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Revisiting Over-smoothing and Over-squashing Using Ollivier-Ricci Curvature
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Abstract

Graph Neural Networks (GNNs) had been demon-
strated to be inherently susceptible to the prob-
lems of over-smoothing and over-squashing.
These issues prohibit the ability of GNNs to
model complex graph interactions by limiting
their effectiveness in taking into account distant
information. Our study reveals the key connec-
tion between the local graph geometry and the
occurrence of both of these issues, thereby pro-
viding a unified framework for studying them
at a local scale using the Ollivier-Ricci curva-
ture. Specifically, we demonstrate that over-
smoothing is linked to positive graph curvature,
while over-squashing is linked to negative graph
curvature. Based on our theory, we propose the
Batch Ollivier-Ricci Flow, a novel rewiring algo-
rithm capable of simultaneously addressing both
over-smoothing and over-squashing.

1. Introduction
A collection of entities with a set of relations between them
is among the simplest, and yet most general, types of struc-
ture. It came as no surprise that numerous real world data
are naturally represented by graphs (Harary, 1967; Hsu &
Lin, 2008; Estrada & Bonchev, 2013), motivating many re-
cent advancements in the study of Graph Neural Networks
(GNNs). This has lead to a wide range of successful appli-
cations, including physical modeling (Battaglia et al., 2016;
Kipf et al., 2018; Sanchez-Gonzalez et al., 2018), chemical
and biological inference (Duvenaud et al., 2015; Gilmer
et al., 2017), recommender systems (Berg et al., 2017; Ying
et al., 2018; Fan et al., 2019; Wu et al., 2019), generative
models (Li et al., 2018b; Bojchevski et al., 2018; Shi et al.,
2020), financial prediction (Chen et al., 2018b; Matsunaga
et al., 2019; Yang et al., 2019), and knowledge graph (Shang
et al., 2019; Zhang et al., 2019).

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.
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Despite their success, current GNN designs suffer from two
critical setbacks that prevent the widespread adoption of
GNNs in practical applications. The first common prob-
lem encountered by GNNs is known as over-smoothing (Li
et al., 2018a). Over-smoothing occurs when node features
quickly converge to each other and become indistinguish-
able as the number of layers increases. This issue puts a
limit on the depth of a GNN, prohibiting the model’s capabil-
ity of capturing complex relationships in the data. Another
plight plaguing GNNs is known as over-squashing (Alon &
Yahav, 2021). This phenomenon happens when the num-
ber of nodes within the receptive field of a particular node
grows exponentially with the number of layers, leading to
the squashing of exponentially-growing amount of infor-
mation into fixed-size node features. Such over-squashing
hinders the ability of GNNs to effectively process distant
information and capture long-range dependencies between
nodes in the graph, especially in the case of deep GNNs that
require many layers.

Together, over-smoothing and over-squashing impair the per-
formance of modern GNNs, impeding their application to
many important settings that involve very large graph. (Cai
& Wang, 2020; Alon & Yahav, 2021). Alleviating either
of these problems has been the main focus in many recent
studies of GNNs (Luan et al., 2019; Zhao & Akoglu, 2020;
Topping et al., 2022). It has been noted that over-smoothing
and over-squashing are somewhat related problems (Karhad-
kar et al., 2023). Nevertheless, to the best of our knowledge,
there has been no work in the literature that offers a com-
mon framework to understand these issues, nor to rigorously
study them at the local level. Such unified approach presents
a potentially crucial theoretical contribution to our under-
standing of the over-smoothing and over-squashing issues.
It enables the development of novel architectures and meth-
ods that can effectively learn complex and long-range graph
interactions, thereby broadening the applications of GNNs
on practical tasks.

Contribution. We present a unified theoretical framework
to study both the over-smoothing and over-squashing phe-
nomena in GNNs at the local level using the Ollivier-Ricci
curvature, an inherent local geometric property of graphs.
Our key contributions are three-fold:

1. We prove that very positively curved edges cause node
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representations to become similar, thereby establishing
a link between the over-smoothing issue and high edge
curvature.

2. We prove that low curvature value characterizes graph
bottlenecks and demonstrate a connection between the
over-squashing issue and negative edge curvature.

3. Based on our theoretical results, we propose the
Batch Ollivier-Ricci Flow (BORF), a novel curvature-
based rewiring method designed to mitigate the over-
smoothing and over-squashing issues simultaneously.

Organization. We structure this paper as follows: In Sec-
tion 2, we give a brief summary of the relevant backgrounds
in the study of GNNs and provide a concise formulation
for the Ollivier-Ricci curvature on graphs. In Section 3,
we present our central analysis showing positive graph cur-
vature is associated with over-smoothing, while negative
graph curvature is associated with over-squashing. In Sec-
tion 4, we introduce the novel graph rewiring method BORF,
which modifies the local graph geometry to suppress over-
smoothing and support over-squashing inducing connec-
tions. We empirically demonstrate the superior performance
of our method compared to other state-of-the-art rewiring
methods in Section 5. Related works are mentioned in pass-
ing in Section 6. The paper ends with concluding remarks in
Section 7. Technical proofs and other additional materials
are provided in the Appendix.

