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Abstract

Recent advances in Transformer architectures have empowered their empirical success in a
variety of tasks across different domains. However, existing works mainly focus on predictive
accuracy and computational cost, without considering other practical issues, such as robustness
to contaminated samples. Recent work [43] has shown that the self-attention mechanism, which
is the center of the Transformer architecture, can be viewed as a non-parametric estimator based
on kernel density estimation (KDE). This motivates us to leverage a set of robust kernel density
estimation methods for alleviating the issue of data contamination. Specifically, we introduce a
series of self-attention mechanisms that can be incorporated into different Transformer architec-
tures and discuss the special properties of each method. We then perform extensive empirical
studies on language modeling and image classification tasks. Our methods demonstrate robust
performance in multiple scenarios while maintaining competitive results on clean datasets.

1 Introduction

Attention mechanisms and transformers [65] have drawn lots of attention in the machine learning
community [29, 59, 25]. Now they are among the best deep learning architectures for a variety of
applications, including those in natural language processing [12, 1, 9, 7, 49, 2, 4, 10], computer
vision [14, 32, 60, 50, 46, 15, 33], and reinforcement learning [6, 23]. They are also known for
their effectiveness in transferring knowledge from various pretraining tasks to different downstream
applications with weak supervision or no supervision [47, 48, 12, 71, 31].

Despite these remarkable gains, the robustness of the conventional attention module remains an
open question in the literature. Recent works [57, 45, 3] have mostly focused on the robustness of
vision transformers (ViT) under various attacks. [36] empirically shows that ViT is vulnerable to
white-box adversarial attacks but a simple ensemble defense can achieve unprecedented robustness
without sacrificing accuracy on clean data. [37] performs robustness analysis on different building
blocks of ViT and proposed position-aware attention scaling and patch-wise augmentation to im-
prove the robustness and accuracy of ViT models. More recently, [73] proposed fully attentional
networks to improve self-attention and achieved state-of-the-art accuracy on corrupted images.
However, these works focus on improving the architectural design of ViT targeted for task-specific
applications and lack a general framework for improving the robustness of transformers. They also
introduce extra parameters. In addition, these works largely concentrate on vision-related tasks and
cannot be generalized across other data modalities.

? Xing Han, Tongzheng Ren, and Tan Nguyen contributed equally to this work.
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In this paper, to robustify the attention mechanism and build a general framework for robust
transformer models, we first revisit the interpretation of the self-attention in transformer as the
Nadaraya-Watson (NW) estimator [40] in a non-parametric regression setting. In the context of
the transformer, the NW estimator is constructed based on the kernel density estimators (KDE)
of the keys and queries. However, such KDEs are not robust to contaminated samples [26]. By
viewing KDE as the solution to the kernel regression problem in a reproducing kernel Hilbert
space (RKHS), we can adopt multiple state-of-the-art robust KDE methods based on e.g. robust
kernel regression and median-of-mean estimator, to design substantially more robust self-attention
mechanisms. The resulting family of robust self-attention mechanisms can be tailored to various
transformer architectures and tasks in multiple data modalities.

We perform extensive experiments on both vision and language modeling tasks. Results demon-
strate that our methods can have comparable accuracy on the clean data, with more favorable
performance on the contaminated data over state-of-the-art robust transformer models, without
introducing any extra parameters.

2 Self-Attention Mechanism from A Non-parametric Regression
Perspective

In this section, we provide background on self-attention mechanism in transformer and its connection
to the NW estimator in the non-parametric regression problem, which can be constructed via
standard KDE. We then connect KDE to a kernel regression problem in RKHS and demonstrate
that it is not robust to the contaminated samples.

2.1 Self-Attention Mechanism

Given an input sequence X = [x1, . . . ,xN ]> ∈ RN×Dx of N feature vectors, the self-attention
mechanism transforms it into another sequence H := [h1, · · · ,hN ]> ∈ RN×Dv as follows:

hi =
∑
j∈[N ]

softmax
(q>i kj√

D

)
vj , for i = 1, . . . , N. (1)

The vectors qi, kj and vj are the query, key and value vectors, respectively. They are computed as
follows:

[q1, q2, . . . , qN ]> := Q = XW>
Q ∈ RN×D,

[k1,k2, . . . ,kN ]> := K = XW>
K ∈ RN×D,

[v1,v2, . . . ,vN ]> := V = XW>
V ∈ RN×Dv ,

(2)

where WQ,WK ∈ RD×Dx , WV ∈ RDv×Dx are the weight matrices. Equation (1) can be written in
the following equivalent matrix form:

H = softmax
(QK>√

D

)
V , (3)

where the softmax function is applied to each row of the matrix (QK>)/
√
D. Equation (3) is also

called the “softmax attention”. Throughout this paper, we term a transformer built with softmax
attention as the standard Transformer or Transformer.
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2.2 A Non-parametric Regression Perspective of Self-Attention

We now briefly discuss the connection between the self-attention mechanism in equation (1) and the
non-parametric regression. Assume we have the key and value vectors {kj ,vj}j∈[N ] that is collected
from the data generating process

v = f(k) + ε, (4)

where ε is some noise vectors with E[ε] = 0, and f is the function that we want to estimate.
We consider a random design setting where the key vectors {kj}j∈[N ] are i.i.d. samples from the
distribution p(k), and we use p(v,k) to denote the joint distribution of (v,k) defined by equation (4).
Our target is to estimate f(q) for any new queries q.

