+ nK(u2K1 + u2K2 + . . .+ u2Kj)

=

K∑
k=1

pk,jnk ≤ p1,jn1 + p2,jn2 + . . .+ pj,jnj + (pj+1,j + pj+2,j + . . .+ pK,j)nj

= p1,jn1 + p2,jn2 + . . .+ pj−1,jnj−1 + (j − p1,j − . . .− pj−1, j)nj

=

j∑
k=1

nk +

j−1∑
h=1

(nh − nj)(ph,j − 1) ≤
j∑

k=1

nk

⇒
K∑

k=j+1

ak ≥ N −
j∑

k=1

nk =

K∑
k=j+1

nk ∀ j ∈ [K], (68)

where we used the fact that
∑K

k=1 pk,j = j since it is the sum of squares of all entries of the first j columns of an
orthonormal matrix, and pi,j ≤ 1 ∀ i because it is the sum of squares of some entries on the i-th row of UW .

We state a lemma regarding minimizing a weighted sum as following.

Lemma E.3. Consider a weighted sum
∑K

k=1 akzk with {ak}Kk=1 satisfies (67) and (68) and 0 < z1 ≤ z2 ≤ . . . ≤ zK .
Then, we have:

min
a1,...,aK

K∑
k=1

akzk =

K∑
k=1

nkzk.

The equality happens when for any k ≥ 1, zk+1 = zk or ak+1+ak+2+ . . .+aK = nk+1+nk+2+ . . .+nK (equivalently,
a1 + a2 + . . .+ ak = n1 + n2 + . . .+ nk).

Proof of Lemma E.3. We have:

K∑
k=1

akzk = (a1 + a2 + . . .+ aK)z1 + (a2 + . . .+ aK)(z2 − z1) + . . .+ (aK−1 + aK)(zK−1 − zK−2) + aK(zK − zK−1)

≥ (n1 + n2 + . . .+ nK)z1 + (n2 + . . .+ nK)(z2 − z1) + . . .+ (nK−1 + nK)(zK−1 − zK−2) + nK(zK − zK−1)

=

K∑
k=1

nkzk.

By applying Lemma E.3 to the RHS of equation (66) with zk = 1
xk+1 ∀ k ≤ r and zk = 1 otherwise, we obtain:

f(W,H) ≥ 1

2N

r∑
k=1

(
nk

xk + 1
+ bxk

)
+

1

2N

K∑
h=r+1

nh (69)

=
1

2N

r∑
k=1

nk

(
1

xk + 1
+

b

nk
xk

)
+

1

2N

K∑
h=r+1

nh. (70)

Consider the function:

g(x) =
1

x+ 1
+ ax with x ≥ 0, a > 0. (71)

We consider two cases:
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• If a > 1, g(0) = 1 and g(x) > g(0) ∀x > 0. Hence, g(x) is minimized at x = 0 in this case.

• If a ≤ 1, by using AM-GM, we have g(x) = 1
x+1 + a(x+1)− a ≥ 2

√
a− a with the equality holds iff x =

√
1
a − 1.

By applying this result to each term in the lower bound (70), we finish bounding f(W,H).

Now, we study the equality conditions. In the lower bound (70), by letting x∗k be the minimizer of 1
xk+1 + b

nk
xk for all

k ≤ r and x∗k = 0 for all k > r , there are only four possibilities as following:

• Case A: If x∗1 > 0 and n1 > n2: we have x∗1 =
√

n1

b − 1 > max(0,
√

n2

b − 1) ≥ x∗2 and therefore from the equality
condition of Lemma E.3, we have a1 = n1. From the orthonormal property of uk, we have:

a1 = (u1 ⊙ u1)
⊤n = n1u

2
11 + n2u

2
21 + . . .+ nku

2
K1 ≤ n1(u

2
11 + u221 + . . .+ u2K1) = n1.

The equality holds when and only when u211 = 1 and u21 = . . . = uK1 = 0.

• Case B: If x∗1 > 0 and there exists 1 < j ≤ r such that n1 = n2 = . . . = nj > nj+1, we have:

1

x+ 1
+

b

n1
x =

1

x+ 1
+

b

n2
x = . . . =

1

x+ 1
+

b

nj
x,

and thus, x∗1 = x∗2 = . . . = x∗j > x∗j+1. Hence, from the equality condition of Lemma E.3, we have a1+a2+. . .+aj =
n1 + . . .+ nj . We have:

j∑
k=1

(uk ⊙ uk)
⊤n = n1(u

2
11 + u212 + . . .+ u21j) + n2(u

2
21 + u222 + . . .+ u22j)

+ . . .+ nK(u2K1 + u2K2 + . . .+ u2Kj) ≤
j∑

k=1

nk,

where the inequality is from the fact that for any k ∈ [K], (u2k1 + u2k2 + . . .+ u2kj) ≤ 1 and
∑K

k=1(u
2
k1 + u2k2 + . . .+

u2kj) = j and nj > nj+1. The equality holds iff u2k1 + u2k2 + . . .+ u2kj = 1 ∀ k = 1, 2, . . . , j and uk1 = uk2 = . . . =
ukj = 0 ∀ k = j+1, . . . ,K, i.e. the upper left sub-matrix size j× j of UW is an orthonormal matrix and other entries
of UW lie on the same rows or columns with this sub-matrix must all equal 0’s.

• Case C: If x∗1 > 0, r < K and there exists r < j ≤ K such that n1 = n2 = . . . = nr = . . . = nj > nj+1, thus we
have x∗1 = x∗2 = . . . = x∗r > 0 and x∗r+1 = . . . = x∗K = 0. Hence, from the equality condition of Lemma E.3, we
have a1 + a2 + . . .+ ar = n1 + . . .+ nr. We have:

r∑
k=1

(uk ⊙ uk)
⊤n = n1(u

2
11 + u212 + . . .+ u21r) + n2(u

2
21 + u222 + . . .+ u22r)

+ . . .+ nK(u2K1 + u2K2 + . . .+ u2Kr) ≤
r∑

k=1

nk,

where the inequality is from the fact that for any k ∈ [K], (u2k1 + u2k2 + . . .+ u2kr) ≤ 1 and
∑K

k=1(u
2
k1 + u2k2 + . . .+

u2kr) = r. The equality holds iff uk1 = uk2 = . . . = ukr = 0 ∀ k = j + 1, . . . ,K, i.e., the upper left sub-matrix size
j × r of UW includes r orthonormal vectors in Rj and the bottom left sub-matrix size (K − j)× r are all zeros. The
other K − r columns of UW does not matter because W∗ can be written as:

W∗ =

r∑
k=1

s∗kukv
⊤
k ,

with vk is the right singular vector that satisfies W∗⊤uk = s∗kvk. Note that since s∗1 = s∗2 = . . . = s∗r := s∗, we have
the compact SVD form as follows:

W∗ = s∗U
′

WV
′⊤
W , (72)



2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419

Neural Collapse in Deep Linear Networks: From Balanced to Imbalanced Data

where U
′

W ∈ RK×r and V
′

W ∈ Rd×r. Especially, the last K − j rows of W∗ will be zeros since the last K − j rows
of U

′

W are zeros. Furthermore, tbhe matrix U
′

WU
′⊤
W after removing the last K − j zero rows and the last K − j zero

columns is the best rank-r approximation of Ij .

We note that if Case C happens, then the number of positive singular values are limited by the matrix rank r (e.g., by
r ≤ R = min(d,K) = d when d < K), and nr = nr+1, thus x∗r > 0 and x∗r+1 = 0 (x∗r+1 should equal x∗r > 0 if it is
not forced to be zero).

• Case D: If x∗1 = 0, we must have x∗2 = . . . = x∗K = 0,
∑K

k=1(uk ⊙ uk)
⊤n always equal N and thus, UW can be an

arbitrary size K ×K orthonormal matrix.

We perform similar arguments as above for all subsequent x∗k’s, after we finish reasoning for prior ones. Before going to the
conclusion, we first study the matrix UW . If Case C does not happen for any x∗k’s, we have:

UW =


A1 0 0 0
0 A2 0 0
...

...
. . .

...
0 0 0 Al

 , (73)

where each Ai is an orthonormal block which corresponds with one or a group of classes that have the same number of
training samples and their x∗ > 0 (Case A and Case B) or corresponds with all classes with x∗ = 0 (Case D). If Case C
happens, we have:

UW =


A1 0 0 0
0 A2 0 0
...

...
. . .

...
0 0 0 Al

 , (74)

where each Ai, i ∈ [l − 1] is an orthonormal block which corresponds with one or a group of classes that have the same
number of training samples and their x∗ > 0 (Case A and Case B). Al is the orthonormal block has the same property as
UW in Case C.

We consider the case d ≥ K from now on. By using arguments about the minimizer of g(x) applied to the lower bound
(70), we consider three cases as following:

• Case 1a: b
n1

≤ b
n2

≤ . . . ≤ b
nK

≤ 1.

Then, the lower bound (70) is minimized at (x∗1, x
∗
2, . . . , x

∗
K) =

(√
n1

b − 1,
√

n2

b − 1, . . . ,
√

nK

b − 1
)
. Therefore:

(s∗1, s
∗
2, . . . , s

∗
K) =

√√n1λH
λW

−NλH ,

√√
n2λH
λW

−NλH , . . . ,

√√
nKλH
λW

−NλH

 . (75)

First, we have the property that the features in each class h∗
k,i collapsed to their class-mean h∗

k (NC1). Let H
∗
=

VWCU⊤
W , we know that H∗ = H

∗
Y from equation (60). Then, columns from the (nk−1 + 1)-th until (nk)-th of H

will all equals the k-th column of H
∗
, thus the features in class k are collapsed to their class-mean h∗

k (which is the
k-th column of H

∗
), i.e., h∗

k,1 = h∗
k,2 = . . . = h∗

k,nk
∀k ∈ [K].