Notation. We denote scalars by lower- or upper-case letters
and vectors and matrices by lower- and upper-case boldface
letters, respectively. We use G = (V, E) to denote a simple,
connected graph G with vertex set V and edge set E . Graph
vertices are also referred to as nodes, and the characters
u, v, w, p, q are reserved for representing them. We write
u ∼ v if (u, v) ∈ E . The shortest path distance between two
vertices u, v is denoted by d(u, v). We let Nu = {p ∈ V |
p ∼ u} be the 1-hop neighborhood and Ñu = Nu ∪ {u} be
the extended neighborhood of u.

2. Preliminaries
We begin by summarizing the relevant backgrounds on
message passing neural networks (MPNN) and the over-
smoothing and over-squashing issues of GNNs. We also
provide a concise formulation for the Ollivier-Ricci curva-
ture on graphs.

2.1. Message Passing Neural Networks

Message passing neural networks (MPNNs) (Gilmer et al.,
2017) is a unified framework for a broad range of graph
neural networks. It encompasses virtually every popular
GNN design to date, including graph convolutional network

(GCN) (Kipf & Welling, 2017), GraphSAGE (Hamilton
et al., 2017), graph attention network (GAT) (Veličković
et al., 2018), graph isomorphism network (GIN) (Xu et al.,
2019), etc. The key idea behind MPNNs is that by aggregat-
ing information from local neighborhoods, a neural network
can effectively use both node feature data and the graph
topology to learn relevant information.

Let X ∈ R|V|×d be the node feature matrix of a graph
G, where d is the number of feature channels. Let Xk be
the node feature matrix at layer k, with the convention that
X0 = X . The features of node u at layer k is denoted by
Xk
u , and is exactly the transpose of the u-th row of Xk. A

general formulation for an MPNN can be given by

Xk+1
u = ϕk

⊕
p∈Ñu

ψk(X
k
p )

 , (1)

where ψk is a message function,
⊕

is an aggregating func-
tion, and ϕk is an update function. Table 1 summarizes the
choice forψk, ϕk, and

⊕
in four popular GNN architectures.

We give further discussion on how Equation (1) accommo-
dates different designs of GNNs in Appendix A. From now
on, we will use MPNN and GNN interchangeably.

Table 1. Popular GNNs are instances of Equation (1): GCN (Kipf
& Welling, 2017), GraphSAGE (Hamilton et al., 2017), GAT
(Veličković et al., 2018), and GIN (Xu et al., 2019).

GNN ψk ϕk
⊕

GCN 1 linear activation mean
GraphSAGE 2 linear activation mean

GAT linear activation weighted mean
GIN 3 identity MLP sum

Traditionally, GNNs are designed to operate directly on
the input graphs. In many cases, this leads to significant
downsides due to possible undesirable characteristics of the
dataset. Hence, it has been proposed that by conducting the
learning process on a modified version of the input graphs,
we can improve upon the scale and performance of graph
models (Hamilton et al., 2017; Gasteiger et al., 2019). One
such approach is known as graph rewiring, which involves
adding or modifying the set of edges E within a graph as a
preprocessing step. We give a brief overview of two novel
rewiring algorithms, SDRF (Topping et al., 2022) and FoSR
(Karhadkar et al., 2023), along with a comparison between
them and our proposed method in Section 4.

1If the symmetrically normalized Laplacian is replaced by the
normalized Laplacian. See Appendix A.

2Mean aggregator variant.
3GIN-0 variant.
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Figure 1. Over-smoothing induced by the averaging operation.

2.2. The Over-smoothing and Over-squashing Issues of
GNNs

Over-smoothing has generally been described as the phe-
nomenon where the feature representation of every node
becomes similar to each other as the number of layers in a
GNN increases (Li et al., 2018a). If over-smoothing occurs,
for every two neighbor nodes u, v, it must happen that∣∣Xk

u −Xk
v

∣∣→ 0 as k → ∞. (2)

Equation 2 can be thought of as the local smoothing behav-
ior, observed in the neighborhood of two nodes u ∼ v.

A global formulation for feature representation similarity is
obtained by summing up terms of the form

∣∣Xk
u −Xk

v

∣∣ for
all neighbors u, v. Formally, we yield a formulation for the
global over-smoothing issue based on local observations∑

(u,v)∈E

∣∣Xk
u −Xk

v

∣∣→ 0 as k → ∞. (3)

That is, if the term
∑

(u,v)∈E
∣∣Xk

u −Xk
v

∣∣ converges to zero,
we say that the model experiences over-smoothing. This
definition is similar to the one introduced in (Rusch et al.,
2022). Figure 1 visualizes the over-smoothing behavior
of a simple 6-node graph with RGB color features. At
the start, the nodes can be roughly divided into 4 classes:
green, blue, yellow, and pink. When smoothing by the mean
operation is applied repeatedly for k times, different nodes
rapidly converge to having similar colors. At the final step
k = 3, nodes have become virtually indistinguishable - they
experienced over-smoothing.