The NW estimator provides a non-parametric approach to estimate the function f , the main
idea is that

f(k) = E[v|k] =

∫
RD

v · p(v|k)dv =

∫
RD

v · p(v,k)

p(k)
dv, (5)

where the first equation comes from the fact that E[ε] = 0, the second equation comes from the
definition of conditional expectation and the last equation comes from the definition of the con-
ditional density. To provide an estimation of f , we just need to obtain estimations for both the
joint density function p(v,k) and the marginal density function p(k). One popular approach for
the density estimation problem is the kernel density estimation (KDE) [52, 44], which requires a
kernel kσ with the bandwidth parameter σ satisfies

∫
RD kσ(x − x′)dx = 1,∀x′, and estimate the

density as

p̂σ(v,k) =
1

N

∑
j∈[N ]

kσ ([v,k]− [vj ,kj ]) (6)

p̂σ(k) =
1

N

∑
j∈[N ]

kσ(k − kj), (7)

where [v,k] denotes the concatenation of v and k. Specifically, when kσ is the isotropic Gaussian
kernel kσ(x− x′) = exp

(
−‖x− x′‖2/(2σ2)

)
, we have

p̂σ(v,k) =
1

N

∑
j∈[N ]

kσ(v − vj)kσ(k − kj). (8)

Given the kernel density estimators of equations (7) and (8), as well as the formulation in equa-
tion (5), we can obtain the NW estimator of the function f as

f̂σ(k) =

∑
j∈[N ] vjkσ(k − kj)∑
j∈[N ] kσ(k − kj)

. (9)

Furthermore, [43] have shown that if the keys {kj}j∈[N ] are normalized, the self-attention mechanism
f̂σ(qi) in equation (9) is exactly the standard transformer

f̂σ(qi) =
∑
j∈[N ]

softmax
(
q>kj/σ

2
)
vj . (10)
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Such an assumption on the normalized key {kj}j∈[N ] can be mild, as in practice we always have
an normalization step on the key to stabilize the training of the transformer [55]. If we choose
σ2 =

√
D, where D is the dimension of q and kj , then f̂σ(qi) = hi. As a result, the self-attention

mechanism in fact performs a non-parametric regression with NW-estimator and isotropic Gaussian
kernel when the keys are normalized.

2.3 KDE as a Regression Problem in RKHS

We start from the formal definition of the RKHS. The space Hk = {f | f : X → R} is called an
RKHS associated with the kernel k, where k : X ×X → R, if it is a Hilbert space with inner product
〈·, ·〉Hk and following properties:

• k(x, ·) ∈ Hk,∀x ∈ X ;

• ∀f ∈ Hk, f(x) = 〈f, k(x, ·)〉Hk . This is also known as the reproducing property.

With slightly abuse of notation, we define kσ(x,x′) = kσ(x − x′). By the definition of the RKHS
and the KDE estimator, we know p̂σ = 1

N

∑
j∈[N ] kσ(xj , ·) ∈ Hkσ , and can be viewed as the optimal

solution of the following least-square regression problem in RKHS:

p̂σ = arg min
p∈Hkσ

∑
j∈[N ]

1

N
‖kσ(xj , ·)− p‖2Hkσ . (11)

Note that, in equation (11), we have the same weight 1/N on each of the error ‖kσ(xj , ·)− p‖2Hkσ .
This works well if there are no outliers in {kσ(xj , ·)}j∈[N ]. However, when we have outliers (e.g.,
when there exists some j, such that ‖kσ(xj , ·)‖Hkσ � ‖kσ(xi, ·)‖Hkσ , ∀i ∈ [N ], i 6= j), the error on
the outliers will dominate the whole error and lead to substantially worse estimation on the entire
density. We illustrate the robustness issue of the KDE in Figure 1.

Combining the viewpoint that KDE is not robust to outliers with the interpretation of Section 2.2
implies that the transformer is also not robust when there are outliers in the data. The robustness
issue of transformer has mostly been studied in the vision domain, such as [36, 37, 73]. These
works modify the original architectures of vision transformer and introduces extra parameters.
A representative one is [37], which proposed position-based attention by adding on another fully
connected layer. However, this approach will cause bi-directional information flow for positional-
sensitive dataset such as text or sequences and is therefore limited to image data. We now take a
different view of the robustness problem in the RKHS domain and provide a unified framework for
different data modalities.

