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The recent advances in machine learning present the field of mathematical sciences and computa-
tional engineering with numerous opportunities and challenges, among them how to design models that
integrate scientific mechanistic modeling, e.g. differential equations, with machine learning methodolo-
gies like deep learning. An overarching theme of my research focuses on developing principled models
for machine learning via three fundamental approaches: 1) optimization, 2) numerical analysis, and 3)
statistical modeling.

From an optimization viewpoint, I am interested in establishing the connections between deep
learning models such as recurrent neural networks (RNNs) and neural ordinary differential equations
(NeuralODEs) with optimization methods such as the gradient descent (GD) algorithm. I then pro-
pose new architectures given these connections. In particular, I have been developing new families
of momentum-based models that take advantage of momentum methods to improve the convergence
speed and the ability to capture long-range dependencies in the data of the models. From a numerical
analysis standpoint, I am employing numerical methods such as the fast multipole method and diffusion
process to improve deep learning models including transformers and graph neural networks for better
efficiency and accuracy. Using statistical modeling as a tool, I develop new generative models that shed
light on the architecture of deep neural networks, as well as the attention mechanism in transformers,
and suggest new directions to improve these models. On the application side, I have been using the
models I develop to solve challenging problems in computational fluid dynamics including turbulence
modeling and to design efficient numerical solvers. For future work, I am exploring a new class of
machine learning models that can do reasoning via fixed-point algorithms. I believe reasoning is a key
component to develop next-generation machine learning models.

In the following, I shall outline several major directions of my research.

1 Optimization methods and momentum-based deep learning models

Deep learning models have been achieving state-of-the-art performance on a wide range of machine
learning tasks including those in computer vision and natural language processing. Recently, these
models have been employed for computational modeling and scientific discovery with very promising
results, leading to new directions in the field of scientific machine learning [1, 2]. Despite their popu-
larity in applications, designing deep learning models is an art that often involves an expensive search
over candidate architectures.

Momentum-based recurrent neural networks. RNNs are a class of neural networks that capture
the dynamics of sequences via cycles in the network of nodes. A recurrent cell in RNNs employs a
cyclic connection to update the current hidden state (ht) using the past hidden state (ht−1) and the
current input data (xt); the dependence of ht on ht−1 and xt in a recurrent cell can be written as

ht = σ(Uht−1 +Wxt + b), xt ∈ Rd, and ht−1,ht ∈ Rh, t = 1, 2, · · · , T, (1)

where U ∈ Rh×h,W ∈ Rh×d, and b ∈ Rh are trainable parameters; σ(·) is a nonlinear activation
function, e.g., sigmoid or hyperbolic tangent. Error backpropagation through time is used to train
RNNs, but it tends to result in exploding or vanishing gradients [3]. Thus RNNs may fail to learn long
term dependencies. In my work with Prof. Richard Baraniuk, Prof. Andrea Bertozzi, Prof. Stanley
Osher and Prof. Bao Wang [4], I develop a gradient descent (GD) analogy of the recurrent cell. In
particular, the hidden state update in a recurrent cell in Eqn. (1) is associated with a gradient descent
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step towards the optimal representation of the hidden state. I then propose to integrate momentum
that used for accelerating gradient dynamics into the recurrent cell, which results in the Momentum-
RNN. By choosing the appropriate momentum coefficients, MomentumRNN can alleviate vanishing
gradient problem and accelerate training. My momentum framework for designing RNNs is principled
with theoretical guarantees provided by the momentum-accelerated dynamical system for optimiza-
tion and sampling. The design principle can be applied to many existing RNNs and generalized to
other advanced momentum-based optimization methods, including Adam [5] and Nesterov accelerated
gradients with a restart [6, 7]. In this direction, I also develop an adaptive strategy to compute the
momentum coefficients based on the optimal momentum for quadratic optimization and extend my mo-
mentum framework to design linear attention in transformers, another popular class of deep learning
models for sequential data [8].