On the other hand, over-squashing is an inherent pitfall of
GNNs that occurs when bottlenecks in the graph structure
impede the graph’s ability to propagate information among
its vertices. We observe from Equation 1 that messages can

Figure 2. Bottlenecks (colored in red) inhibit the message passing
capability of MPNNs.

only be transmitted by a distance of 1 at each layer. Hence,
two nodes of distance K will only receive information from
each other if the GNN has at least K layer. However, as the
number of layers increases, the size of each node’s recep-
tive field increases exponentially (Chen et al., 2018a). This
causes messages between exponentially-growing number
of distant vertices to be squashed into fixed size vectors,
limiting the model’s ability to capture long range depen-
dencies (Alon & Yahav, 2021). As illustrated in Figure 2,
graph bottlenecks contribute to this problem by enforcing
the maximal rate of expansion to the receptive field, while
providing minimal connection between either sides of the
bottleneck. Thus, a graph containing many bottlenecks is
likely to suffer from over-squashing.

We remark that over-squashing is a relatively novel obser-
vation, and an appropriate way to formulate it is currently
lacking from the literature (see Appendix B).

2.3. Ollivier-Ricci Curvature on Graph

The Ricci curvature is a geometric object ubiquitous in the
field of differential geometry. At a local neighborhood of
a Riemannian manifold, the Ricci curvature of the space
characterizes the average geodesic dispersion, i.e., whether
straight paths in a given direction of nearby points have the
tendency to remain parallel (zero curvature), converge (pos-
itive curvature), or diverge (negative curvature). Crucially,
the definition of the Ricci curvature depends on the ability to
specify directions, or more precisely, tangent vectors, within
the space considered.

To circumvent the lack of a tangent structure on graphs, the
Ollivier-Ricci curvature (Ollivier, 2009) considers random
walkers from nearby points. We define a random walk m
on a graph G as a family of probability measure mu(·) on
V for all u ∈ V . For p ∈ V , it is intuitive to think of mu(p)
as the probability that a random walker starting from u will
end up at p. Then, for any u, v ∈ V , we can consider the L1

Wasserstein transport distance W1(mu,mv) given by

W1(mu,mv) = inf
π∈Π(mu,mv)

 ∑
(p,q)∈V2

π(p, q)d(p, q)

 ,

where Π(mu,mv) is the family of joint probability distribu-
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tions of mu and mv. This measures the minimal distance
that random walkers from u must travel to meet the ran-
dom walkers from v. The Ollivier-Ricci curvature κ(u, v) is
then defined based on the ratio between the random walker
distance W1(mu,mv) and the original distance d(u, v)

κ(u, v) = 1− W1(mu,mv)

d(u, v)
. (4)

Such definition captures the behavior that κ(u, v) = 0 if the
random walkers have a tendency to remain at equal distance,
κ(u, v) < 0 if the random walkers diverge, and κ(u, v) > 0
if the random walkers converge.

On simple graphs, it is natural to consider the uniform ran-
dom walk m given by

mu(p) =

{
1

deg u if p ∼ u,
0 otherwise.

Hence, the Ollivier-Ricci curvature on graphs κ is defined
by Equation 4, where W1(mu,mv) is the optimal value of
the objective function in the linear optimization problem

minimize
∑
p∈Nu

∑
q∈Nv

d(p, q)π(p, q)

subject to
∑
p∈Nu

π(p, q) = 1
deg v , (5)

∑
q∈Nv

π(p, q) = 1
deg u .

3. Analysis Based on Graph Curvature
Since curvature is inherently a local notion, it makes sense
to restrict our attention to nodes of distance 1. Throughout
this section, unless otherwise stated, we assume u ∼ v ∈ V
are neighboring vertices with deg u = n, deg v = m, and
n ≥ m. We note from Equation 4 that the bound

−2 ≤ κ(u, v) ≤ 1

is always satisfied, and so a curvature value close to 1 is
considered very positive, while a value close to −2 is con-
sidered very negative.

To motivate our findings, we remark that the curvature
κ(u, v) characterizes how well-connected the neighbor-
hoods Ñ (u) and Ñ (v) are. Figure 3 illustrates how dif-
ferent local graph structures give rise to different graph
curvature. Red and blue are used to color the neighborhoods
Ñu\{v} and Ñv\{u}. The color violet is used to signal
shared vertices or edges connecting from one neighborhood
to the other. If the neighborhoods mostly coincide then the
transport cost is very low, leading to a positive curvature
value. In this case, messages can be transmitted freely and

Figure 3. Different edge curvatures give rise to different local
graph structures.

easily between both neighborhoods. In contrast, if the neigh-
borhoods only have minimal connections then the transport
cost is high, leading to a negative curvature value. Each
such connection will then act as a bottleneck, limiting the
effectiveness of the message-passing mechanism.