3 Robustify Transformer with Robust Kernel Density Estimation

We observe that variants of the vanilla kernel density estimation such as robust KDE [26], scaled
projection KDE [64] and more recently median-of-means [22], can down-weight or filter out the
potentially corrupted data and obtain a robust density estimator. We derive the corresponding
robust version of the NW-estimator, followed by showing how to use this to strengthen the self-
attention mechanism. We propose two types of robust self-attention mechanisms and discuss the
properties of each method, which could lead to a more robust Transformer variant.
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(a) (b) (c) (d)

Figure 1: Contour plots of density estimation of the 2-dimensional query vector embedding in an
attention layer of the transformer when using (b) KDE (equation (11)) and (c) RKDE after one
iteration of equation 15 with Huber loss (equation (13)), (d) KDE with median-of-means princi-
ple (equation 19), where (a) is the true density function. We draw 1000 samples (gray circles)
from a multivariate normal density and 100 outliers (red cross) from a gamma distribution as the
contaminating density. RKDE and KDE with median-of-means principle can be less affected by
contaminated samples when computing self-attention as nonparametric regression.

3.1 Down-weighting Outliers in RKHS

Robust KDE Motivated by the robust regression [16], [26] proposed a robust version of KDE,
by replacing the least-square loss in equation (11) with a robust loss function ρ:

p̂robust = arg min
p∈Hkσ

∑
j∈[N ]

ρ
(
‖kσ(xj , ·)− p‖Hkσ

)
. (12)

Examples of the robust loss functions ρ include the Huber loss [21], Hampel loss [19], Welsch loss
[69] and Tukey loss [16]. We empirically evaluate different loss functions in our experiments. For
simplicity, we use the Huber loss function as the demonstrating example, which is defined as follows:

ρ(x) :=

{
x2/2, 0 ≤ x ≤ a

ax− a2/2, a < x,
(13)

where a is a constant. The solution of this robust regression problem has the following form:

Proposition 1. Assume the robust loss function ρ is non-decreasing in [0,∞], ρ(0) = 0 and
limx→0

ρ(x)
x = 0. Define ψ(x) := ρ′(x)

x and assume ψ(0) = limx→0
ρ′(x)
x exists and finite. Then

the optimal p̂robust can be written as

p̂robust =
∑
j∈[N ]

ωjkσ(xj , ·),

where ω = (ω1, · · · , ωN ) ∈ ∆N , with each ωj ∝ ψ
(
‖kσ(xj , ·)− p̂robust‖Hkσ

)
. Here ∆n denotes the

n-dimensional probability simplex.

The proof of this proposition can be found in Appendix A. For the Huber loss function, we have
that

ψ(x) :=

{
1, 0 ≤ x ≤ a

a/x, a < x.
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Hence, when the error ‖kσ(xj , ·), ·−p̂robust‖Hkσ is over the threshold a, the final estimator will down-
weight the importance of kσ(xj , ·). This is in sharp contrast with the standard KDE method, which
will assign uniform weights to all of the kσ(xj , ·). One additional issue is that, the estimator provided
in Proposition 1 is circularly defined, as p̂robust is defined via ω, and ω depends on p̂robust. Such an
issue can be addressed by estimating ω with an iterative algorithm termed as kernelized iteratively
re-weighted least-squares (KIRWLS) algorithm. The algorithm starts with some randomly initialized
ω(0) ∈ ∆n, and perform the following iterative updates between two steps:

p̂
(k)
robust =

∑
j∈[N ]

ω
(k−1)
i kσ(xj , ·), (14)

ω
(k)
j =

ψ

(∥∥∥kσ(xj , ·)− p̂(k)robust

∥∥∥
Hkσ

)
∑

j∈[N ] ψ

(∥∥∥kσ(xj , ·)− p̂(k)robust

∥∥∥
Hkσ

) . (15)

Note that, the optimal p̂robust is the fixed point of this iterative update, and the KIRWLS algorithm
converges under standard regularity conditions. Furthermore, one can directly compute the term∥∥∥kσ(xj , ·)− p̂(k)robust

∥∥∥
Hkσ

via the reproducing property:∥∥∥kσ(xj , ·)− p̂(k)robust

∥∥∥2
Hkσ

= −2
∑
m∈[N ]

ω(k−1)
m kσ(xm,xj)

+ kσ(xj ,xj) +
∑

m∈[N ],n∈[N ]

ω(k−1)
m ω(k−1)

n kσ(xm,xn).

Therefore, the weights can be updated without mapping the data to the Hilbert space.

Scaled Projection KDE Scaled and Projected KDE (SPKDE) [64] is one other option of robust
KDE in the RKHS space. It essentially scales the original KDE and projects it to its nearest weighted
KDE in the L2 norm. The resulting weighted KDE can allocate more weight to high-density regions
and truncate the weights for anomalous samples. Specifically, given the scaling factor β > 1, and
let CNσ be the convex hull of kσ(x1, ·), . . . , kσ(xN , ·) ∈ Hkσ , i.e., the space of weighted KDEs, the
optimal density p̂robust is given by

p̂robust = arg min
p∈CNσ

∥∥∥∥∥∥ βN
∑
j∈[N ]

kσ(xj , ·)− p

∥∥∥∥∥∥
2

Hkσ

, (16)

which is guaranteed to have a unique minimizer since we are projecting in a Hilbert space and
CNσ is closed and convex. Notice that, by definition, p̂robust can also be represented as p̂robust =∑

j∈[N ] ωjkσ(xj , ·), ω ∈ ∆N , which is same as the formulation in Proposition 1. Then equation (16)
can be written as a quadratic programming (QP) problem over ω. Let G be the Gram matrix of
{xj}j∈[N ] with kσ and q = G1 β

N , then the QP can be written as follows

min
ω

ω>Gω − 2q>ω, subject to ω ∈ ∆N . (17)

Since kσ is a positive-definite kernel and each xi is unique, the Gram matrix G is also positive-
definite. As a result, this QP problem is convex, and we can leverage commonly used solvers to
efficiently obtain the solution and the optimal density p̂robust.