Case C never happens because if we assume we have r < K positive singular values, meaning s∗r > 0. Then, if
nr+1 = nr, we must have s∗r+1 > 0 (contradiction!). Hence, UW must have the form as in equation (73), thus we can
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conclude the geometry of the following :

W∗W∗⊤ = UWSWS⊤
WU⊤

W = diag

{√
n1λH
λW

−NλH ,

√
n2λH
λW

−NλH , . . . ,

√
nKλH
λW

−NλH

}
∈ RK×K ,

(76)

W∗H∗ = UW diag

{
s21

s21 +NλH
, . . . ,

s2K
s2K +NλH

}
U⊤

WY

=


s21

s21+NλH
0 . . . 0

0
s22

s22+NλH
. . . 0

...
...

. . .
...

0 0 . . .
s2K

s2K+NλH



1 . . . 1 0 . . . 0 . . . 0 . . . 0
0 . . . 0 1 . . . 1 . . . 0 . . . 0
...

. . .
...

...
. . .

... . . .
...

. . .
...

0 . . . 0 0 . . . 0 . . . 1 . . . 1



=


s21

s21+NλH
1⊤
n1

. . . 0

...
. . .

...
0 . . .

s2K
s2K+NλH

1⊤
nK

 ,
H∗⊤H∗ = Y⊤UWCTCU⊤

WY

= Y⊤


s21

(s21+NλH)2
0 . . . 0

0
s22

(s22+NλH)2
. . . 0

...
...

. . .
...

0 0 . . .
s2K

(s2K+NλH)2

Y

=


s21

(s21+NλH)2
1n1

1⊤
n1

0 . . . 0

0
s22

(s22+NλH)2
1n2

1⊤
n2

. . . 0

...
...

. . .
...

0 0 . . .
s2K

(s2K+NλH)2
1nK

1⊤
nK

 ∈ RN×N , (77)

where 1nk
1⊤
nk

is a nk × nk matrix will all entries are 1’s.

We additionally have the structure of the class-means matrix:

H
∗⊤

H
∗
= U⊤

WC⊤CUW =


s21

(s21+NλH)2
0 . . . 0

0
s22

(s22+NλH)2
. . . 0

...
...

. . .
...

0 0 . . .
s2K

(s2K+NλH)2

 ∈ RK×K , (78)

W∗H
∗
= UWSWCUW

⊤ =


s21

s21+NλH
0 . . . 0

0
s22

s22+NλH
. . . 0

...
...

. . .
...

0 0 . . .
s2K

s2K+NλH

 ∈ RK×K . (79)

And the alignment between the linear classifier and features are as following. For any k ∈ [K], denote wk the k-th row
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of W∗:

W∗ = UWSWV⊤
W ,

H
∗
= VWCU⊤

W

⇒ w∗
k = (s2k +NλH)h∗

k =

√
nkλH
λW

h∗
k. (80)

• Case 2a: There exists j ∈ [K − 1] s.t. b
n1

≤ b
n2

≤ . . . ≤ b
nj

≤ 1 < b
nj+1

≤ . . . ≤ b
nK

Then, the lower bound (70) is minimized at:

(s∗1, . . . , s
∗
j , s

∗
j+1 . . . , s

∗
K) =

√√n1λH
λW

−NλH , . . . ,

√√
njλH
λW

−NλH , 0, . . . , 0

 . (81)

First, we have the property that the features in each class h∗
k,i collapsed to their class-mean h∗

k (NC1). Let
H

∗
= VWCU⊤

W , we know that H∗ = H
∗

from equation (60). Then, columns from the (nk−1 + 1)-th until (nk)-th
of H∗ will all equals the k-th column of H

∗
, thus the features in class k are collapsed to their class-mean h∗

k (which is
the k-th column of H), i.e h∗

k,1 = h∗
k,2 = . . . = h∗

k,nk
∀k ∈ [K].

Recall UW with the form (73) (Case C cannot happen with the same reason as in Case 1a). From equations (60) and
(62), we can conclude the geometry of the following:

W∗W∗⊤ = UWSWS⊤
WU⊤

W

= diag

(√
n1λH
λW

−NλH ,

√
n2λH
λW

−NλH , . . . ,

√
njλH
λW

−NλH , 0, . . . , 0

)
, (82)

W∗H∗ = UW diag

(
s21

s21 +NλH
, . . . ,

s2j
s2j +NλH

, 0, . . . , 0

)
U⊤

WY

=


s21

s21+NλH
1⊤
n1

0 . . . 0

0
s22

s22+NλH
1⊤
n2

. . . 0

...
...

. . .
...

0 0 . . . 0⊤
nK

 ∈ RK×N ,

H∗⊤H∗ =


s21

(s21+NλH)2
1n1

1⊤
n1

0 . . . 0

0
s22

(s22+NλH)2
1n2

1⊤
n2

. . . 0

...
...

. . .
...

0 0 . . . 0nK×nK

 ∈ RN×N , (83)

where 1nk
1⊤
nk

is a nk × nk matrix will all entries are 1’s.

For any k ∈ [K], denote w∗
k the k-th row of W∗ and vk the k-th column of VW , we have:

W∗ = UWSWV⊤
W ,

H
∗
= VWCU⊤

W

⇒ w∗
k = (s2k +NλH)h∗

k =

√
nkλH
λW

h∗
k. (84)

And, for k > j, we have w∗
k = h∗

k = 0, which means the optimal classifiers and features of class k > j will be 0.
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• Case 3a: 1 < b
n1

≤ b
n2

≤ . . . ≤ b
nR

Then, the lower bound (70) is minimized at:

(s∗1, s
∗
2, . . . , s

∗
K) = (0, 0, . . . , 0). (85)

Hence, the global minimizer of f in this case is (W∗,H∗) = (0,0).

Now, we turn to consider the case d < K, and thus, r ≤ R = d < K. Again, we consider the following cases:

• Case 1b: b
n1

≤ b
n2

≤ . . . ≤ b
nR

≤ 1.

Then, the lower bound (70) is minimized at (x∗1, x
∗
2, . . . , x

∗
K) = (

√
n1

b − 1,
√

n2

b − 1, . . . ,
√

nR

b − 1, 0, . . . , 0) =

(
√

n1

N2λWλH
− 1,

√
n2

N2λWλH
− 1, . . . ,

√
nR

N2λWλH
− 1, 0, . . . , 0). Therefore:

(s∗1, s
∗
2, . . . , s

∗
R, s

∗
R+1, . . . s

∗
K)

=

√√n1λH
λW

−NλH ,

√√
n2λH
λW

−NλH , . . . ,

√√
nRλH
λW

−NλH , 0, . . . , 0

 . (86)

We have (NC1) and (NC3) properties are the same as Case 1a.

We have Case C happens iff b/nR < 1 (i.e., x∗R > 0) and nR = nR+1. Then, if b/nR = 1 or nR > nR+1, we have:

W∗W∗⊤ = UWSWS⊤
WU⊤

W =



√
n1λH

λW
−NλH . . . 0 . . . 0

...
. . .

...
. . .

...

0 . . .
√

nRλH

λW
−NλH . . . 0

...
. . .

...
. . .

...
0 . . . 0 . . . 0


∈ RK×K , (87)

H
∗⊤

H
∗
= U⊤

WC⊤CUW =


s21

(s21+NλH)2
0 . . . 0

0
s22

(s22+NλH)2
. . . 0

...
...

. . .
...

0 0 . . . 0

 ∈ RK×K , (88)

W∗H
∗
= UWSWCUW

⊤ =


s21

s21+NλH
0 . . . 0

0
s22

s22+NλH
. . . 0

...
...

. . .
...

0 0 . . . 0

 ∈ RK×K . (89)

Furthermore, we have w∗
k = h∗

k = 0 for k > R.

If Case C happens, there exists k ≤ R, l > R such that nk−1 > nk = nk+1 = . . . = nR = . . . = nl > nl+1. Recall



2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639

Neural Collapse in Deep Linear Networks: From Balanced to Imbalanced Data

the form of UW as in equation (74), then:

W∗W∗⊤ =



√
n1λH

λW
−NλH . . . 0 0 0

...
. . .

...
...

...

0 . . .
√

nk−1λH

λW
−NλH 0 0

0 . . . 0
(√

nkλH

λW
−NλH

)
PR−k+1(Il−k+1) 0

0 . . . 0 0 0(K−l)×(K−l)


,

(90)

H
∗⊤

H
∗
=



s21
(s21+NλH)2

. . . 0 0 0

...
. . .

...
...

...

0 . . .
s2k−1

(s2k−1+NλH)2
0 0

0 . . . 0
s2k

(s2k+NλH)2
PR−k+1(Il−k+1) 0

0 . . . 0 0 0(K−l)×(K−l)


, (91)

W∗H
∗
=



s21
s21+NλH

. . . 0 0 0

...
. . .

...
...

...

0 . . .
s2k−1

s2k−1+NλH
0 0

0 . . . 0
s2k

s2k+NλH
PR−k+1(Il−k+1) 0

0 . . . 0 0 0(K−l)×(K−l)


, (92)

and for any k > l > R, we have w∗
k = h∗

k = 0.

• Case 2b: There exists j ∈ [R− 1] s.t. b
n1

≤ b
n2

≤ . . . ≤ b
nj

≤ 1 < b
nj+1

≤ . . . ≤ b
nR

Then, the lower bound (70) is minimized at:

(s∗1, . . . , s
∗
j , s

∗
j+1 . . . , s

∗
K) =

√√n1λH
λW

−NλH , . . . ,

√√
njλH
λW

−NλH , 0, . . . , 0

 . (93)

We have (NC1) and (NC3) properties are the same as Case 2a.

Case C does not happen in this case because b/nR > 1 and thus, x∗R = 0. Thus, we can conclude the geometry of the
following:

W∗W∗⊤ = UWSWS⊤
WU⊤

W

= diag

(√
n1λH
λW

−NλH ,

√
n2λH
λW

−NλH , . . . ,

√
njλH
λW

−NλH , 0, . . . , 0

)
, (94)

W∗H∗ = UW diag

(
s21

s21 +NλH
, . . . ,

s2j
s2j +NλH

, 0, . . . , 0

)
U⊤

WY

=


s21

s21+NλH
1⊤
n1

0 . . . 0

0
s22

s22+NλH
1⊤
n2

. . . 0

...
...

. . .
...

0 0 . . . 0⊤
nK

 ∈ RK×N ,
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H∗⊤H∗ =


s21

(s21+NλH)2
1n11

⊤
n1

0 . . . 0

0
s22

(s22+NλH)2
1n21

⊤
n2

. . . 0

...
...