3.1. Positive Graph Curvature and Over-smoothing

We identify the key connection between positive graph cur-
vature and the occurrence of the over-smoothing issue.

Lemma 3.1. The following inequality holds

|Nu ∩Nv|
max(m,n)

≥ κ(u, v).

Lemma 3.1 says that the curvature κ(u, v) is a lower bound
for the proportion of shared neighbors between u and v.
A closer inspection of Equation (1) reveals a fundamental
characteristic of GNNs: at the k-th layer, every node p broad-
casts an identical message ψk(Xk

p ) to each vertex u in its
1-hop neighborhood. These messages are then aggregated
and used to update the features of u. If κ(u, v) is very posi-
tive then the neighborhoods Nu and Nv mostly coincides.
Hence, they incorporate roughly the same information, and
their variance diminishes. This gives us significant insight
into why over-smoothing happens, and is made precise by
the following theorem.

Theorem 3.2. Consider the update rule given by Equa-
tion (1). Suppose the edge curvature κ(u, v) > 0. For some
k, assume the update function ϕk is L-Lipschitz,

∣∣Xk
p

∣∣ ≤ C
for all p ∈ N (u) ∪ N (v), and the message function ψk
is bounded, i.e. |ψk(x)| ≤ M |x|,∀x. There exists a posi-
tive function h : (0, 1) → R+ dependent on the constants
L,M,C, n satisfying
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• if
⊕

is the sum operation then h is constant;

• if
⊕

is the mean operation then h is decreasing;

such that∣∣Xk+1
u −Xk+1

v

∣∣ ≤ (1− κ(u, v))h(κ(u, v)). (6)

In both cases, we clearly have

lim
x→1

(1− x)h(x) = 0. (7)

This result applies to a wide range of GNNs, including those
in Table 1 with the exception of GAT, due to the fact that
GAT employs the attention mechanism to create a learnable
weighted mean function as the aggregator. Nevertheless, if
the variance between attention weights are low, we expect
the general behavior to still hold true.

Theorem 3.2 conclusively shows that locally, very positively
curved edges force node features to become similar. If the
graph is very positively curved everywhere, or if it contains
multiple subgraphs with such characteristic, we can expect
the features of all nodes to converge to indistinguishable
representations. This is exactly the mixing behavior ob-
served by Li et al. (2018a), suggesting that the occurrence
of over-smoothing can be explained by an overly abundance
number of edges with positive graph curvature.

Any global analysis of the issue based on local observations
is hindered by the complexity in dealing with graph struc-
tures. Nevertheless, by restricting our attention to a more
manageable class of graphs - the class of regular graphs, we
obtain Proposition 3.3. This serves to illustrate how posi-
tive local graph curvature can affect the long term global
behavior of a typical GNN.

Proposition 3.3. Assume the graph is regular. Suppose
there exists a constant δ > 0 such that for all edges
(u, v) ∈ E , the curvature is bounded by κ(u, v) ≥ δ > 0.
Consider the update rule given by equation 1. For all
k ≥ 1, assume the functions ϕk are L-Lipschitz,

⊕
is re-

alised as the mean operation,
∣∣X0

p

∣∣ ≤ C for all p ∈ V ,
and the functions ψk are bounded linear operators, i.e.
|ψk(x)| ≤ M |x|,∀x. The following inequality holds for
k ≥ 1 and any neighboring vertices u ∼ v

∣∣Xk
u −Xk

v

∣∣ ≤ 2

3
C

(
3LM⌊(1− δ)n⌋

n+ 1

)k
. (8)

Furthermore, for any u, v ∈ V that are not necessarily
neighbors, the following inequality holds

∣∣Xk
u −Xk

v

∣∣ ≤ 2

3

⌊
2

δ

⌋
C

(
3LM⌊(1− δ)n⌋

n+ 1

)k
. (9)

(a) Violet edges connecting
Ñu\{v} and Ñv\{u} serve
as information pathways.

(b) Edges may exacerbate the
situation by creating new bot-
tlenecks.

Figure 4. Identifying connections that enable effective message-
passing at local neighborhoods.

The conclusion of Proposition 3.3 says that if every edge
curvature in a regular graph G is bounded from below by a
sufficiently high constant δ then the difference between the
features of any pair of neighboring nodes, or indeed, any
pair of nodes at all, exponentially converges to 0 in a typical
GNN. This leads to the over-smoothing issue formulated
in Equation (3) since for appropriate constants C1, C2 > 0,
we have ∑

(u,v)∈E

∣∣Xk
u −Xk

v

∣∣ ≤ C1e
−C2k.