6



Robust Self-Attention Mechanism We now propose the robust self-attention mechanism via
weighting samples. We consider the density estimator of the joint distribution and the marginal
distribution from the robust KDE:

p̂robust(v,k) =
∑
j∈[N ]

ωjoint
j kσ([vj ,kj ], [v,k]),

p̂robust =
∑
j∈[N ]

ωmarginal
j kσ(kj ,k).

With a similar computation, the robust self-attention mechanism we use is defined as

ĥi =

∑
j∈[N ] vjω

joint
j kσ(qi − kj)∑

j∈[N ] ω
marginal
j kσ(qi − kj)

, (18)

where ωjoint and ωmarginal are obtained via either the KIRWLS algorithm or results from the QP
solver. We term the transformer models that employ robust KDE and SPKDE as Transformer-
RKDE and Transformer-SPKDE.

Remark. Note that, the computation of {ωmarginal
j }j∈[N ] and {ω

joint
j }j∈[N ] are separate as ωjoint

j

involves both keys and values vectors. During the empirical evaluation, we concatenate the keys
and values along the head dimension to obtain the weights for the joint density p̂robust(v,k) and
only use the key vectors for obtaining the set of weights for the marginal p̂robust(k). In addition,
ωmarginal, ωjoint ∈ Rj×i for i, j = 1, . . . , N are 2-dimensional matrices that include the pairwise
weights between each position of the sequence and the rest of the positions. The weights are initialized
uniformly across a certain sequence length dimension. For experiments related to language modeling,
we can leverage information from the attention mask to initialize the weights on the unmasked part
of the sequence.

3.2 Median-of-Means Principle

Methods to down-weight outliers are effective, but they require iterative algorithms to compute the
set of weights, which increases the overall complexity. The Median-of-Means (MoM) method is one
other way to construct robust estimators while addressing the drawback of the above approaches
[22]. Specifically, we randomly divide the keys {kj}Nj=1 into B subsets I1, . . . , IB of equal size,
namely, |I1| = |I2| = . . . = |IB| = S. Then, the robust estimator of p(k) takes the following form:

p̂robust(k) ∝ median {p̂σ,I1(k), . . . , p̂σ,IB (k)} , (19)

where we define p̂σ,Il(k) = 1
S
∑

j∈Il kσ(k − kj) for any l ∈ [B]. KDE with the MoM principle has
demonstrated its statistical performance under a less restrictive outlier framework and can be easily
adapted to self-attention.

Similarly, the robust estimator of p(v,k) is as follows:

p̂robust(v,k) ∝ median {p̂σ,I1(v,k), . . . , p̂σ,IB (v,k)} , (20)

where p̂σ,Il(v,k) = 1
S
∑

j∈Il kσ(v−vj)kσ(k−kj) for any l ∈ [B]. We now propose the self-attention
mechanism utilizing the median-of-means principle.
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Algorithm 1 Procedure of Computing Attention Vector of Transformer-RKDE/SPKDE/MoM

1: Input: Q = {qi}i∈[N ], K = {kj}j∈[N ], V = {vl}l∈[N ], initial weights ω(0)

2: Normalize K = {kj}j∈[N ] along the head dimension.
3: Compute kernel function between each pair of sequence: kσ(Q,K) = {kσ(qi − kj)}i,j∈[N ].
4: (Optional) apply attention mask on kσ(Q,K).
5: [MoM] Randomly sample B subsets I1, . . . , IB of size S, obtain the median block Il such that

1
S
∑
j∈Il kσ(qi − kj) = median{ 1

S
∑
j∈I1 kσ(qi − kj), . . . ,

1
S
∑
j∈IB kσ(qi − kj)}

6: [RKDE] Update weights ω(0) for marginal/joint density by ω(1)
j =

ψ

(∥∥∥kσ(kj ,·)−p̂(k)robust(k)
∥∥∥
Hkσ

)
∑
j∈[N] ψ

(∥∥∥kσ(kj ,·)−p̂(k)robust(k)
∥∥∥
Hkσ

) .
7: [SPKDE] Obtain optimal weights ω for marginal/joint density via solving equation (17).

8: [RKDE, SPKDE] Obtain robust self-attention vector ĥi =
∑
j∈[N] vjω

joint
j kσ(qi−kj)∑

j∈[N] ω
marginal
j kσ(qi−kj)

.

9: [MoM] Obtain attention vector ĥi =
∑
j∈Il

vjkσ(qi−kj)∑
j∈Il

kσ(qi−kj) .

