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Abstract

Deep learning has driven dramatic advances in perfor-
mance on a wide range of difficult machine perception
tasks, and its applications abound. Yet for many tasks
it still lags far behind the mammalian brain in term of
performance and efficiency in natural tasks. Building
a brain-inspired learning system to narrow the gap be-
tween artificial and biological neural networks has been
a long sought-after goal in both the neuroscience and
machine learning communities. To take a step towards
a neurally plausible learning system, we build a class of
models that use functional elements and computational
principles of the cortex for more robust and versatile ma-
chine learning. In particular, we incorporate the follow-
ing three major neural features into the Deep Convolu-
tional Networks (DCNs): semi-supervised learning, divi-
sive normalization, and synaptic pruning. These neural
features are derived from a recently developed genera-
tive model underlying DCNs - the Deep Rendering Mix-
ture Model (DRMM). Our semi-supervised learning algo-
rithm achieves state-of-the-art performance on the MNIST
and SVHN datasets and competitive results on CIFAR10
amongst all methods that do not use data augmentation.
Our divisive normalization enables faster and more sta-
ble training. Using our synaptic pruning method, we can
compress the model significantly with little loss in accu-
racy.
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Cortically Inspired Model

Deep Rendering Mixture Model

A fundamental hypothesis of our work is that deep neural
networks in the brain are performing probabilistic inference
with respect to a generative probabilistic model of the world
(Lochmann & Deneve, 2011). But how can we link artificial
networks to generative models? The Deep Rendering Mix-
ture Model (DRMM) is a recent effort to reverse-engineer sev-
eral classes of artificial networks, including the Deep Convo-
lutional Networks (DCNs) (see Figure 1). The DRMM is a
hierarchical generative model in which the image is generated
iteratively in a coarse-to-fine manner. It has been shown that
the bottom-up inference in the DRMM (after a discriminative
relaxation), corresponds to the feedforward propagation in the
DCNs (Patel, Nguyen, & Baraniuk, 2016). The DRMM allows

us to subsume semi-supervised learning, divisive normaliza-
tion, and synaptic pruning with DCNs in one theoretical frame-
work.
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Figure 1: (A)The DRMM (B) Rendering from layer `→ `− 1
in the DRMM. (C) Bottom-up inference in the DRMM leads to
processing identical to the DCNs.

Neural Features for Deep Convolutional Networks

Semi-supervised Learning Current state-of-the-art ma-
chine learning algorithms are trained on enormous sets of
labeled examples presented in batches to the learning algo-
rithm. In contrast to that, humans and animals learn from few
instances of only weakly labeled examples. It is widely be-
lieved that the brain is building a rich model for the data in
an un- or weakly supervised way such that novel categories
can be constructed quickly. We develop a semi-supervised
learning algorithm that allows DCNs to learn from both la-
beled and unlabeled data using the DRMM and variational in-
ference (VI). In particular, our method performs bottom-up and
top-down inference in the DRMM and then optimizes the loss
function L ≡ αCELCE +αRCLRC +αKLLKL+αNNLNN where
αCE , αRC, αKL and αNN are the weights for the cross-entropy
loss LCE , reconstruction loss LRC, variational inference loss
LKL, and the non-negativity penalty loss LNN , respectively.
The non-negativity penalty loss LNN results from the assump-
tion that the intermediate rendered templates in the DRMM
are non-negative.

Divisive Normalization Divisive normalization is a phe-
nomenological model describing the response behavior of



Table 1: Test error for semi-supervised learning on MNIST
with NU = 60K unlabeled & NL ∈ {50,100} labeled images.

Model Test error (%)
NL = 50 NL = 100

catGAN - 1.39±0.28
Skip DGM - 1.32

LadderNetwork - 1.06±0.37
Auxiliary DGM - 0.96
ImprovedGAN 2.21±1.36 0.93±0.065

DRMM 5-layer Supervised - 22.98
DRMM 5-layer + VI 2.46 1.36

DRMM 5-layer + VI + LNN 0.91 0.57

populations of neurons to changes in the contrast of the sig-
nal (Heeger, 1992). Recently, a particular form of divisive nor-
malization has been used to normalize the activations in the
DCNs and shown promising results (Ren, Liao, Urtasun, Sinz,
& Zemel, 2016). From the DRMM inference standpoint, di-
visive normalization can be interpreted as inferring a latent
variable in a Gaussian scale mixture (GSM) (Schwartz & Si-
moncelli, 2001).

Intuitively, the Gaussian latent variable captures the pattern
of an image (patch) while the scale variable describes the lo-
cal contrast. For an inverse gamma scale distribution, the
maximum a posteriori estimator (MAP) for the pattern given
an image patch takes the form of divisive normalization (Lyu,
2011). In the context of the DCNs, the MAP is realized by nor-
malizing the outputs of convolution operations at each layer
with divisive normalization.

Pruning In its early development, the brain prunes
synapses and neurons at a rapid rate. Some types of pruning
are thought to follow a “use-it-or-lose-it” (UILI) rule: synapses
that are not used regularly are pruned away (Allred, Kim, &
Jones, 2014). Inspired by this pruning rule, we derive a novel
UILI synaptic pruning algorithm in the DRMM framework. Par-
ticularly, we place a mixing parameter π`

xy on the presence
or absence of a given weight λ`

xy ≡ (Λg`)xy. This hyper-prior
on the weights controls the probability that a given weight is
present or not. During learning, we will update our estimates
of these weight presence parameters and then apply a statis-
tical hypothesis test to decide whether the synapse should be
there (using a threshold αS > 0). We use pruning rate sched-
ules inspired by the developing rat cortex (Navlakha, Barth, &
Bar-Joseph, 2015).

Experimental Results
Table 1 shows the test errors of our semi-supervised learning
method on MNIST using all available unlabeled data and dif-
ferent amounts of labeled data. Our algorithm can learn more
from fewer labeled examples, achieving state-of-the-art per-
formance in semi-supervised learning in different setups on
MNIST (see (Nguyen, Patel, & Baraniuk, 2017) for results on
SVHN and CIFAR10). Note that all methods use the same
baseline architecture.

Figure 2 compares the performance of divisive normaliza-
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Figure 2: Comparison between the performance of divisive
normalization and batch normalization for (left) the semi-
supervised learning task on shape classification using 10%
labeled data and (right) the online supervised learning task on
object classification. Both are trained on our synthetic dataset.

tion (DN) and batch normalization (BN) on a shape classifi-
cation task in the semi-supervised learning setup and on an
object classification task in an online learning setup. The net-
works are trained using a synthetic dataset containing 110K
rendered images of natural objects with different textures and
nuisance configurations. The images are rendered from 1,085
shape models and 55 object models in the ShapeNet library
(Chang et al., 2015). Overall, we find that DN converges as
fast or faster, and yields more stable learning curves than BN.
Importantly, we find that DN has an especially large advantage
in the online learning setting. This is because, in contrast to
BN, which requires a batch of images to compute a normal-
ization, DN works with a single image and can thus be used
in the online setting where one input is processed at a time.

To evaluate our synaptic pruning method, we apply synap-
tic pruning while training a 9-layer DRMM using our semi-
supervised learning algorithm with divisive normalization for
object classification task using the synthetic dataset described
above. The model is prunned by more than 60% while still
achieving good test accuracy (85%).
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