In real world graphs, it is often the case that not all edges in
a graph are positively curved. Nevertheless, we expect an
abundance of edges with overly high curvature will either
cause or worsen the over-smoothing issue in GNNs.

3.2. Negative Graph Curvature and Over-squashing

In this section, we demonstrate the intimate connection
between negative graph curvature and the occurrence of
local bottlenecks, which in turn causes over-squashing.

Message-passing across local neighborhoods is facilitated
by connections of the form (p, q) with p ∈ Ñu\{v} and
q ∈ Ñv\{u}. As visualized by Figure 4a, such edges (col-
ored in violet) provide information pathways between Ñu

and Ñv. However, a large number of these edges concen-
trated on a relatively few vertices will create new bottle-
necks, instead of providing good message channels. Figure
4b illustrates this point, as there are way too many edges
connecting to the emphasized node but too little edges con-
necting between other neighbors. Since n ≥ m, there is a
natural squashing of information as messages are transmit-
ted from Nu to Nv of ratio n

m . We identify the edges that
provide good pathways as those that do not exacerbate this
ratio and restrict our attention to these edges.

We characterize the effect of edge curvature on graph bottle-
necks in the following proposition.

Proposition 3.4. Let Ẽ be union of the edge set E with
the set of all possible self-loops. Let S be the subset of Ẽ
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containing edges of the form (p, q) with p ∈ Ñu\{v} and
q ∈ Ñv\{u}. Supposing each vertex w is a vertex of at
most n

m edges in S. The following inequality holds

|S| ≤ n(κ(u, v) + 2)

2
. (10)

Recall that the curvature is deemed very negative if it is
close to −2. Proposition 3.4 shows that very negative edge
curvature values prohibit the number of information path-
ways from Ñu to Ñv, and very negatively curved edges
induce local bottlenecks. This in turn contributes to the
occurrence of the over-squashing issue as proposed by Alon
& Yahav (2021). We note that an adequate measure for the
over-squashing issue is currently lacking in the literature
(see Appendix B). Inspired by the influence distribution
introduced by Xu et al. (2018), the next theorem asserts
that negative edge curvature directly causes the decaying
importance of distant nodes in GNNs with non-linearity
removed. This demonstrates the effect of edge curvature on
the over-squashing issue.

Theorem 3.5. Consider the update rule given by Equa-
tion (1). Suppose ψk, ϕk are linear operators for all k, and⊕

is the sum operation. If u, v are neighboring vertices
with neighborhoods as in Proposition 3.4 and S is defined
similarly then for all p ∈ Ñu\{v}, q ∈ Ñv\{u}, we have[

∂Xk+2
u

∂Xk
q

]
= α

∑
w∈V

[
∂Xk+2

u

∂Xk
w

]
,[

∂Xk+2
v

∂Xk
p

]
= β

∑
w∈V

[
∂Xk+2

v

∂Xk
w

]
,

(11)

where
[
y
x

]
is used to denote the Jacobian of y with regard

to x, and α, β satisfy

α ≤ |S|+ 2∑
w∈Ñv

(deg(w) + 1)
,

β ≤ |S|+ 2∑
w∈Ñu

(deg(w) + 1)
.

(12)

To understand the meaning of Theorem 3.5, let us fix k =
0 and assume G is a regular graph with node degree n.
Equations (11) and (12), along with Proposition 3.4, say
that the contribution by the vertex q to the vertex u relative
to the contribution of all other vertices, measured by the
scaling term α in regard to the Jacobians, is bounded by

α ≤ n(κ(u, v) + 2) + 4

2(n+ 1)2
.

Hence, if κ(u, v) is very negative and n is large, we expect
that the messages from each node of Nv make up only

2
(n+1)2 of the total sum of information. They thus hardly

Algorithm 1 Batch Ollivier-Ricci Flow (BORF)

Input: graph G = (V, E), # rewiring batches n, # edges
added per batch h, # edges removed per batch k
for i = 1 to n do

Find h edges (u1, v1), . . . , (uh, vh) with minimal
Ollivier-Ricci curvature κ, along with each summand
πj(p, q)d(p, q) in their optimal transportation cost sum
for all p, q ∈ V and j = 1, h
Find k edges (u1, v1), . . . , (uk, vk) with maximal
Ollivier-Ricci curvature κ
for j = 1 to h do

Add to G the edge (p∗, q∗) given by

(p∗, q∗) = argmax d(p, q)πj(p, q)

end for
Remove edges (u1, v1), . . . , (uk, vk) from G

end for

have any effect on u, even when the distance between them
is only 2. An analogous result holds for the case when

⊕
is

the mean operation without much modification.

We have thus shown that negative curvature characterizes
graph bottlenecks. As such, GNNs that operate on graphs
with a large volume of negatively curved edges are expected
to suffer from over-squashing.