Median-of-Means Self-Attention Mechanism Given the robust estimators in equations (19)
and (20), we can consider the following robust estimation of the attention:

ĥi =
1
S
∑

j∈Il vjkσ(qi − kj)

median {p̂σ,I1(qi − k), . . . , p̂σ,IB (qi − k)}
, (21)

where Il is the block such that p̂σ(qi − k) achieves its median value in equation (20). Note that,
the reason that we choose the block Il for the numerator instead of considering the median over all
possible blocks is due to computational efficiency.

Remark. Here, the random subsets are over input sequences instead of data points, which is dif-
ferent from that of stochastic batches. The original MoM principle requires each subset to be non-
overlapped: i.e. Il1 ∩ Il2 = ∅ for any 1 ≤ l1 6= l2 ≤ B. However, for structured data in high-
dimension, dividing into non-overlapping blocks will result in the model only having a partial view
of the dataset, leading to sub-optimal performance. We therefore construct each subset by sampling
with replacement from the original dataset and retain the sequential relationship after that. No-
tice that, our proposed attention mechanism assumes key and query vectors achieve their median
on the same block and therefore applies the median block obtained from the denominator into the
numerator, which is faster than computing median blocks on both sides.

3.3 Practical Implementation

The two types of robust attention mechanisms we proposed have their respective strengths. To
speed up the computation for Transformer-RKDE, we use a single-step iteration on equation (15)
to approximate the optimal set of weights. Empirical results have shown that this one-step iteration
can achieve sufficiently accurate results. For Transformer-SPKDE, since the optimal set of weights
is obtained via the QP solver, it requires longer computation time but leads to better performance
on both clean and adversarial data. As an alternative to weight-based methods, Transformer-MoM
is much more efficient and demonstrates competitive performance, especially on text data. The
full procedure of computing the attention vector for Transformer-RKDE, Transformer-SPKDE, and
Transformer-MOM can be found at Algorithm 1.
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Table 1: Perplexity (PPL) and negative likelihood loss (NLL) of our methods and baselines on WikiText-103 dataset.
The best results are highlighted in bold font and the second best results are highlighted in underline. Transformer-
MoM and Transformer-SPKDE achieve competitive performance to the baseline methods while shows much better
PPL and NLL under random swap with outlier words.

Method
Clean Data Word Swap

Valid PPL/Loss Test PPL/Loss Valid PPL/Loss Test PPL/Loss
Transformer [66] 33.52/3.51 34.59/3.54 72.28/4.45 74.56/4.53
Performer [8] 33.35/3.51 34.49/3.54 69.78/4.38 71.03/4.41

Transformer-MGK [42] 33.28/3.51 34.21/3.53 71.64/4.42 73.48/4.49
Transformer-KDE 33.34/3.51 34.37/3.54 71.94/4.43 73.75/4.49

Transformer-RKDE (Huber) 33.22/3.50 34.29/3.54 52.14/3.92 55.68/3.99
Transformer-RKDE (Hampel) 33.24/3.50 34.35/3.54 55.61/3.98 57.92/4.03

Transformer-SPKDE 33.05/3.49 34.18/3.53 51.36/3.89 54.97/3.96
Transformer-MoM 33.56/3.51 34.68/3.55 48.29/3.82 52.14/3.92

4 Experimental Results

In this section, we empirically validate the advantage of our proposed transformer integrated with
robust KDE attention (Transformer-RKDE/SPKDE/MoM) over the standard softmax transformer
and its nonparametric regression variant (Transformer-KDE in equation (9)) on two large-scale
datasets: language modeling on WikiText-103 dataset [38] (Section 4.1) and image classification
on Imagenet [53, 11] and Imagenet-C [20] (Section 4.2). We also compare the proposed series of
robust transformers with state-of-the-art models, including Performer [8], MGK [41], RVT [37], and
FourierFormer [43]. Our experiments have shown that: (1) Transformer with robust KDE attention
can reach competitive performance with baseline methods on a variety of tasks with different data
modalities, this can be achieved without modifying the model architecture or introducing extra
parameters; (2) the advantage of Transformer with robust KDE attention is more prominent when
there is contamination of samples in either text or image data. All of our experiments are performed
on the NVIDIA A-100 GPUs. For each experiment, we compare Transformer-RKDE/SPKDE/MoM
with other baselines under the same hyper-parameter configurations.

4.1 Robust Language Modeling

Dataset: WikiText-103 is a language modeling dataset that contains collection of tokens extracted
from good and featured articles from Wikipedia, which is suitable for models that can leverage
long-term dependencies. The dataset contains around 268K words and its training set consists of
about 28K articles with 103M tokens, this corresponds to text blocks of about 3600 words. The
validation set and test sets consist of 60 articles with 218K and 246K tokens respectively. We
follow the standard configurations in [38, 55] and splits the training data into L-word independent
long segments. During evaluation, we process the text sequence using a sliding window of size L
and feed into the model with a batch size of 1. The last position of the sliding window is used for
computing perplexity except in the first segment, where all positions are evaluated as in [1, 55].

Implementation Details: We used the small version of language models developed by [55]

9



Table 2: Top-1, top-5 accuracy (%) and mean corruption error (mCE) of DeiT with different attention mechanisms.
The best results are highlighted in bold font and the second best are highlighted in underlines. RVT [37] and DeiT
with Distillation [61] achieves better results on clean data and corrupted imagenet; the proposed DeiT with robust
KDE attention hold stronger defense under different adversarial attacks while still achieve competitive performance
on clean imagenet.