. . .
...

0 0 . . . 0nK×nK

 ∈ RN×N , (95)

where 1nk
1⊤
nk

is a nk × nk matrix will all entries are 1’s. And for any k > j, w∗
k = h∗

k = 0.

• Case 3b: 1 < b
n1

≤ b
n2

≤ . . . ≤ b
nR

Then, the lower bound (70) is minimized at:

(s∗1, s
∗
2, . . . , s

∗
K) = (0, 0, . . . , 0). (96)

Hence, the global minimizer of f in this case is (W∗,H∗) = (0,0).

F. Proof of Theorem 4.4
Theorem F.1. Let dm ≥ K ∀m ∈ [M ] and (W∗

M ,W
∗
M−1, . . . ,W

∗
2,W

∗
1,H

∗
1) be any global minimizer of problem (6).

We have:

(NC1) H∗
1 = H

∗
Y ⇔ h∗

k,i = h∗
k ∀ k ∈ [K], i ∈ [nk], where H

∗
= [h∗

1, . . . ,h
∗
K ] ∈ Rd1×K .

(NC2) Let c :=
λM−1
W1

λWM
λWM−1

...λW2
, a := N M

√
NλWM

λWM−1
. . . λW1

λH1
and ∀k ∈ [K], x∗k is the largest positive solution

of the equation a
nk

− xM−1

(xM+1)2
= 0, we have the following:

W∗
MW∗⊤

M =
λW1

λWM

diag
{
s2k
}K
k=1

,

H
∗⊤

H
∗
= diag

{
cs2Mk

(cs2Mk +NλH1)
2

}K

k=1

,

W∗
MW∗

M−1 . . .W
∗
1H

∗
1 =

{
cs2Mk

cs2Mk +NλH1

}K

k=1

Y,

(NC3) We have, ∀ k ∈ [K]:

(W∗
MW∗

M−1 . . .W
∗
2W

∗
1)k = (cs2Mk +NλH1

)h∗
k,

where:

• If a
n1

≤ a
n2

≤ . . . ≤ a
nK

< (M−1)
M−1
M

M2 , we have:

sk =
2M

√
NλH1

x∗Mk
c

∀ k.

• If there exists a j ∈ [K − 1] s.t. a
n1

≤ a
n2

≤ . . . ≤ a
nj
< (M−1)

M−1
M

M2 < a
nj+1

≤ . . . ≤ a
nK

, we have:

sk =

{
2M

√
NλH1

x∗M
k

c ∀ k ≤ j

0 ∀ k > j
.

And, for any k such that sk = 0, we have:

(W∗
M )k = h∗

k = 0.
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• If (M−1)
M−1
M

M2 < a
n1

≤ a
n2

≤ . . . ≤ a
nK

, we have:

(s1, s2, . . . , sK) = (0, 0, . . . , 0),

and (W∗
M , . . . ,W

∗
1,H

∗
1) = (0, . . . ,0,0) in this case.

The only case left is if there exists i, j ∈ [K] (i ≤ j ≤ K) such that a
n1

≤ a
n2

≤ . . . ≤ a
ni−1

< a
ni

= a
ni+1

= . . . = a
nj

=

(M−1)
M−1
M

M2 < a
nj+1

≤ a
nj+2

≤ . . . ≤ a
nK

, we have:

sk =


2M

√
NλH1

x∗Mk /c ∀ k ≤ i− 1

2M

√
NλH1x

∗M
k /c or 0 ∀ i ≤ k ≤ j

0 ∀ k ≥ j + 1

,

furthermore, let r is the largest index that sr > 0, we must have sr+1 = sr+2 = . . . = sK = 0. (NC1) and (NC3) are the
same as above but for (NC2):

W∗
MW∗⊤

M =
λW1

λWM


s21 . . . 0 0 0
...

. . .
...

...
...

0 . . . s2i−1 0 0
0 . . . 0 s2iPr−i+1(Ij−i+1) 0
0 . . . 0 0 0(K−j)×(K−j)

 , (97)

H
∗⊤

H
∗
=



cs2M1
(cs2M1 +NλH1

)2
. . . 0 0 0

...
. . .

...
...

...

0 . . .
cs2Mi−1

(cs2Mi−1+NλH1
)2

0 0

0 . . . 0
cs2Mi

(cs2Mi +NλH1
)2
Pr−i+1(Ij−i+1) 0

0 . . . 0 0 0(K−j)×(K−j)


,

(98)

W∗
MW∗

M−1 . . .W
∗
2W

∗
1H

∗
=



cs2M1
cs2M1 +NλH1

. . . 0 0 0

...
. . .

...
...

...

0 . . .
cs2Mi−1

cs2Mi−1+NλH1

0 0

0 . . . 0
cs2Mi

cs2Mi +NλH1

Pr−i+1(Ij−i+1) 0

0 . . . 0 0 0(K−j)×(K−j)


,

(99)

and, for any h > j, (W∗
MW∗

M−1 . . .W
∗
2W

∗
1)h = h∗

h = 0.

Theorem F.2. Let R = min(dM , . . . , d1,K) < K and (W∗
M ,W

∗
M−1, . . . ,W

∗
2,W

∗
1,H

∗
1) be any global minimizer of

problem (6). We have:

(NC1) H∗
1 = H

∗
Y ⇔ h∗

k,i = h∗
k ∀ k ∈ [K], i ∈ [nk], where H

∗
= [h∗

1, . . . ,h
∗
K ] ∈ Rd1×K .

(NC3) We have, ∀ k ∈ [K]:

(W∗
MW∗

M−1 . . .W
∗
2W

∗
1)k = (cs2Mk +NλH1

)h∗
k,

(NC2) Let c :=
λM−1
W1

λWM
λWM−1

...λW2
, a := N M

√
NλWM

λWM−1
. . . λW1

λH1
and ∀k ∈ [K], x∗k is the largest positive

solution of the equation a
nk

− xM−1

(xM+1)2
= 0, we define {sk}Kk=1 as follows:
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• If a
n1

≤ a
n2

≤ . . . ≤ a
nR

< (M−1)
M−1
M

M2 , we have:

sk =

{
2M

√
NλH1

x∗M
k

c ∀ k ≤ R

0 ∀ k > R
.

Then, if nR > nR+1, we have:

W∗
MW∗⊤

M =
λW1

λWM

diag
{
s2k
}K
k=1

,

H
∗⊤

H
∗
= diag

{
cs2Mk

(cs2Mk +NλH1
)2

}K

k=1

,

W∗
MW∗

M−1 . . .W
∗
1H1

∗
=

{
cs2Mk

cs2Mk +NλH1

}K

k=1

,

and for any k > R, we have (W∗
MW∗

M−1 . . .W
∗
2W

∗
1)k = h∗

k = 0.

Otherwise, if nR = nR+1, and there exists k ≤ R, l > R such that nk−1 > nk = nk+1 = . . . = nR = . . . = nl >
nl+1, we have:

W∗
MW∗⊤

M =
λW1

λWM


s21 . . . 0 0 0
...

. . .
...

...
...

0 . . . s2k−1 0 0
0 . . . 0 s2kPR−k+1(Il−k+1) 0
0 . . . 0 0 0(K−l)×(K−l)

 , (100)

H
∗⊤

H
∗
=



cs2M1
(cs2M1 +NλH1

)2
. . . 0 0 0

...
. . .

...
...

...

0 . . .
cs2Mk−1

(cs2Mk−1+NλH1
)2

0 0

0 . . . 0
cs2Mk

(cs2Mk +NλH1
)2
PR−k+1(Il−k+1) 0

0 . . . 0 0 0(K−l)×(K−l)


,

(101)

W∗
MW∗

M−1 . . .W
∗
2W

∗
1H

∗
=



cs2M1
cs2M1 +NλH1

. . . 0 0 0

...
. . .

...
...

...

0 . . .
cs2Mk−1

cs2Mk−1+NλH1

0 0

0 . . . 0
cs2Mk

cs2Mk +NλH1

PR−k+1(Il−k+1) 0

0 . . . 0 0 0(K−l)×(K−l)


,

(102)

and, for any h > l > R, (W∗
MW∗

M−1 . . .W
∗
2W

∗
1)h = h∗

h = 0.

• If there exists a j ∈ [R− 1] s.t. a
n1

≤ a
n2

≤ . . . ≤ a
nj
< (M−1)

M−1
M

M2 < a
nj+1

≤ . . . ≤ a
nR

, we have:

sk =

{
2M

√
NλH1

x∗M
k

c ∀ k ≤ j

0 ∀ k > j
.
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Then, we have:

W∗
MW∗⊤

M =
λW1

λWM

diag
{
s2k
}K
k=1

,

H
∗⊤

H
∗
= diag

{
cs2Mk

(cs2Mk +NλH1)
2

}K

k=1

,

W∗
MW∗

M−1 . . .W
∗
1H1

∗
=

{
cs2Mk

cs2Mk +NλH1

}K

k=1

,

and for any k > j, we have (W∗
MW∗

M−1 . . .W
∗
2W

∗
1)k = h∗

k = 0.

• If (M−1)
M−1
M

M2 < a
n1

≤ a
n2

≤ . . . ≤ a
nR

, we have:

(s1, s2, . . . , sK) = (0, 0, . . . , 0),

and (W∗
M , . . . ,W

∗
1,H

∗
1) = (0, . . . ,0,0) in this case.

The only case left is if there exists i, j ∈ [R] (i ≤ j ≤ R) such that a
n1

≤ a
n2

≤ . . . ≤ a
ni−1

< a
ni

= a
ni+1

= . . . = a
nj

=

(M−1)
M−1
M

M2 < a
nj+1

≤ a
nj+2

≤ . . . ≤ a
nR

, we have:

sk =


2M

√
NλH1x

∗M
k /c ∀ k ≤ i− 1

2M

√
NλH1

x∗Mk /c or 0 ∀ i ≤ k ≤ j

0 ∀ k ≥ j + 1

,

furthermore, let r is the largest index that sr > 0, we must have r ≤ R and sr+1 = sr+2 = . . . = sK = 0. (NC1) and
(NC3) are the same as above but for (NC2), we have:

W∗
MW∗⊤

M =
λW1

λWM


s21 . . . 0 0 0
...