4. BORF: Batch Ollivier-Ricci Flow
Our theoretical results reveal the strikingly simple geometric
connection between the over-smoothing and over-squashing
issues: over-smoothing happens when there is a large pro-
portion of edges with very positive curvature, while over-
squashing occurs when there is a large proportion of edges
with very negative curvature. As a natural extension, we
propose the Batch Ollivier-Ricci Flow (BORF), a graph
rewiring algorithm capable of simultaneously mitigating
these issues by suppressing the over-smoothing and sup-
porting the over-squashing inducing graph edges (see Algo-
rithm 1).

For each of n batches, BORF first finds the h edges
(u1, v1), . . . , (uh, vh) with minimal curvature and k edges
(u1, v1), . . . , (uk, vk) with maximal curvature within the
graph. Then, it tries to uniformly alleviate graph bottlenecks
by adding connections to the set of h minimally curved
edges. To save on computation time, BORF does not re-
calculate the graph curvature within each batch. Instead,
for each edge with minimal curvature (uj , vj), it reuses the
already calculated optimal transport plan πj between muj

and mvj to decide which edge should be added. Recall that
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the formula for the optimal transport cost is

W1(muj
,mvj ) =

∑
(p,q)

πj(p, q)d(p, q).

Hence, to minimize the transport cost, it makes sense to
rewire the two nodes that contribute the most to this sum.
Specifically, we choose to add to G the edge (p∗, q∗) such
that

(p∗, q∗) = argmax d(p, q)πj(p, q).

If there are multiple candidates, we arbitrarily choose one.
Finally, BORF removes the k maximally curved edges
(u1, v1), . . . , (uk, vk) whose presence might prime the over-
smoothing behavior to occur.

With such design, BORF can effectively limit both ends of
the curvature spectrum, simultaneously suppressing over-
smoothing and supporting over-squashing inducing connec-
tions. Furthermore, depending on data characteristics, we
may change the behaviours of BORF to either be a net
edge add, net edge minus, or net zero rewiring algorithm.
Thereby, BORF permits fine-tuned and fluid adjustments of
the total number of edges and their curvature range.

Other rewiring algorithms. SDRF (Topping et al., 2022)
and FoSR (Karhadkar et al., 2023) are state-of-the-art
rewiring algorithms for GNNs, designed with the purpose
of alleviating the over-squashing issue. SDRF is based on
the edge metric Balanced Forman curvature (BFC), which
is actually a lower bound for the Ollivier-Ricci curvature.
At its core, SDRF iteratively finds the edge with the lowest
BFC, calculate the change in BFC for every possible edge
that can be added, then add the one edge that affects the
greatest change to the BFC of the aforementioned edge. On
the other hand, FoSR is based on the heuristics that the spec-
tral gap characterizes the connectivity of a graph. At each
step, it approximates which missing edge would maximally
improve the spectral gap and add that edge to the graph.

Comparision to SDRF. BORF shares some similarities to
SDRF, but with notable differences. Since SDRF is based
on BFC, it can only accurately enforce a lower bound on the
Ollivier-Ricci curvature. Furthermore, its design lacks the
capability to be used as a net edge minus rewiring algorithm.
As such, it is ill-equipped to deal with the over-smoothing
issue or to be used on denser graphs. Another difference
is BORF calculates the graph curvature very infrequently,
while SDRF has to constantly recalculate for each possible
new edge. Finally, by rewiring edges in batch, BORF affects
a uniform change across the graph. This helps to preserve
the graph topology and prevent the possibility that a small
outlier subgraph gets continually rewired, while other parts
of the graph do not see any geometrical improvement.

Comparision to FoSR. Unlike BORF and SDRF, FoSR
does not have the ability to remove edges. Hence, despite

over-smoothing and over-squashing being problems on the
two ends of the same spectrum, the algorithm is incapable of
addressing the first issue. It is also very challenging to pre-
dict where new edges will be added and what changes FoSR
would make to the graph topology. This might complicate
attempts by users to analyse the performance changes made
by the algorithm.

5. Experiments
In this section, we empirically verify the effectiveness of
BORF on a variety of tasks compared to other rewiring alter-
natives. We seek to demonstrate the potential of curvature-
based rewiring methods, and more generally, geometric-
aware techniques in improving the performance of GNNs.

Datasets. We conduct our experiments on a range of widely
used node classification and graph classification tasks. For
node classification, we report our results on the datasets
CORA, CITESEER (Yang et al., 2016), TEXAS, COR-
NELL, WISCONSIN (Pei et al., 2020) and CHAMELEON
(Rozemberczki et al., 2019). For graph classification, we val-
idate our method on the following benchmarks: ENZYMES,
IMDB, MUTAG and PROTEINS from the TUDataset (Mor-
ris et al., 2020). A summary of dataset statistics is available
in Appendix E.