Momentum-based neural ordinary differential equations. Apart from discrete models like RNNs,
continuous models are gaining currency due to their ability to learn from irregularly-sampled sequential
data and to model complex dynamical systems. Among these models are the NeuralODEs, a family of
continuous-depth machine learning (ML) models whose forward and backward propagations rely on
solving an ODE and its adjoint equation [9]. In particular, NeuralODEs model the dynamics of hidden
features ht ∈ Rh using an ODE, which is parameterized by a neural network f(ht, t, θ) ∈ Rh with
learnable parameters θ, i.e. dht/dt = f(ht, t, θ). Despite their advantages and popularity, the draw-
back of NeuralODEs is also prominent. In many machine learning and modeling tasks, NeuralODEs
require a very high number of steps to solve the ODEs in both training and inference, especially in high
accuracy settings where a lower tolerance is needed. As the ODE solver evaluates the function f at each
step, this number of steps is often referred to as the number of function evaluations (NFEs). This NFEs
increases rapidly with training; high NFEs reduces computational speed and accuracy of NeuralODEs
and can lead to blow-ups in the worst-case scenario [10, 11]. Another issue is that NeuralODEs often
fail to effectively learn long-term dependencies in sequential data [12].

Motivated by the fast convergence speed of momentum methods, in [13], Hedi Xia (Ph.D. student),
Vai Suliafu (Ph.D. student), Prof. Stanley Osher, Prof. Bao Wang and I leverage the continuous limit
of the classical momentum accelerated gradient descent and propose the heavy ball NeuralODEs to
improve the efficiency of NeuralODEs training and inference. At the core of heavy ball NeuralODEs is
replacing the first-order ODE in NeuralODEs with a heavy ball ODE, i.e., a second-order ODE with an
appropriate damping term. Our proposed heavy ball NeuralODEs have two theoretical properties that
imply practical advantages over NeuralODEs. First, the adjoint equation used for training a heavy ball
NeuralODE is also a heavy ball NeuralODE, thus accelerating both forward and backward propagation.
Second, the spectrum of the heavy ball NeuralODE is well-structured, alleviating the vanishing gradient
issue in back-propagation and enabling the model to effectively learn long-term dependencies from
sequential data.

In addition, with Nghia Nguyen (Master student), Prof. Stanley Osher and other colleagues [14],
I propose the Nesterov NeuralODEs whose layers solve the second-order ordinary differential equa-
tions (ODEs) limit of Nesterov’s accelerated gradient (NAG) method. Taking the advantage of the
convergence rate O(k2) of the NAG scheme [6], the Nesterov NeuralODEs improve over the heavy
ball NeuralODEs, further speeding up training and inference.

2 Numerical analysis methods for improving deep learning models

Thus far, I have presented my optimization frameworks for designing deep learning models. Next, I
shall describe the numerical analysis approaches that I take to improve machine learning models using
the fast multipole method and diffusion process.
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Enhancing the efficiency of transformers via the fast multipole method. Like RNNs and Neu-
ralODEs, transformers are among the state-of-the-art models for sequential processing tasks. These
models rely on the attention mechanism and particularly self-attention, an inductive bias that connects
each token in the input through a relevance weighted basis of every other token, as fundamental build-
ing blocks for their modeling. This mechanism allows a token to pay attention to other tokens in the
input sequence and attain a contextual representation. The main drawback of transformers is that the
computational complexity and memory cost of computing attention are quadratic with respect to the
sequence length [15]. In the joint work with Prof. Stanley Osher, Prof. Bao Wang [16] and other collab-
orators, leveraging the idea of the fast multipole method (FMM), I propose the FMMformers, a class of
efficient and flexible transformer, to improve the performance and efficiency of transformers. FMM de-
composes particle-particle interaction into near-field and far-field components and then performs direct
and coarse-grained computation, respectively. Similarly, FMMformers decompose the attention into
near-field and far-field attentions, modeling the near-field attention by a banded sparse matrix and the
far-field attention by a low-rank matrix. Computing the attention matrix in FMMformers only requires
linear complexity in computational time and memory footprint with respect to the sequence length. In
an ongoing joint work, using hierarchical matrices, I am introducing hierarchical structures into the
FMMformer to further improve the efficiency of the model.