. . .
...

...
...

0 . . . s2i−1 0 0
0 . . . 0 s2iPr−i+1(Ij−i+1) 0
0 . . . 0 0 0(K−j)×(K−j)

 , (103)

H
∗⊤

H
∗
=



cs2M1
(cs2M1 +NλH1

)2
. . . 0 0 0

...
. . .

...
...

...

0 . . .
cs2Mi−1

(cs2Mi−1+NλH1
)2

0 0

0 . . . 0
cs2Mi

(cs2Mi +NλH1
)2
Pr−i+1(Ij−i+1) 0

0 . . . 0 0 0(K−j)×(K−j)


,

(104)

W∗
MW∗

M−1 . . .W
∗
2W

∗
1H

∗
=



cs2M1
cs2M1 +NλH1

. . . 0 0 0

...
. . .

...
...

...

0 . . .
cs2Mi−1

cs2Mi−1+NλH1

0 0

0 . . . 0
cs2Mi

cs2Mi +NλH1

Pr−i+1(Ij−i+1) 0

0 . . . 0 0 0(K−j)×(K−j)


,

(105)

and, for any h > j, (W∗
MW∗

M−1 . . .W
∗
2W

∗
1)h = h∗

h = 0.
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Proof of Theorem F.1 and F.2. First, by using lemma D.2, we have for any critical point (WM ,WM−1, . . . ,W2,W1,H1)
of f , we have the following:

λWM
W⊤

MWM = λWM−1
WM−1W

⊤
M−1,

λWM−1
W⊤

M−1WM−1 = λWM−2
WM−2W

⊤
M−2,

. . .

λW2
W⊤

2 W2 = λW1
W1W

⊤
1 ,

λW1
W⊤

1 W1 = λH1
H1H

⊤
1 .

Let W1 = UW1
SW1

V⊤
W1

be the SVD decomposition of W1 with UW1
∈ Rd2×d2 ,VW1

∈ Rd1×d1 are orthonormal
matrices and SW1

∈ Rd2×d1 is a diagonal matrix with decreasing non-negative singular values. We denote the r singular
values of W1 as {sk}rk=1 (r ≤ R := min(K, dM , . . . , d1)). From Lemma D.4, we have the SVD of other weight matrices
as:

WM = UWM
SWM

U⊤
WM−1

,

WM−1 = UWM−1
SWM−1

U⊤
WM−2

,

WM−2 = UWM−2
SWM−2

U⊤
WM−3

,

WM−3 = UWM−3
SWM−3

U⊤
WM−4

,

. . . ,

W2 = UW2
SW2

U⊤
W1
,

W1 = UW1
SW1

V⊤
W1
,

with:

SWj
=

√
λW1

λWj

[
diag(s1, . . . , sr) 0r×(dj−r)

0(dj+1−r)×r 0(dj+1−r)×(dj−r)

]
∈ Rdj+1×dj ∀ j ∈ [M ],

and UWM
,UWM−1

,UWM−2
,UWM−3

, . . . ,UW1
,VW1

are all orthonormal matrices.

From Lemma D.5, denote c :=
λM−1
W1

λWM
λWM−1

...λW2
, we have:

H1 = VW1

[
diag

( √
csM1

cs2M1 +NλH1

, . . . ,
√
csMr

cs2Mr +NλH1

)
0

0 0

]
︸ ︷︷ ︸

C∈Rd1×K

U⊤
WM

Y

= VW1
CU⊤

WM
Y.

(106)

WMWM−1 . . .W2W1H−Y = UWM

[
diag

(
−NλH1

cs2M1 +NλH1

, . . . ,
−NλH1

cs2Mr +NλH1

)
0

0 −IK−r

]
︸ ︷︷ ︸

D∈RK×K

U⊤
WM

Y

= UWM
DU⊤

WM
Y.

(107)

Next, we will calculate the Frobenius norm of WMWM−1 . . .W2W1H1 −Y:

∥WMWM−1 . . .W2W1H1 −Y∥2F = ∥UWM
DU⊤

WM
Y∥2F = trace(UWM

DU⊤
WM

Y(UWM
DU⊤

WM
Y)⊤)

= trace(UWM
DU⊤

WM
YY⊤UWM

DU⊤
WM

)

= trace(D2U⊤
WM

YY⊤UWM
).
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We denote uk and uk are the k-th row and column of UWM
, respectively. Let n = (n1, . . . , nK), we have the following:

UWM
=

−u1−
. . .

−uK−

 =

 | | |
u1 . . . uK

| | |

 ,
YY⊤ = diag(n1, n2, . . . , nK) ∈ RK×K

⇒ U⊤
WM

YY⊤UWM
=

 | | |
(u1)⊤ . . . (uK)⊤

| | |

diag(n1, n2, . . . , nK)

−u1−
. . .

−uK−


=

 | | |
(u1)⊤ . . . (uK)⊤

| | |

−n1u1−
. . .

−nkuK−


⇒ (U⊤

WM
YY⊤UWM

)kk = n1u
2
1k + n2u

2
2k + . . .+ nku

2
Kk = (uk ⊙ uk)

⊤n

(108)

⇒ ∥WMWM−1 . . .W2W1H1 −Y∥2F = trace(D2U⊤
WYY⊤UW )

=

r∑
k=1

(uk ⊙ uk)
⊤n

(−NλH1)
2

(cs2Mk +NλH1)
2
+

K∑
h=r+1

(uh ⊙ uh)
⊤n, (109)

where the last equality is from the fact that D2 is a diagonal matrix, so the diagonal of D2U⊤
WM

YY⊤UWM
is the

element-wise product between the diagonal of D2 and U⊤
WM

YY⊤UWM
.

Similarly, we calculate the Frobenius norm of H1, from equation (106), we have:

∥H1∥2F = trace(VW1
CU⊤

WM
YY⊤UWM

C⊤V⊤
W1

) = trace(C⊤CU⊤
WM

YY⊤UWM
)

=

r∑
k=1

(uk ⊙ uk)
⊤n

cs2Mk
(cs2Mk +NλH1

)2
. (110)

Now, we plug the equations (109), (110) and the SVD of weight matrices into the function f and note that orthonormal
matrix does not change Frobenius norm, we got:

f =
1

2N
∥WMWM−1 . . .W1H1 −Y∥2F +

λWM

2
∥WM∥2F + . . .+

λW1

2
∥W1∥2F +

λH1

2
∥H1∥2F

=
1

2N

r∑
k=1

(uk ⊙ uk)
⊤n

(−NλH1)
2

(cs2Mk +NλH1)
2
+

1

2N

K∑
h=r+1

(uh ⊙ uh)
⊤n+

λWM

2

r∑
k=1

λW1

λWM

s2k

+
λWM−1

2

r∑
k=1

λW1

λWM−1

s2k + . . .+
λW1

2

r∑
k=1

s2k +
λH1

2

r∑
k=1

(uk ⊙ uk)
⊤n

cs2Mk
(cs2Mk +NλH1

)2

=
λH1

2

r∑
k=1

(uk ⊙ uk)
⊤n

cs2Mk +NλH1

+
1

2N

K∑
h=r+1

(uh ⊙ uh)
⊤n+

MλW1

2

r∑
k=1

s2k

=
1

2N

r∑
k=1

 (uk ⊙ uk)
⊤n

cs2Mk
NλH1

+ 1
+MNλW1

M

√
NλH1

c

 M

√
cs2Mk
NλH1

+
1

2N

K∑
h=r+1

(uh ⊙ uh)
⊤n

=
1

2N

r∑
k=1

(
(uk ⊙ uk)

⊤n

xMk + 1
+ bxk

)
+

1

2N

K∑
h=r+1

(uh ⊙ uh)
⊤n

=
1

2N

r∑
k=1

(
ak

xMk + 1
+ bxk

)
+

1

2N

K∑
h=r+1

ah, (111)
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with xk := M

√
cs2Mk
NλH1

, ak := (uk ⊙ uk)
⊤n and b := MNλW1

M

√
NλH1

c = MNλW1
M

√
NλWM

λWM−1
...λW2

λH1

λM−1
W1

=

MN M
√
NλWM

λWM−1
. . . λW1

λH1
.

From the fact that UW is an orthonormal matrix, we have:

K∑
k=1

ak =

K∑
k=1

(uk ⊙ uk)
⊤n =

(
K∑

k=1

uk ⊙ uk

)⊤

n = 1⊤n =

K∑
k=1

nk = N, (112)

and, for any j ∈ [K], denote pi,j := u2i1 + u2i2 + . . .+ u2ij ∀ i ∈ [K], we have:

j∑
k=1

ak =

j∑
k=1

(uk ⊙ uk)
⊤n = n1(u

2
11 + u212 + . . .+ u21j) + n2(u

2
21 + u222 + . . .+ u22j) + . . .+ nK(u2K1 + u2K2 + . . .+ u2Kj)

=

K∑
k=1

pk,jnk ≤ p1,jn1 + p2,jn2 + . . .+ pj−1,jnj−1 + (pj,j + pj+1,j + pj+2,j + . . .+ pK,j)nj

= p1,jn1 + p2,jn2 + . . .+ pj−1,jnj−1 + (j − p1,j + . . .+ pj−1,j)nj

=

j∑
k=1

nk +

j−1∑
h=1

(nh − nj)(ph,j − 1) ≤
j∑

k=1

nk

⇒
K∑

k=j+1

ak ≥ N −
j∑

k=1

nk =

K∑
k=j+1

nk ∀ j ∈ [K], (113)

where we used the fact that
∑K

k=1 pk,j = j since it is the sum of squares of all entries of the first j columns of an
orthonormal matrix, and pi,j ≤ 1 ∀ i because it is the sum of squares of some entries on the i-th row of UW .

By applying Lemma E.3 to the RHS of equation (111) with zk = 1
xM
k +1

∀ k ≤ r and zk = 1 otherwise, we obtain:

f(WM ,WM−1, . . . ,W2,W1,H1) ≥
1

2N

r∑
k=1

(
nk

xMk + 1
+ bxk

)
+

1

2N

K∑
h=r+1

nh (114)

=
1

2N

r∑
k=1

nk

(
1

xMk + 1
+

b

nk
xk

)
+

1

2N

K∑
h=r+1

nh. (115)

The minimizer of the function g(x) = 1
xM+1

+ ax has been studied in Section D.2.1. Apply this result for the lower bound
(115), we finish bounding f(WM ,WM−1, . . . ,W2,W1,H1).