Experiment details. We chose to compare BORF to no
graph rewiring and two other state-of-the-art rewiring meth-
ods: SDRF (Topping et al., 2022) and FoSR (Karhadkar
et al., 2023). We applied each method as a preprocessing
step to all graphs in the datasets considered, before feeding
the rewired graph data into a GNN to evaluate performance.
For baseline GNNs, we employed the popular graph archi-
tectures GCN (Kipf & Welling, 2017) and GIN (Xu et al.,
2019). For each task and baseline model, we used the same
settings of GNN and optimization hyper-parameters across
all rewiring methods to rule out hyper-parameter tuning as
a source of performance gain. The setting for each rewiring
option was obtained by tuning every hyper-parameter avail-
able for each method with the exception of the temperature
τ of SDRF, which we set to ∞. Each configuration is eval-
uated using the validation set. The test set accuracy of the
configuration with the best validation performance is then
recorded. For each experiment, we accumulate the result
across 100 random trials and report the mean test accuracy,
along with the 95% confidence interval. Further experiment
details are available in Appendix D.

Results. Table 2 and Table 3 summarize our experiment re-
sults for node classification and graph classification datasets,
respectively. BORF outperforms all other methods in every
node classification tasks on both GCN and GIN. It is worth
mentioning that the 95% confidence interval of BORF is
almost always smaller than other methods, indicating a con-
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Table 2. Classification accuracies of GCN and GIN with None, SDRF, FoSR, and BORF rewiring on various node classification datasets.
Best results are highlighted in bold.

GCN GIN

DATA SET NONE SDRF FOSR BORF NONE SDRF FOSR BORF

CORA 86.7± 0.3 86.3± 0.3 85.9± 0.3 87.5± 0.2 76.0± 0.6 74.9± 0.1 75.1± 0.8 78.4± 0.4
CITESEER 72.3± 0.3 72.6± 0.3 72.3± 0.3 73.8± 0.2 59.3± 0.9 60.3± 0.8 61.7± 0.7 63.1± 0.8
TEXAS 44.2± 1.5 43.9± 1.6 46.0± 1.6 49.4± 1.2 53.5± 3.1 50.3± 3.7 47.0± 3.7 63.1± 1.7
CORNELL 41.5± 1.8 42.2± 1.5 40.2± 1.6 50.8± 1.1 36.5± 2.2 40.0± 2.1 35.6± 2.4 48.6± 1.2
WISCONSIN 44.6± 1.4 46.2± 1.2 48.3± 1.3 50.3± 0.9 48.5± 2.2 48.8± 1.9 48.5± 2.1 54.9± 1.2
CHAMELEON 59.2± 0.6 59.4± 0.5 59.3± 0.6 61.5± 0.4 58.1± 2.1 58.4± 2.1 56.3± 2.2 65.3± 0.8

Table 3. Classification accuracies of GCN and GIN with None, SDRF, FoSR, and BORF rewiring on various graph classification datasets.
Best results are highlighted in bold.

GCN GIN

DATA SET NONE SDRF FOSR BORF NONE SDRF FOSR BORF

ENZYMES 25.5± 1.3 26.1± 1.1 27.4± 1.1 24.7± 1.0 31.3± 1.2 33.5± 1.3 25.3± 1.2 35.5± 1.2
IMDB 49.3± 1.0 49.1± 0.9 49.6± 0.8 50.1± 0.9 69.0± 1.3 68.6± 1.2 69.5± 1.1 71.3± 1.5
MUTAG 68.8± 2.1 70.5± 2.1 75.6± 1.7 75.8± 1.9 75.5± 2.9 77.3± 2.3 75.2± 3.0 80.8± 2.5
PROTEINS 70.6± 1.0 71.4± 0.8 72.3± 0.9 71.0± 0.8 69.7± 1.0 72.2± 0.9 74.2± 0.8 71.3± 1.0

sistent level of performance. This result agrees with what is
expected since SDRF and FoSR are not suited for dealing
with the over-smoothing issue, which heavily degrades the
model’s performance on node classification tasks. On graph
classification datasets, BORF achieves higher test accuracy
compared to other rewiring options in most settings.

6. Related Work
Over-smoothing: First recognised by Li et al. (2018a), who
observed that GCN with non-linearity removed induces a
smoothing effect on data features, over-smoothing has been
one of the focal considerations in the study of GNNs. A
dynamical system approach was used by Oono & Suzuki
(2020) to show that under considerable assumptions, even
GCN with ReLU can not escape this plight. Follow-up
work by Cai & Wang (2020) generalized and improved this
approach. Designing ways to alleviate or purposefully avoid
the problem is a lively research area (Luan et al., 2019; Zhao
& Akoglu, 2020; Rusch et al., 2022). Notably, randomly
removing edges from the base graph consistently improves
GNN performance (Rong et al., 2020).