Overcoming the oversmoothing issue in graph neural networks using diffusion process with a
source term. Graph neural networks (GNNs) are the backbone for deep learning on graphs, a class
of deep learning models that directly operate on graph structures. A well-known problem of GNNs is
that increasing the depth of GNNs often results in a significant drop in performance on various graph
learning tasks. This performance degradation has been widely interpreted as the oversmoothing issue
of GNNs [17]. Moreover, the accuracy of existing GNNs drops severely when they are trained with
a limited amount of labeled data. In [18], Prof. Matthew Thorpe, Hedi Xia (Ph.D. student) and I
focus on developing new continuous-depth GNNs that overcome the oversmoothing issue and achieve
better accuracy in low-labeling rate regimes. We first present a random walk interpretation of GNNs,
revealing a potentially inevitable oversmoothing phenomenon. Based on our random walk viewpoint
of GNNs, we then propose graph neural diffusion with a source term (GRAND++) that corrects the
bias arising from the diffusion process underlying GNNs. GRAND++ theoretically guarantees that: (i)
under GRAND++ dynamics, the graph node features do not converge to a constant vector over all nodes
even as the time goes to infinity, and (ii) GRAND++ can provide accurate prediction even when it is
trained with the limited number of labeled nodes. These theoretical results resonate with the practical
advantages of GRAND++. In an ongoing work, I am replacing the diffusion process underlying GNNs
and GRAND++ by a wave propagation to further improve the ability of the models to overcome the
oversmoothing issue.

3 Statistical aspects of deep learning

The final aspect of my research is to employ statistical modeling tools to interpret and improve deep
learning models. In particular, I develop generative models underlying deep learning architectures such
as deep neural networks (DNNs) and self-attention mechanism in transformers.

A probabilistic framework for deep neural networks. DNNs with their great performance have
been transforming many research areas including science and engineering fields. The success of deep
neural network is impressive, but a fundamental question remains: Why do they work? Intuitions
abound to explain their success, but a coherent theoretical framework for understanding, analyzing,
and synthesizing deep learning architectures has remained elusive. In joint work with Prof. Richard
Baraniuk and Prof. Ankit Patel [19], we develop a new theoretical framework that provides insights
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into both the successes and shortcomings of DNNs, as well as a principled route to their design and
improvement. Our framework is based on a generative probabilistic model, namely the Deep Rendering
Mixture Model (DRMM), that explicitly captures variation due to latent variables. We demonstrate
that max-sum inference in the DRMM yields an algorithm that exactly reproduces the operations in
DNNs, providing a first principle derivation. DRMM training via the expectation-maximization (EM)
algorithm is a promising alternative to back-propagation for training DNNs.

In another work with Prof. Nhat Ho, Prof. Michael Jordan and Prof. Richard Baraniuk [20], I
enable the DRMM to capture the dependency between latent variables, which results in the Decon-
volutional Generative Model (DGM). The dependency between latent variables in DGM yields a new
regularization over the set of latent variables, named the rendering path normalization, that is useful for
semi-supervised learning tasks. I also establish statistical guarantees of parameter estimation in DGM
and derive a generalization bound for (semi)-supervised learning tasks based on the DGM’s structure.

In addition, in joint work with Yujia Huang (Ph.D. student), Prof. Doris Tsao, Prof. Anima Anand-
kumar and other collaborators [21], we use the DGM as a recurrent generative feedback for DNNs to
enforce the self-consistency in DNNs for robust perception. Here, self-consistency implies that given
the input data, the model can infer the latent variables and vice versus.

A mixture model framework for attention mechanism in transformers. Beyond DNNs, in joint
work with Tam Nguyen (undergraduate student), Prof. Richard Baraniuk, Prof. Nhat Ho, Prof. Stanley
Osher and other collaborators [22], I develop a probabilistic framework underlying attention mecha-
nism in transformers and propose a new transformer with a mixture of Gaussian keys (Transformer-
MGK), that replaces redundant heads in transformers with a mixture of keys at each head. In particular,
despite their impressive performance, it has been observed that many heads in transformers learn re-
dundant representations [23]. Reducing such redundancy to improve the effectiveness and efficiency
of the model is one of the main focuses of current research in transformers. However, to mitigate this
limitation and diversify the learned patterns are challenging without a mathematical framework for un-
derstanding attention mechanism in transformers. To address this problem, I derive a new Gaussian
mixture model (GMM) for attention queries. Each Gaussian distribution in this mixture has an atten-
tion key as its mean. The posterior distributions of attention keys given attention queries in this mixture
model correspond to the attention scores in self-attention, that capture the similarity between queries
and keys. As a result, the GMM that I propose provides a principled probabilistic framework to study
self-attention in transformers. Given this framework, I discover that a Gaussian distribution centered
around each key has limited capacity to capture the distribution of attention queries since this distri-
bution can be asymmetric, skewed or even multimodal. Therefore, I further propose to use a mixture
of Gaussian keys to increase the representation power of the model so that attention keys can explain
the queries better, resulting in the Transformer-MGK. I then derive the hard E-step inference, soft E-
step inference, and the learning algorithm for Transformer-MGK. I also extend this model to use with
linear attention, which leads to another new model named transformer with a mixture of linear keys
(Transformer-MLK).