Now, we study the equality conditions. In the lower bound (115), by letting x∗k be the minimizer of 1
xM
k +1

+ b
nk
xk for all

k ≤ r and x∗k = 0 for all k > r, there are only four possibilities as following:

• Case A: If x∗1 > 0 and n1 > n2: If x∗2 = 0, it is clear that x∗1 > x∗2. Otherwise, we have x∗1 and x∗2 must satisfy (see
Section D.2.1 for details):

Mx∗M−1
1

(x∗M1 + 1)2
=

b

n1
,

Mx∗M−1
2

(x∗M2 + 1)2
=

b

n2
.
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Because b
n1

< b
n2

and the function p(x) = MxM−1

(xM+1)2
is a decreasing function when x > M

√
M−1
M+1 , we got x∗1 > x∗2.

Hence, from the equality condition of Lemma E.3, we have a1 = n1. From the orthonormal property of uk, we have:

a1 = (u1 ⊙ u1)
⊤n = n1u

2
11 + n2u

2
21 + . . .+ nku

2
K1 ≤ n1(u

2
11 + u221 + . . .+ u2K1) = n1.

The equality holds when and only when u211 = 1 and u21 = . . . = uK1 = 0.

• Case B: If x∗1 > 0 and there exists 1 < j ≤ r such that n1 = n2 = . . . = nj > nj+1, we have:

1

xM + 1
+

b

n1
x =

1

xM + 1
+

b

n2
x = . . . =

1

xM + 1
+

b

nj
x,

and thus, x∗1 = x∗2 = . . . = x∗j > x∗j+1. Hence, from the equality condition of Lemma E.3, we have a1+a2+. . .+aj =
n1 + . . .+ nj . We have:

j∑
k=1

(uk ⊙ uk)
⊤n = n1(u

2
11 + u212 + . . .+ u21j) + n2(u

2
21 + u222 + . . .+ u22j)

+ . . .+ nK(u2K1 + u2K2 + . . .+ u2Kj) ≤
j∑

k=1

nj ,

where the inequality is from the fact that for any k ∈ [K], (u2k1 + u2k2 + . . .+ u2kj) ≤ 1 and
∑K

k=1(u
2
k1 + u2k2 + . . .+

u2kj) = j. The equality holds iff u2k1 + u2k2 + . . .+ u2kj = 1 ∀ k = 1, 2, . . . , j and uk1 = uk2 = . . . = ukj = 0 ∀ k =
j + 1, . . . ,K, i.e. the upper left sub-matrix size j × j of UWM

is an orthonormal matrix and other entries of UWM
lie

on the same rows or columns with this sub-matrix must all equal 0’s.

• Case C: If x∗1 > 0, r < K and there exists r < j ≤ K such that n1 = n2 = . . . = nr = . . . = nj > nj+1, we have
x∗1 = x∗2 = . . . = x∗r > 0 and x∗r+1 = . . . = x∗K = 0. Hence, from the equality condition of Lemma E.3, we have
a1 + a2 + . . .+ ar = n1 + . . .+ nr. We have:

r∑
k=1

(uk ⊙ uk)
⊤n = n1(u

2
11 + u212 + . . .+ u21r) + n2(u

2
21 + u222 + . . .+ u22r)

+ . . .+ nK(u2K1 + u2K2 + . . .+ u2Kr) ≤
r∑

k=1

nk,

where the inequality is from the fact that for any k ∈ [K], (u2k1 + u2k2 + . . .+ u2kr) ≤ 1 and
∑K

k=1(u
2
k1 + u2k2 + . . .+

u2kr) = r. The equality holds iff uk1 = uk2 = . . . = ukr = 0 ∀ k = j + 1, . . . ,K, i.e. the upper left sub-matrix size
j × r of UWM

includes r orthonormal vectors in Rj and the bottom left sub-matrix size (K − j)× r are all zeros. The
other K − r columns of UWM

does not matter because W∗
M can be written as:

W∗
M =

r∑
k=1

s∗kukv
⊤
k ,

with vk is the right singular vector that satisfies W∗⊤
M uk = s∗kvk. Note that since s∗1 = s∗2 = . . . = s∗r := s∗, thus we

have compact SVD form as follows:

W∗
M = s∗U

′

WM
V

′⊤
WM

, (116)

where U
′

WM
∈ RK×r and V

′

WM
∈ Rd×r. Especially, the last K − j rows of W∗

M will be zeros since the last K − j

rows of U
′

WM
are zeros. Furthermore, U

′

WM
U

′⊤
WM

after removing the last K − j zero rows and the last K − j zero
columns is the best rank-r approximation of Ij .

We note that if Case C happens, then the number of positive singular values are limited by the matrix rank r (e.g., by
r ≤ R = min(dM , . . . , d1,K) < K), and nr = nr+1, thus x∗r > 0 and x∗r+1 = 0 (x∗r+1 should equal x∗r > 0 if it is
not forced to be zero).
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• Case D: If x∗1 = 0, we must have x∗2 = . . . = x∗K = 0,
∑K

k=1(uk ⊙uk)
⊤n always equal N and thus, UWM

can be an
arbitrary size K ×K orthonormal matrix.

We perform similar arguments as above for all subsequent x∗k’s, after we finish reasoning for prior ones. Before going to the
conclusion, we first study the matrix UWM

. If Case C does not happen for any x∗k’s, we have:

UWM
=


A1 0 0 0
0 A2 0 0
...

...
. . .

...
0 0 0 Al

 , (117)

where each Ai is an orthonormal block which corresponds with one or a group of classes that have the same number of
training samples and their x∗ > 0 (Case A and Case B) or corresponds with all classes with x∗ = 0 (Case D). If Case C
happens, we have:

UWM
=


A1 0 0 0
0 A2 0 0
...

...
. . .

...
0 0 0 Al

 , (118)

where each Ai, i ∈ [l − 1] is an orthonormal block which corresponds with one or a group of classes that have the same
number of training samples and their x∗ > 0 (Case A and Case B). Al is the orthonormal block has the same property as
UWM

in Case C.

We consider the case R = K from now on. By using arguments about the minimizer of g(x) applied to the lower bound
(115), we consider four cases as following:

• Case 1a: b
n1

≤ b
n2

≤ . . . ≤ b
nK

< (M−1)
M−1
M

M .

Then, the lower bound (115) is minimized at (x∗1, x
∗
2, . . . , x

∗
K) where x∗i is the largest positive solution of the equation

b
ni

− MxM−1

(xM+1)2
= 0 for i = 1, 2, . . . ,K. We conclude:

(s∗1, s
∗
2, . . . , s

∗
K) =

(
2M

√
NλH1

x∗M1
c

,
2M

√
NλH1

x∗M2
c

, . . .
2M

√
NλH1x

∗M
K

c

)
. (119)

First, we have the property that the features in each class h∗
k,i collapsed to their class-mean h∗

k (NC1). Let
H

∗
= VW1

CU⊤
WM

, we know that H∗
1 = H

∗
Y from equation (106). Then, columns from the (nk−1 + 1)-th until

(nk)-th of H∗
1 will all equals the k-th column of H

∗
, thus the features in class k collapse to their class-mean h∗

k (which
is the k-th column of H

∗
), i.e., h∗

k,1 = h∗
k,2 = . . . = h∗

k,nk
∀ k ∈ [K].

Since r = R = K, Case C never happens, and we have UWM
as in equation (117). Hence, together with equations

(106) and (107), we can conclude the geometry of the following:

W∗
MW∗⊤

M = UWM
SWM

S⊤
WM

U⊤
WM

= diag

(
λW1

λWM

s21, . . . ,
λW1

λWM

s2K

)
, (120)

H∗⊤
1 H∗

1 = Y⊤UWM
CTCU⊤

WM
Y =


cs2M1

(cs2M1 +NλH1
)2
1n1

1⊤
n1

. . . 0

...
. . .

...

0 . . .
cs2MK

(cs2MK +NλH1
)2
1nK

1⊤
nK

 , (121)
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W∗
MW∗

M−1 . . .W
∗
2W

∗
1H

∗
1 = UWM

SWM
SWM−1

. . .SW1
CU⊤

WM
Y

=


cs2M1

cs2M1 +NλH1

1⊤
n1

. . . 0

...
. . .

...

0 . . .
cs2MK

cs2MK +NλH1

1⊤
nK

 . (122)

We additionally have the structure of the class-means matrix:

H
∗⊤

H
∗
= U⊤

WM
C⊤CUWM

=


cs2M1

(cs2M1 +NλH1
)2

. . . 0

...
. . .

...

0 . . .
cs2MK

(cs2MK +NλH1
)2

 , (123)

W∗
MW∗

M−1 . . .W
∗
2W

∗
1H

∗
= UWM

SWM
CUW

⊤ =


cs2M1

cs2M1 +NλH1

. . . 0

...
. . .

...

0 . . .
cs2MK

cs2MK +NλH1

 . (124)

And the alignment between the weights and features are as following. For any k ∈ [K], denote
(W∗

MW∗
M−1 . . .W

∗
2W

∗
1)k the k-th row of W∗

MW∗
M−1 . . .W

∗
2W

∗
1:

W∗
MW∗

M−1 . . .W
∗
2W

∗
1 = UWM

SWM
SWM−1

. . .SW1V
⊤
W1
,

H
∗
= VW1

CU⊤
WM

⇒ (W∗
MW∗

M−1 . . .W
∗
2W

∗
1)k = (cs2Mk +NλH1)h

∗
k.

(125)

• Case 2a: There exists j ∈ [K − 1] s.t. b
n1

≤ b
n2

≤ . . . ≤ b
nj
< (M−1)

M−1
M

M < b
nj+1

≤ . . . ≤ b
nK

.