Method
Clean Data FGSM PGD SPSA Imagenet-C

Top 1 Top 5 Top 1 Top 5 Top 1 Top 5 Top 1 Top 5 Top 1 mCE↓

DeiT [13] 72.23 91.13 52.61 82.26 41.84 76.49 48.34 79.36 42.38 71.14

Distill [61] 74.32 93.72 53.24 84.07 41.72 76.43 49.56 80.14 43.29 70.26

FourierFormer [43] 73.25 91.66 53.08 83.95 41.34 76.19 48.79 79.57 42.47 71.07

RVT [37] 74.37 93.89 53.67 84.11 43.39 77.26 51.43 80.98 45.64 68.57

DeiT-KDE 72.58 91.34 52.25 81.52 41.38 76.41 48.61 79.68 42.63 70.78

DeiT-RKDE (Huber) 72.83 91.44 55.83 85.89 44.15 79.06 52.42 82.03 45.58 68.69

DeiT-RKDE (Hampel) 72.94 91.63 55.92 85.97 44.23 79.16 52.48 82.07 45.61 68.67

DeiT-SPKDE 73.22 91.95 56.03 86.12 44.51 79.47 52.64 82.33 44.76 69.34

DeiT-MoM 71.94 91.08 55.76 85.23 43.78 78.85 49.38 80.02 45.16 69.11

in our experiments. The dimensions of key, value, and query are set to 128, and the training
and evaluation context length is set to 256. We compare our methods with Performer [8] and
Transformer-MGK [41], which have recently achieved state-of-the-art performance on this task.
As for self-attention, we set the number of heads as 8 for our methods and Performer, and 4 for
Transformer-MGK. We set the dimension of the feed-forward layer as 2048, and the number of
layers as 16. To avoid numerical instability, we apply the log-sum-exp trick in equation (9) when
computing the attention probability vector through the Gaussian kernel. We apply similar tricks
when computing the weights of the KIRWLS algorithm, where we first obtain the weights in log
space, followed by the log-sum-exp trick to compute robust self-attention as in equation (18). For
Transformer-MoM, the sampled subset sequences account for 80% length of the original sequence.

Results: In Table 1, we report the validation and test PPL of Transformer-RKDE (with Huber
and Hampel loss functions), Transformer-SPKDE and Transformer-MoM versus the above men-
tioned baselines. Based on the derivation in equation (10), we would expect Transformer-KDE to
have similar performance with softmax transformer. Meanwhile, Transformer-RKDE and SPKDE
is able to improve baselines PPL and NLL in both validation and test sets, while Transformer-MoM
shows slightly higher perplexity due to the fact that only part of the sequence is used.

We can observe more obvious improvement when the dataset is under a word swap attack, which
randomly replaces selected keywords of input data with a generic token “AAA” during evaluation.
Our method, particularly MoM-based robust attention, achieves much better results for filter out
rare words, where the median trick has demonstrated its effectiveness. We also observed more
robust performance from RKDE/SPKDE-based robust attention than other baseline methods that
have not been protected from the attack. Our implementation of word swap is based on the public
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Figure 2: The top-1 classification accuracy v.s. perturbation budget × 255 curves on ImageNet
against three untargeted attack methods under the l∞ norm. Among all the competing methods,
the proposed set of DeiT with robust KDE attention mechanisms shows stronger defense under all
attack methods with different perturbation budgets.

code TextAttack by [39], while we use the greedy search method with the constraints on stop-words
modification from the TextAttack library.

4.2 Image Classification under Adversarial Attack

Dataset: We use the full ImageNet dataset that contains 1.28M training images and 50K validation
images. The model learns to predict the class of the input image among 1000 categories. We report
the top-1 and top-5 accuracy on all experiments. For robustness on common image corruptions, we
use ImageNet-C [20] which consists of 15 types of algorithmically generated corruptions with five
levels of severity. ImageNet-C uses the mean corruption error (mCE) as metric: the smaller mCE
means the more robust the model under corruption.

Implementation Details: Our method uses the same training configurations as DeiT-Tiny
[61]. Given that all our approaches do not modify the model architecture, each employed model has
5.7M parameters. We also implemented state-of-the-art methods including DeiT with hard distilla-
tion [61], FourierFormer [43] and robust vision transformer (RVT) model [37] as our baselines. Note
that, for a fair comparison with RVT, we only implemented its position-aware attention scaling
without further modifications to the model architecture. The resulting model has around 7.2M
parameters. To evaluate adversarial robustness, we apply adversarial examples generated by untar-
geted white-box attacks including single-step attack method FGSM [18], multi-step attack method
PGD [35] and score-based black-box attack method SPSA [63]. The attacks are applied on 100%
of the validation set of ImageNet. Both these attacks perturb the input image with perturbation
budget ε = 1/255 under l∞ norm; while PGD attack uses 20 steps with step size α = 0.15.