Along this direction, with Tam Nguyen, Prof. Stanley Osher, Prof. Nhat Ho and other collaborators,
in [24], I extend mixture of keys in Transformer-MGK to a new finite admixture of keys (FiAK) for
pruning redundant attention scores in transformers. In another work [25], from the observation that
attention matrices, which are matrices of attention scores, in transformers lie on a low-dimensional
manifold [26], I propose a new finite admixture of shared heads (FiSH) that generates many local
attention matrices from a small set of global attention matrices, thus reducing both computational and
memory costs. In [27], I extend my mixture model framework for self-attention to a nonparametric
kernel regression model. I then propose the FourierFormer, a new class of transformers in which the
dot-product kernels are replaced by the novel generalized Fourier integral kernels. Different from the
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dot-product kernels, where a good covariance matrix needs to be chosen to capture the dependency of
the features of data, the generalized Fourier integral kernels can automatically capture such dependency
and remove the need to tune the covariance matrix.

4 Applications

In addition to developing principled machine learning models, I have also employed deep learning
methods for applications in scientific machine learning including turbulence modeling and developing
efficient numerical solvers.

Turbulence modeling. In [28], my collaborators and I propose a new machine learning methodology
that captures, de novo, underlying turbulence phenomenology without a pre-specified model form. To
illustrate the approach, we consider transient modeling of the dissipation of turbulent kinetic energy–a
fundamental turbulent process that is central to a wide range of turbulence models–using NeuralODE
models. After presenting details of the methodology, we show that this approach outperforms the
state-of-the-art methods.

Efficient numerical solvers. In [29], with Prof. Animesh Garg, Prof. Richard Baraniuk and Prof.
Anima Anandkumar, I study the speed-up for NeuralODEs and their related models including the con-
tinuous normalizing flows (CNFs) by tuning the error tolerances of the ODE solvers. With carefully
selected error tolerances, NeuralODEs and CNFs can gain higher speed and better performance. How-
ever, the process of manually tuning the tolerances is time-consuming and requires a large amount of
computational budget. To overcome this limitation, I propose a new method to learn the error tolerances
of the ODE solvers in these models from input data via the REINFORCE algorithm. In an ongoing work
with Professor Tan Bui, I draw a connection between transformers and various numerical ODE/PDE
solvers and develop a new class of transformers for solving ODEs/PDEs.

5 Future research plans

The principled models that I have described above can be classified into the class of systems 1, which
are models that do pattern recognition. For future work and looking forward to high-impact research
directions, I am going to incorporate models that can do reasoning into my research agenda. These
models are classified into the class of systems 2 [30]. To develop reasoning models, I am going to
employ fixed point methods to learn good representation of the data that can generalize well. These
fixed point methods add recurrence loops into the model and compute the representation of the data as
a fixed-point solution of an implicit problem. This process is similar to how humans think carefully
over and over again before making a decision in a challenging task such as playing chess. For a robot,
this recurrent process can potentially help the robot understand the environment and the interaction
with other robots around it. In my ongoing work, I observe that this fixed point method for designing
models helps reduce the sample complexity of a reinforcement learning model that performs a reason-
ing task significantly. Other recent works have also observed the great capability to do reasoning of
the models that learn with recurrent connections or fixed-point methods [31, 32]. In addition to fixed
point methods, I will also explore other approaches to enable a model to reason including the recently
proposed Generative Flow Networks [33].
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