Then, the lower bound (115) is minimized at (x∗1, x
∗
2, . . . , x

∗
K) where x∗i is the largest positive solution of equation

b
ni

− MxM−1

(xM+1)2
= 0 for i = 1, 2, . . . , j and x∗i = 0 for i = j + 1, . . . ,K. We conclude:

(s∗1, s
∗
2, . . . , s

∗
j , s

∗
j+1, . . . s

∗
K) =

 2M

√
NλH1

x∗M1
c

,
2M

√
NλH1

x∗M2
c

, . . . ,
2M

√
NλH1

x∗Mj
c

, 0, . . . , 0

 . (126)

First, we have the property that the features in each class h∗
k,i collapsed to their class-mean h∗

k (NC1). Let
H

∗
= VWCU⊤

W , we know that H∗
1 = H

∗
Y. Then, columns from the (nk−1 + 1)-th until (nk)-th of H∗

1 will all
equals the k-th column of H

∗
, thus the features in class k are collapsed to their class-mean h∗

k (which is the k-th
column of H), i.e h∗

k,1 = h∗
k,2 = . . . = h∗

k,nk
∀k ∈ [K].

For any k ∈ [K], denote (W∗
MW∗

M−1 . . .W
∗
2W

∗
1)k the k-th row of W∗

MW∗
M−1 . . .W

∗
2W

∗
1:

W∗
MW∗

M−1 . . .W
∗
2W

∗
1 = UWM

SWM
SWM−1

. . .SW1V
⊤
W1
,

H
∗
= VW1CU⊤

WM

⇒ (W∗
MW∗

M−1 . . .W
∗
2W

∗
1)k = (cs2Mk +NλH1

)h∗
k.

(127)

And, for k > j, we have (W∗
MW∗

M−1 . . .W
∗
2W

∗
1)k = h∗

k = 0.
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Recall the form of UWM
as in equation (117) (Case C cannot happen since r = j and nj > nj+1). We can conclude

the geometry of following objects, with the usage of equations (106) and (107):

W∗
MW∗⊤

M = UWM
SWM

S⊤
WM

U⊤
W

= diag

(
λW1

λWM

s21,
λW1

λWM

s22, . . . ,
λW1

λWM

s2j , 0, . . . , 0

)
, (128)

H∗⊤
1 H∗

1 =


cs2M1

(cs2M1 +NλH1
)2
1n11

⊤
n1

0 . . . 0

0
cs2M2

(cs2M2 +NλH1
)2
1n2

1⊤
n2

. . . 0

...
...

. . .
...

0 0 . . . 0nK×nK

 , (129)

W∗
MW∗

M−1 . . .W
∗
2W

∗
1H

∗
1 = UW diag

(
cs2M1

cs2M1 +NλH1

, . . . ,
cs2Mj

cs2Mj +NλH1

, 0, . . . , 0

)
U⊤

WY

=


cs2M1

cs2M1 +NλH1

1⊤
n1

0 . . . 0

0
cs2M2

cs2M2 +NλH1

1⊤
n2

. . . 0

...
...

. . .
...

0 0 . . . 0⊤
nK

 ,
where 1nk

1⊤
nk

is a nk × nk matrix will all entries are 1’s.

• Case 3a: (M−1)
M−1
M

M < b
n1

≤ b
n2

≤ . . . ≤ b
nK

.

In this case, the lower bound (115) is minimized at:

(s∗1, s
∗
2, . . . , s

∗
K) = (0, 0, . . . , 0). (130)

Hence, the global minimizer of f is (W∗
M ,W

∗
M−1, . . . ,W

∗
2,W

∗
1,H

∗
1) = (0,0, . . . ,0).

• Case 4a: There exists i, j ∈ [K] (i ≤ j) such that b
n1

≤ b
n2

≤ . . . ≤ b
ni−1

< b
ni

= b
ni+1

= . . . = b
nj

= (M−1)
M−1
M

M <
b

nj+1
≤ b

nj+2
≤ . . . ≤ b

nK
.

Then, the lower bound (115) is minimized at (x∗1, x
∗
2, . . . , x

∗
K) where ∀ t ≤ i− 1, x∗t is the largest positive solution

of equation b
nt

− MxM−1

(xM+1)2
= 0. If i ≤ t ≤ j, x∗t can either be 0 or the largest positive solution of equation

b
nt

− MxM−1

(xM+1)2
= 0 as long as the sequence {x∗t } is a decreasing sequence. Otherwise, ∀ t > j, x∗t = 0.

In this case, we have NC1 and NC3 properties similar as Case 1a.

For (NC2), we can freely choose the number of positive singular values r to be any value between i and j. Thus, Case
C does happen for this case. As a consequence, the diagonal block diag(s2i , . . . , s

2
j ) of W∗

MW∗⊤
M in Case 1a, will be

replace by s2rPr−i+1(Ij−i+1). Similar changes are also applied for H∗⊤
1 H∗

1 and W∗
MW∗

M−1 . . .W
∗
2W

∗
1H

∗
1.

Now, we turn to consider the case R < K. Again, we consider the following cases:

• Case 1b: b
n1

≤ b
n2

≤ . . . ≤ b
nR

< (M−1)
M−1
M

M .

Then, the lower bound (115) is minimized at (x∗1, x
∗
2, . . . , x

∗
K) where x∗i is the largest positive solution of the equation

b
ni

− MxM−1

(xM+1)2
= 0 for i = 1, 2, . . . , R and x∗i = 0 for i = R+ 1, . . . ,K. We conclude:

(s∗1, s
∗
2, . . . , s

∗
R, s

∗
R+1, . . . s

∗
K) =

(
2M

√
NλH1

x∗M1
c

,
2M

√
NλH1

x∗M2
c

, . . .
2M

√
NλH1

x∗MR
c

, 0, . . . , 0

)
. (131)
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We have (NC1) and (NC3) properties are the same as Case 1a.

We have Case C happens iff x∗R > 0 (already satisfied) and nR = nR+1. If nR > nR+1, we can conclude the geometry
of the following:

W∗
MW∗⊤

M = UWM
SWM

S⊤
WM

U⊤
WM

=



λW1

λWM
s21 . . . 0 . . . 0

...
. . .

...
. . .

...
0 . . .

λW1

λWM
s2R . . . 0

...
. . .

...
. . .

...
0 . . . 0 . . . 0


= diag

(
λW1

λWM

s21, . . . ,
λW1

λWM

s2R, 0, . . . , 0

)
, (132)

H
∗⊤

H
∗
= U⊤

WM
C⊤CUWM

=



cs2M1
(cs2M1 +NλH1

)2
. . . 0 . . . 0

...
. . .

...
. . .

...

0 . . .
cs2MR

(cs2MR +NλH1
)2

. . . 0

...
. . .

...
. . .

...
0 . . . 0 . . . 0


, (133)

W∗
MW∗

M−1 . . .W
∗
2W

∗
1H

∗
= UWM

SWM
CU⊤

WM
=



cs2M1
cs2M1 +NλH1

. . . 0 . . . 0

...
. . .

...
. . .

...

0 . . .
cs2MR

cs2MR +NλH1

. . . 0

...
. . .

...
. . .

...
0 . . . 0 . . . 0


. (134)

Furthermore, for k > R, we have (W∗
MW∗

M−1 . . .W
∗
2W

∗
1)k = h∗

k = 0.

If nR = nR+1, there exists k ≤ R, l > R such that nk−1 > nk = nk+1 = . . . = nR = . . . = nl > nl+1, then :

W∗
MW∗⊤

M =
λW1

λWM


s21 . . . 0 0 0
...

. . .
...

...
...

0 . . . s2k−1 0 0
0 . . . 0 s2kPR−k+1(Il−k+1) 0
0 . . . 0 0 0(K−l)×(K−l)

 , (135)

H
∗⊤

H
∗
=



cs2M1
(cs2M1 +NλH1

)2
. . . 0 0 0

...
. . .

...
...

...

0 . . .
cs2Mk−1

(cs2Mk−1+NλH1
)2

0 0

0 . . . 0
cs2Mk

(cs2Mk +NλH1
)2
PR−k+1(Il−k+1) 0

0 . . . 0 0 0(K−l)×(K−l)


,

(136)
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W∗
MW∗

M−1 . . .W
∗
2W

∗
1H

∗
=



cs2M1
cs2M1 +NλH1

. . . 0 0 0

...
. . .

...
...

...

0 . . .
cs2Mk−1

cs2Mk−1+NλH1

0 0

0 . . . 0
cs2Mk

cs2Mk +NλH1

PR−k+1(Il−k+1) 0

0 . . . 0 0 0(K−l)×(K−l)


,

(137)

and, for any h > l > R, (W∗
MW∗

M−1 . . .W
∗
2W

∗
1)h = h∗

h = 0.

• Case 2b: There exists j ∈ [R− 1] s.t. b
n1

≤ b
n2

≤ . . . ≤ b
nj
< (M−1)

M−1
M

M < b
nj+1

≤ . . . ≤ b
nR

.

Then, the lower bound (115) is minimized at (x∗1, x
∗
2, . . . , x

∗
K) where x∗i is the largest positive solution of equation

b
ni

− MxM−1

(xM+1)2
= 0 for i = 1, 2, . . . , j and x∗i = 0 for i = j + 1, . . . ,K. We conclude:

(s∗1, s
∗
2, . . . , s

∗
j , s

∗
j+1, . . . s

∗
K) =

 2M

√
NλH1

x∗M1
c

,
2M

√
NλH1

x∗M2
c

, . . . ,
2M

√
NλH1x

∗M
j

c
, 0, . . . , 0

 . (138)

We have (NC1) and (NC3) properties are the same as Case 2a.

We can conclude the geometry of following objects, with the usage of equations (106) and (107):

W∗
MW∗⊤

M = UWM
SWM

S⊤
WM

U⊤
W

= diag

(
λW1

λWM

s21,
λW1

λWM

s22, . . . ,
λW1

λWM

s2j , 0, . . . , 0

)
, (139)

H∗⊤
1 H∗

1 =


cs2M1

(cs2M1 +NλH1
)2
1n11

⊤
n1

0 . . . 0

0
cs2M2

(cs2M2 +NλH1
)2
1n2

1⊤
n2

. . . 0

...
...

. . .
...