Results: We summarize the results in Table 2. Corresponding to the original papers, RVT
and DeiT-Distillation achieve better performance on clean imagenet. The proposed series of DeiT
with robust KDE attention can also obtain very close results with RVT and DeiT-Distillation under
these settings. They can also evidently improve RVT under multiple types of adversarial attacks,
especially for DeiT-SPKDE method. Figure 2 shows the relationship between accuracy versus per-
turbation budget using three attack methods. We observe that, the series of transformers with

Implementation available at github.com/QData/TextAttack
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robust self-attention mechanism have distinctly stronger defense under different perturbation bud-
gets and exhibits greater advantage with higher perturbation strength. We provide more ablation
studies in Appendix B regarding to different design choices of each of the proposed robust KDE
attention.

5 Related Works

Robustness of Transformer: Vision Transformer (ViT) models [13, 61] recently achieved exem-
plary performance on a variety of vision tasks that can be used as a strong alternative to CNNs.
To ensure its generalization ability on different datasets, many works [36, 37, 73] have proposed
solutions to improve the defense of common adversarial attacks on image data, including ensemble
defense by [36], position-aware attention scaling and patch-wise augmentation by [37], and fully
attentional networks by [73]. Apart from this line of work, robust transformers have also been
studied in domains such as text analysis and social media. [70] investigated table understanding
and proposed a robust and structurally aware table-text encoding architecture to avoid row and
column order perturbations. [30] proposed a robust end-to-end transformer-based model for crisis
detection and crisis recognition. In addition, [28] designed a novel attention mechanism to con-
struct a robust neural text-to-speech model to synthesize both natural and stable audios. Despite
their strong performance, these works focus on architecture design for application-specific tasks and
cannot generalize to all situations.

Theoretical Frameworks of Attention Mechanisms: Attention mechanisms in transform-
ers have been recently studied from different perspectives. [62] shows that attention can be derived
from smoothing the inputs with appropriate kernels. [24, 8, 67] further linearize the softmax kernel
in attention to attain a family of efficient transformers with both linear computational and memory
complexity. These linear attentions are proven in [5] to be equivalent to a Petrov-Galerkin projec-
tion [51], thereby indicating that the softmax normalization in dot-product attention is sufficient but
not necessary. Other frameworks for analyzing transformers that use ordinary/partial differential
equations include [34, 54]. In addition, the Gaussian mixture model and graph-structured learning
have been utilized to study attentions and transformers [58, 17, 72, 68, 56, 27].

6 Conclusion and Future Work

In this paper, via the connection between the dot-product self-attention mechanism used in trans-
formers with nonparametric kernel regression, we developed a family of robustified transformers by
leveraging robust kernel density estimation as a replacement for dot-product attention to alleviate
the effects of contaminated samples. We proposed two types of robust self-attention mechanisms
that either down-weight or filter out the potentially corrupted data. The procedure requires iter-
atively computing a set of weights or obtaining the median block over subsets of sequences: both
approaches can be flexibly integrated into commonly used transformer models. Empirical evalu-
ations show that these robust transformer models can improve performance on clean data while
demonstrating robust results under various attacks for both vision and language modeling tasks.
The robust KDE attention we have developed generalizes to the whole family of transformer models.
We are currently investigating potentially more efficient approaches to estimating the set of weights
for robust kernel density estimation for large models.
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Supplementary Material of “Designing Robust Transformers using
Robust Kernel Density Estimation”

A Proof of Proposition

Proposition 2. Assume the robust loss function ρ is non-decreasing in [0,∞], ρ(0) = 0 and
limx→0

ρ(x)
x = 0. Define ψ(x) := ρ′(x)

x and assume ψ(0) = limx→0
ρ′(x)
x exists and finite. Then

the optimal p̂robust can be written as

p̂robust =
∑
j∈[N ]

ωjkσ(xj , ·),

where ω = (ω1, · · · , ωN ) ∈ ∆N , and ωj ∝ ψ
(
‖kσ(xj , ·)− p̂robust‖Hkσ

)
. Here ∆n denotes the n-

dimensional simplex.

Proof. The proof of Proposition 2 is mainly adapted from the proof in [26]. Here, we provide proof
of completeness. For any p ∈ Hkσ , we denote

J(p) =
1

N

∑
j∈[N ]

ρ
(
‖kσ(xj , ·)− p‖Hkσ

)
.

Then we have the following lemma regarding the Gateaux differential of J and a necessary condition
for p̂robust to be optimal solution of the robust loss objective function in equation (12).

Lemma 1. Given the assumptions on the robust loss function ρ in Proposition 2, the Gateaux
differential of J at p ∈ Hkσ with incremental h ∈ Hkσ , defined as δJ(p;h), is

δJ(p;h) := lim
τ→0

J(p+ τh)− J(p)

τ
= −〈V (p), h〉Hkσ ,

where the function V : Hkσ → Hkσ is defined as:

V (p) =
1

N

∑
j∈[N ]

ψ
(
‖kσ(xj , ·)− p‖Hkσ

)
(kσ(xj , ·)− p).

A necessary condition for p̂robust is V (p̂robust) = 0.