0 0 . . . 0nK×nK

 , (140)

W∗
MW∗

M−1 . . .W
∗
2W

∗
1H

∗
1 = UW diag

(
cs2M1

cs2M1 +NλH1

, . . . ,
cs2Mj

cs2Mj +NλH1

, 0, . . . , 0

)
U⊤

WY

=


cs2M1

cs2M1 +NλH1

1⊤
n1

0 . . . 0

0
cs2M2

cs2M2 +NλH1

1⊤
n2

. . . 0

...
...

. . .
...

0 0 . . . 0⊤
nK

 ,

where 1nk
1⊤
nk

is a nk × nk matrix will all entries are 1’s. Case C cannot happen in this case because r = j < R and
nj > nj+1.

And, for k > j, we have (W∗
MW∗

M−1 . . .W
∗
2W

∗
1)k = h∗

k = 0.

• Case 3b: (M−1)
M−1
M

M < b
n1

≤ b
n2

≤ . . . ≤ b
nR

.

In this case, the lower bound (115) is minimized at:

(s∗1, s
∗
2, . . . , s

∗
K) = (0, 0, . . . , 0). (141)

Hence, the global minimizer of f is (W∗
M ,W

∗
M−1, . . . ,W

∗
2,W

∗
1,H

∗
1) = (0,0, . . . ,0).
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• Case 4b: There exists i, j ∈ [R] (i ≤ j ≤ R) such that b
n1

≤ b
n2

≤ . . . ≤ b
ni−1

< b
ni

= b
ni+1

= . . . = b
nj

=

(M−1)
M−1
M

M < b
nj+1

≤ b
nj+2

≤ . . . ≤ b
nR

.

Then, the lower bound (115) is minimized at (x∗1, x
∗
2, . . . , x

∗
K) where ∀ t ≤ i− 1, x∗t is the largest positive solution

of equation b
nt

− MxM−1

(xM+1)2
= 0. If i ≤ t ≤ j, x∗t can either be 0 or the largest positive solution of equation

b
nt

− MxM−1

(xM+1)2
= 0 as long as the sequence {x∗t } is a decreasing sequence and there is no more than R positive singular

values. Otherwise, ∀ t > j, x∗t = 0.

In this case, we have (NC1) and (NC3) properties similar as Case 1b.

For (NC2), if b/nR > (M−1)
M−1
M

M , we can freely choose the number of positive singular values r between i and j,
thus we have similar results as in Case 4a.

Otherwise, if b/nR = (M−1)
M−1
M

M , we can freely choose the number of positive singular values r between i and R,
thus we still have similar geometries as in Case 4a.

We finish the proof.

G. Proof of Theorem A.1
Proof of Theorem A.1. Let Z = WMWM−1 . . .W2W1H1. We begin by noting that any critical point
(WM ,WM−1, . . . ,W2,W1,H1,b) of f satisfies the following:

∂f

∂WM
=

2

N

∂g

∂Z
H⊤

1 W
⊤
1 . . .W

⊤
M−1 + λWM

WM = 0, (142)

∂f

∂WM−1
=

2

N
W⊤

M

∂g

∂Z
H⊤

1 W
⊤
1 . . .W

⊤
M−2 + λWM−1

WM−1 = 0, (143)

. . . ,

∂f

∂W1
=

2

N
W⊤

2 W
⊤
3 . . .W

⊤
M

∂g

∂Z
H⊤

1 + λW1
W1 = 0, (144)

∂f

∂H1
=

2

N
W⊤

1 W
⊤
2 . . .W

⊤
M

∂g

∂Z
H⊤ + λH1

H1 = 0. (145)

Next, we have:

0 = W⊤
M

∂f

∂WM
− ∂f

∂WM−1
W⊤

M−1 = λWM
W⊤

MWM − λWM−1
WM−1W

⊤
M−1

⇒ λWM
W⊤

MWM = λWM−1
WM−1W

⊤
M−1.

0 = W⊤
M−1

∂f

∂WM−1
− ∂f

∂WM−2
W⊤

M−2 = λWM−1
W⊤

M−1WM−1 − λWM−2
WM−2W

⊤
M−2

⇒ λWM−1
W⊤

M−1WM−1 = λWM−2
WM−2W

⊤
M−2.

Making similar argument for the other derivatives, we also have:

λWM
W⊤

MWM = λWM−1
WM−1W

⊤
M−1,

λWM−1
W⊤

M−1WM−1 = λWM−2
WM−2W

⊤
M−2,

. . . ,

λW2
W⊤

2 W2 = λW1
W1W

⊤
1 ,

λW1
W⊤

1 W1 = λH1
H1H

⊤
1 .

(146)
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Now, let H1 = UHSHV⊤
H be the SVD decomposition of H1 with orthonormal matrices U ∈ Rd1×d1 ,V ∈ RN×N and

S ∈ Rd1×N is a diagonal matrix with decreasing singular values. We note that from equations (146), r := rank(WM ) =
. . . = rank(W1) = rank(H1) is at most R := min(dM , dM−1, . . . , d1,K). We denote r singular values of H1 as
{sk}rk=1.

Next, we start to bound g(WMWM−1 . . .W2W1H1 + b1⊤) with techniques extended from Lemma D.3 in (Zhu et al.,
2021). By using Lemma G.1 for zk,i = WMWM−1 . . .W2W1hk,i + b with the same scalar c1, c2 (c1 can be chosen
arbitrarily) for all k and i, we have:

(1 + c1)(K − 1)[g(WMWM−1 . . .W2W1H1 + b1⊤)− c2]

= (1 + c1)(K − 1)

[
1

N

K∑
k=1

n∑
i=1

LCE(WMWM−1 . . .W2W1hk,i + b,yk)− c2

]

≥ 1

N

K∑
k=1

n∑
i=1

 K∑
j=1

((WMWM−1 . . .W2W1)jhk,i + bj)−K((WMWM−1 . . .W2W1)khk,i + bk)



=
1

N

n∑
i=1


 K∑

k=1

K∑
j=1

(WMWM−1 . . .W1)jhk,i −K

K∑
k=1

(WMWM−1 . . .W1)khk,i

+

K∑
k=1

K∑
j=1

(bj − bk)︸ ︷︷ ︸
=0


=

1

N

n∑
i=1

 K∑
k=1

K∑
j=1

(WMWM−1 . . .W2W1)jhk,i −K

K∑
k=1

(WMWM−1 . . .W2W1)khk,i


=
K

N

n∑
i=1

K∑
k=1

(WMWM−1 . . .W2W1)k

 1

K

K∑
j=1

(hj,i − hk,i)


=

1

n

n∑
i=1

K∑
k=1

(WMWM−1 . . .W2W1)k(hi − hk,i)

=
−1

n

n∑
i=1

K∑
k=1

(WMWM−1 . . .W2W1)k(hk,i − hi),

(147)

where hi =
1
K

∑K
j=1 hj,i. Now, from the AM-GM inequality, we know that for any u,v ∈ RK and any c3 > 0,

u⊤v ≤ c3
2
∥u∥22 +

1

2c3
∥v∥22.

The equality holds when c3u = v. Therefore, by applying AM-GM for each term (WMWM−1 . . .W2W1)k(hk,i − hi),
we further have:

(1 + c1)(K − 1)[g(WMWM−1 . . .W2W1 + b1⊤)− c2]

≥− c3
2

K∑
k=1

∥(WMWM−1 . . .W2W1)k∥22 −
1

2c3n

n∑
i=1

K∑
k=1

∥∥hk,i − hi

∥∥2
2

=− c3
2

K∑
k=1

∥(WMWM−1 . . .W2W1)k∥22 −
1

2c3n

n∑
i=1

[(
K∑

k=1

∥hk,i∥22

)
−K

∥∥hi

∥∥2
2

]

=− c3
2
∥WMWM−1 . . .W2W1∥2F − 1

2c3n

(
∥H1∥2F −K

n∑
i=1

∥∥hi

∥∥2
2

)

≥− c3
2
∥WMWM−1 . . .W2W1∥2F − 1

2c3n
∥H1∥2F ,

(148)
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where the first inequality becomes an equality if and only if

c3(WMWM−1 . . .W2W1)k = hk,i − hi ∀k, i, (149)

and we ignore the term
∑n

i=1

∥∥hi

∥∥2
2

in the last inequality (equality holds iff hi = 0 ∀i).

Now, by using equation (146), we have:

∥WMWM−1 . . .W2W1∥2F = trace(W⊤
1 W

⊤
2 . . .W

⊤
M−1W

⊤
MWMWM−1 . . .W2W1)

=
λMH1

λWM
λWM−1

. . . λW1︸ ︷︷ ︸
c

trace[(H1H
⊤
1 )

M ] = c

K∑
k=1

s2Mk . (150)

We will choose c3 to let all the inequalities at (148) become equalities, which is as following:

c3(WMWM−1 . . .W2W1)k = hk,i ∀k, i

⇒ c23 =

∑K
k=1

∑n
i=1 ∥hk,i∥22

n
∑K

k=1 ∥(WMWM−1 . . .W2W1)k∥22
=

∥H1∥2F
n∥WMWM−1 . . .W2W1∥2F

=

∑r
k=1 s

2
k

cn
∑r

k=1 s
2M
k

. (151)

With c3 chosen as above, continue from the lower bound at (148), we have:

g(WMWM−1 . . .W2W1H1 + b1⊤) ≥ 1

(1 + c1)(K − 1)

−
√
c

n

√√√√( r∑
k=1

s2k

)(
r∑

k=1

s2Mk

)+ c2. (152)

Using this lower bound of f , we have for any critical point (WMWM−1 . . .W2W1,H1,b) of function f and c1 > 0:

f(WM ,WM−1, . . . ,W2,W1,H1,b) = g(WMWM−1 . . .W2W1H1 + b1⊤) +
λWM

2
∥WM∥2F

+ . . . +
λW2

2
∥W2∥2F +

λW1

2
∥W1∥2F +

λH1

2
∥H1∥2F

≥ 1

(1 + c1)(K − 1)

−
√
c

n

√√√√( r∑
k=1

s2k

)(
r∑

k=1

s2Mk

)+ c2 +
λWM

2

λH1

λWM

r∑
k=1

s2k

+ . . .+
λW1

2

λH1

λW1

r∑
k=1

s2k +
λH1

2

r∑
k=1

s2k +
λb
2
∥b∥22

=
1

(1 + c1)(K − 1)

−
√
c

n

√√√√( r∑
k=1

s2k

)(
r∑

k=1

s2Mk

)+ c2 +
M + 1

2
λH1

r∑
k=1

s2k︸ ︷︷ ︸
ξ(s1,s2,...,sr,λW2

,λW1
,λH1

)

+
λb
2
∥b∥22

≥ ξ(s1, s2, . . . , sr, λWM
, . . . , λW1

, λH1
),

(153)

where the last inequality becomes an equality when either b = 0 or λb = 0.

From Lemma G.2, we know that the inequality f(WM ,WM−1, . . . ,W2,W1,H1,b) ≥
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ξ(s1, s2, . . . , sr, λWM
, . . . , λW1

, λH1
) becomes equality if and only if:

∥(WMWM−1 . . .W1)1∥2 = ∥(WMWM−1 . . .W1)2∥2 = · · · = ∥(WMWM−1 . . .W1)K∥2 ,
b = 0 or λb = 0,

hi :=
1

K

K∑
j=1

hj,i = 0, ∀i ∈ [n], and c3(WMWM−1 . . .W1)K = hk,i, ∀k ∈ [K], i ∈ [n],

WMWM−1 . . .W1(WMWM−1 . . .W1)
⊤ =

c
∑r

k=1 s
2M
k

K − 1

(
IK − 1

K
1K1⊤

K

)
,

c1 =

(K − 1) exp

−
√
c

(K − 1)
√
n

√√√√( r∑
k=1

s2k

)(
r∑

k=1

s2Mk

)−1

,

(154)

with c3 as in equation (151). Furthermore, H1 includes repeated columns with K non-repeated columns, and the sum of
these non-repeated columns is 0. Hence, rank(H1) ≤ min(dM , dM−1, . . . , d1,K − 1) = K − 1.

Now, the only work left is to prove ξ(s1, s2, . . . , sr, λWM
, . . . , λW1

, λH1
) achieve its minimum at

finite s1, . . . , sr for any fixed λWM
, . . . λW1

, λH1
. From equation (154), we know that c1 =[

(K − 1) exp
(
−

√
c

(K−1)
√
n

√
(
∑r

k=1 s
2
k)
(∑r

k=1 s
2M
k

))]−1

is an increasing function in terms of s1, s2, . . . , sr,

and c2 = 1
1+c1

log ((1 + c1) (K − 1)) + c1
1+c1

log
(

1+c1
c1

)
is a decreasing function in terms of c1. Therefore, we observe

the following: When any sk → +∞, c1 → +∞ and 1
(1+c1)(K−1)

(
−
√

c
n

√
(
∑r

k=1 s
2
k)
(∑r

k=1 s
2M
k

))
→ 0 , c2 → 0, so

that ξ(s1, . . . , sK , λWM
, . . . λW1

, λH1
) → +∞ as sk → +∞.

Since ξ(s1, s2, . . . , sr, λWM
, . . . , λW1

, λH1
) is a continuous function of (s1, s2, . . . , sr) and

ξ(s1, s2, . . . , sr, λWM
, . . . , λW1

, λH1
) → +∞ when any sk → +∞, ξ must achieves its minimum at finite (s1, s2, . . . , sr).

This finishes the proof.

G.1. Supporting lemmas

Lemma G.1 (Lemma D.5 in (Zhu et al., 2021)). Let yk ∈ RK be an one-hot vector with the k-th entry equalling 1 for some
k ∈ [K]. For any vector z ∈ RK and c1 > 0, the cross-entropy loss LCE (z,yk) with yk can be lower bounded by

LCE (z,yk) ≥
1

1 + c1

(∑K
i=1 zi

)
−Kzk

K − 1
+ c2,

where c2 = 1
1+c1

log ((1 + c1) (K − 1)) + c1
1+c1

log
(

1+c1
c1

)
. The inequality becomes an equality when

zi = zj , ∀i, j ̸= k, and c1 =

(K − 1) exp


(∑K

i=1 zi

)
−Kzk

K − 1

−1

.

Lemma G.2 (Extended from Lemma D.4 in (Zhu et al., 2021)). Let (WM ,WM−1, . . . ,W2,W1,H1,b) be a
critical point of f with {sk}rk=1 be the singular values of H1. The lower bound (152) of g is attained for



3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629

Neural Collapse in Deep Linear Networks: From Balanced to Imbalanced Data

(WM ,WM−1, . . . ,W2,W1,H1,b) if and only if:

∥(WMWM−1 . . .W2W1)1∥2 = ∥(WMWM−1 . . .W2W1)2∥2 = · · · = ∥(WMWM−1 . . .W2W1)K∥2 ,
b = b1,

h̄i :=
1

K

K∑
j=1

hj,i = 0, ∀i ∈ [n], and c3(WMWM−1 . . .W2W1)k = hk,i, ∀k ∈ [K], i ∈ [n],

WMWM−1 . . .W2W1(WMWM−1 . . .W2W1)
⊤ =

c
∑K

k=1 s
2M
k

K − 1

(
IK − 1

K
1K1⊤

K

)
,

c1 =

(K − 1) exp

−
√
c

(K − 1)
√
n

√√√√( K∑
k=1

s2k

)(
K∑

k=1

s2Mk

)−1

,

(155)

with c3 as in equation (151).

Proof of Lemma G.2. For the inequality (152), to become an equality, first we will need two inequalities at (148) to become
equalities, this leads to:

hi = 0 ∀i ∈ [n],

c3(WMWM−1 . . .W2W1)k = hk,i ∀k ∈ [K], i ∈ [n],

with c3 =

√ ∑r
k=1 s2k

cn
∑r

k=1 s2Mk
and c =

λM
H1

λWM
λWM−1

...λW1
.

Next, we will need the inequality at (147) to become an equality, which is true if and only if (from the equality conditions of
Lemma G.1):

(WMWM−1 . . .W2W1)jhk,i + bj = (WMWM−1 . . .W2W1)lhk,i + bl, ∀j, l ̸= k,

c1 =

(K − 1) exp


(∑K

j=1[zk,i]j

)
−K[zk,i]k

K − 1

−1

∀i ∈ [n]; k ∈ [K],

with zk,i = WMWM−1 . . .W2W1hk,i, and we have:

K∑
j=1

[zk,i]j =

K∑
j=1

(WMWM−1 . . .W2W1)jhk,i +

K∑
j=1

bj =

K∑
j=1

1

c3
h⊤
j,ihk,i +

K∑
j=1

bj

= Khih
⊤
k,i +

K∑
j=1

bj = Kb̄,

with b̄ = 1
K

∑K
i=1 bi, and:

K [zk,i]k = K(WMWM−1 . . .W2W1)khk,i +Kbk = Kc3∥(WMWM−1 . . .W2W1)k∥22 +Kbk.

With these calculations, we can calculate c1 as following:

c1 =

(K − 1) exp


(∑K

j=1 [zk,i]j

)
−K [zk,i]k

K − 1

−1

=

[
(K − 1) exp

(
K

K − 1

(
b̄− c3∥(WMWM−1 . . .W2W1)k∥22 − bk

))]−1

.

(156)



3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684

Neural Collapse in Deep Linear Networks: From Balanced to Imbalanced Data

Since c1 is chosen to be the same for all k ∈ [K], we have:

c3∥(WMWM−1 . . .W2W1)k∥22 + bk = c3∥(WMWM−1 . . .W2W1)l∥22 + bl ∀l ̸= k, (157)

Second, since [zk,i]j = [zk,i]ℓ for all ∀j, ℓ ̸= k, k ∈ [K], we have:

(WMWM−1 . . .W1)jhk,i + bj = (WMWM−1 . . .W1)lhk,i + bl, ∀j, l ̸= k

⇔ c3(WM . . .W1)j(WM . . .W1)k + bj = c3(WM . . .W1)l(WM . . .W1)k + bl, ∀j, l ̸= k.
(158)

Based on this and
∑K

k=1(WMWM−1 . . .W2W1)k = 1
c3

∑K
k=1 hk,i =

1
c3
Khi = 0, we have:

c3 ∥(WMWM−1 . . .W2W1)k∥22 + bk = −c3
∑
j ̸=k

(WMWM−1 . . .W1)l(WMWM−1 . . .W1)k + bk

= −(K − 1)c3 (WMWM−1 . . .W2W1)l(WMWM−1 . . .W2W1)k︸ ︷︷ ︸
l ̸=k

+

bk +
∑
j ̸=l,k

(bl − bj)


= −(K − 1)c3(WMWM−1 . . .W2W1)l(WMWM−1 . . .W2W1)k +

[
2bk + (K − 1)bl −Kb̄

]
,

(159)

for all l ̸= k. Combining equations (157) and (159), for all k, l ∈ [K] with k ̸= l we have:

2bk + (K − 1)bℓ −Kb̄ = 2bl + (K − 1)bk −Kb̄ ⇐⇒ bk = bl,∀k ̸= l.

Hence, we have b = b1 for some b > 0. Therefore, from equations (157), (158) and (159):

∥(WM . . .W1)1∥22 = . . . = ∥(WM . . .W1)K∥22 =
1

K
∥(WM . . .W1)∥2F =

c

K

r∑
k=1

s2Mk , (160)

(WMWM−1 . . .W1)j(WMWM−1 . . .W1)k = (WMWM−1 . . .W1)l(WMWM−1 . . .W1)k

= − 1

K − 1
∥(WMWM−1 . . .W1)k∥22 = − c

K(K − 1)

r∑
k=1

s2Mk ∀j, l ̸= k, (161)

and this is equivalent to:

(WMWM−1 . . .W1)(WMWM−1 . . .W1)
⊤ =

c
∑r

k=1 s
2M
k

K − 1

(
IK − 1

K
1K1⊤

K

)
. (162)

Continue with c1 in equation (156), we have:

c1 =

[
(K − 1) exp

(
−K
K − 1

c3∥(WMWM−1 . . .W1)k∥22
)]−1

=

(K − 1) exp

−
√
c

(K − 1)
√
n

√√√√( r∑
k=1

s2k

)(
r∑

k=1

s2Mk

)−1

.