The proof of Lemma 1 can be found in Lemma 1 of [26]. Based on the necessary condition for
p̂robust in Lemma 1, i.e., V (p̂robust) = 0, we have

1

N

∑
j∈[N ]

ψ
(
‖kσ(xj , ·)− p̂robust‖Hkσ

)
(kσ(xj , ·)− p̂robust) = 0.

Direct algebra indicates that p̂robust =
∑

j∈[N ] ωjkσ(xj , ·) where ω = (ω1, · · · , ωN ) ∈ ∆N , and ωj ∝
ψ
(
‖kσ(xj , ·)− p̂robust‖Hkσ

)
. As a consequence, we obtain the conclusion of the proposition.

B Ablation Studies
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Table 3: Text PPL/NLL loss versus the parameter a of Huber loss function defined in equation 13
(upper) and Hampel loss function [26] (lower; we use 2 × a and 3 × a as parameters b and c) on
original and word-swapped Wiki-103 dataset. The best results are highlighted in bold font and the
second best are highlighted in underline. We choose a = 0.4 in rest of the experiments.

Robust Loss Parameter 0.1 0.2 0.4 0.6 0.8 1

Clean Data 34.92/3.57 34.87/3.56 34.29/3.54 34.38/3.54 34.46/3.54 34.48/3.54

Word Swap 56.82/4.01 55.97/3.99 55.68/3.99 57.89/4.03 58.26/4.04 58.37/4.04

Clean Data 34.67/3.55 34.32/3.54 34.35/3.54 34.47/3.54 34.53/3.54 34.58/3.54

Word Swap 58.02/4.03 57.86/4.03 57.92/4.03 58.24/4.04 58.37/4.04 58.43/4.04

Table 4: Top-1 classification accuracy on ImageNet versus the parameter a of Huber loss function
defined in equation 13 under different settings. The best results are highlighted in bold font and
the second best are highlighted in underline. We choose a = 0.2 in rest of the experiments.

Huber Loss Parameter 0.1 0.2 0.4 0.6 0.8 1

Clean Data 71.45 72.83 71.62 71.07 70.65 70.34

FGSM 56.72 55.83 55.34 54.87 54.02 52.98

PGD 46.37 44.15 43.87 43.25 42.69 41.96

SPSA 52.38 52.42 51.69 51.34 50.97 48.22

Imagenet-C 45.37 45.58 45.63 45.26 44.63 43.76

Table 5: Top-1 classification accuracy on ImageNet versus the parameter a of Hampel loss function
defined in [26] under different settings. We use 2 × a and 3 × a as parameters b and c. The best
results are highlighted in bold font and the second best are highlighted in underline. We choose
a = 0.2 in rest of the experiments.

Hampel Loss Parameter 0.1 0.2 0.4 0.6 0.8 1

Clean Data 71.63 72.94 71.84 71.23 70.87 70.41

FGSM 56.42 55.92 55.83 55.66 54.97 53.68

PGD 45.18 44.23 43.89 43.62 43.01 42.34

SPSA 52.96 52.48 52.13 51.46 50.92 50.23

Imagenet-C 44.76 45.61 46.04 46.13 45.82 45.31
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Table 6: Top-1 classification accuracy on ImageNet versus the parameter β of SPKDE defined in
equation 16 under different settings. β = 1

1−ε > 1, where ε is the percentage of anomalous samples.
A larger β indicates a more robust model. The best results are highlighted in bold font and the
second best are highlighted in underline. We choose β = 1.4 in rest of the experiments.

β 1.05 1.2 1.4 1.6 1.8 2

Clean Data 74.25 73.56 73.22 73.01 72.86 72.64

FGSM 53.69 55.08 56.03 55.37 54.21 53.86

PGD 42.31 43.68 44.51 44.32 44.17 43.71

SPSA 51.29 52.02 52.64 52.84 52.16 51.39

Imagenet-C 44.68 45.49 44.76 44.21 43.96 43.33

Table 7: Top-1 classification accuracy on ImageNet versus the number of iterations of the KIRWLS
algorithm in equation 15 employed in Transformer-RKDE. Since the increased number of iterations
does not lead to significant improvements of performance while the computational cost is much
higher, we use the single-step iteration of the KIRWLS algorithm in Transformer-RKDE.

Huber Loss Hampel Loss

Iteration # 1 2 3 5 1 2 3 5

Clean Data 72.83 72.91 72.95 72.98 72.94 72.99 73.01 73.02

FGSM 55.83 55.89 55.92 55.94 55.92 55.96 55.97 55.99

PGD 44.15 44.17 44.17 44.18 44.23 44.26 44.28 44.31

SPSA 52.42 52.44 52.45 52.45 52.48 52.53 52.55 52.56

Imagenet-C 45.58 45.61 45.62 45.62 45.61 45.66 45.68 45.71

Table 8: Computation time (measured by seconds per iteration) of baseline methods, Transformer-
SPKDE, Transformer-MoM and Transformer-RKDE with different number of KIRWLS iterations.
Transformer-SPKDE requires longer time since it directly obtains the optimal set of weights via the
QP solver.

Iterations of KIRWLS
DeiT RVT SPKDE MoM-KDE

1 2 3 5

Time (s/it) 0.43 0.51 0.68 0.84 0.35 0.41 1.45 0.37
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