Over-squashing: The inability of GNNs to effectively take
into account distant information has long been observed
(Xu et al., 2018). Alon & Yahav (2021) showed that this
phenomenon can be explained by the existence of local bot-
tlenecks in the graph structure. It was suggested by Topping
et al. (2022) that graph curvature provides an insightful way
to address the over-squashing problem. Methods have been
designed to tackle this problem, including those of Banerjee
et al. (2022) and Karhadkar et al. (2023).

Graph curvature: Efforts have been made to extend the
geometric notion of curvature to settings other than smooth
manifolds, including on graphs (Bakry & Émery, 1985;
Forman, 2003). Among these, the Ollivier’s Ricci curvature
(Ollivier, 2009) is arguably the superior attempt due to its
proven compatibility with the classical notion of curvature
in differential geometry (Lin et al., 2011; van der Hoorn
et al., 2020). Graph curvature has been utilised in the study
of complex networks (Ni et al., 2015; Sia et al., 2019), and
a number of works have experimented with its use in GNNs
(Topping et al., 2022; Bober et al., 2022).

7. Conclusion
In this paper, we established the novel correspondence
between the Ollivier-Ricci curvature on graphs with the
over-smoothing and over-squashing issues. In specific, we
showed that positive graph curvature is associated with over-
smoothing, while negative graph curvature is associated
with over-squashing. Based on our theoretical results, we
proposed Batch Ollivier-Ricci Flow, a novel curvature based
rewiring method that can effectively improve GNN per-
formance by tackling both the over-smoothing and over-
squashing problems at the same time. It is interesting to
note that by different definitions of the random walkmu, we
may be able to capture different behaviors of the local graph
structures using graph curvature. To lower computational
cost and speed up run time, we may also consider replacing
the optimal transport implementation of BORF by the sliced
optimal transport. We leave studying such modifications as
directions for future work.
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Supplement for “Revisiting Over-smoothing and Over-squashing using
Ollivier-Ricci Curvature”

In this supplementary material, we first present how Equation (1) accommodates different designs of GNNs in Appendix A.
Then, we discuss the lack of an appropriate measure for the over-squashing issue in Appendix B. Skipped proofs within the
main text are provided in Appendix C. We present our experiment settings in Appendix D and describe dataset statistics in
Appendix E. Finally, we provide our hardware specifications and list of libraries in Appendix F.

A. Message Passing Neural Networks
In its most general form, a typical layer of a message passing neural network is given by the following update rule (Bronstein
et al., 2021):

Hu = ϕ

(
Xu,

⊕
v∈Nu

Λ(Xu,Xv)

)
. (13)

Here, Λ ,
⊕

and ϕ are the message, aggregate and update functions. Different designs of MPNNs amount to different
choices for these functions. The additional input of Xu to ϕ represents an optional skip-connection.

In practice, we found that the skip connection of each vertex u is often implemented by considering a message passing
scheme where each node sends a message to itself. This can be thought of as adding self-loops to the graph, and its impact
has been studied by Xu et al. (2018) and Topping et al., (2022). Then, Λ could be realized as a learnable affine transformation
ψ of Xv , the aggregating function

⊕
could either be chosen as a sum, mean, weighted mean, or max operation, and ϕ is a

suitable activation function. Hence, we arrive at equation 1, which we restate below

Xk+1
u = ϕk

⊕
p∈Ñu

ψk(X
k
p )

 .

For example, graph convolutional network (GCN) (Kipf & Welling, 2017) defines its layer as

Hu = σ

∑
v∈Ñu

1

cuv
WXv

 ,

with cuv =
√
|Ñu||Ñv|. The mean aggregator variant (but not other variants) of GraphSAGE (Hamilton et al., 2017)

uses the same formulation but with cuv = |Ñu|. Both choices of cuv have the exact same spectral characteristics and act
identically in theory (Li et al., 2018a), which leads to an averaging behavior based on node degrees. Similarly, graph
attention networks (GAT) (Veličković et al., 2018) defines its single head layer as

Hu = σ

∑
v∈Ñu

auvWXv

 .

The difference here being auv is now a learnable function given by the attention mechanism (Vaswani et al., 2017). Finally,
graph isomorphis network (GIN) (Xu et al., 2019) is formulated by

Hu = MLP

(
(1 + ϵ)Xu +

∑
v∈Nu

Xv

)
,

where MLP is a multilayer perceptron. GIN achieves its best performance with the model GIN-0, in which ϵ is set to be 0.

We remark that most nonlinear activation functions such as ReLU, Leaky ReLU, Tanh, Sigmoid, softmax, etc., has a simple
and explicit Lipschitz-constant (which equals to 1 more often than not) (Scaman & Virmaux, 2018).
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B. Measuring Over-squashing
It is intuitive to think that if N vertices in Ñu contribute to the feature representation of some vertex u by the permutation
invariant update rule 1, we should expect each such vertex to provide 1

N of the total contribution. If this is repeated over and
over, such as in a tree, the exponentially decaying dependence of distant vertices is to be expected. However, quantifying
this phenomenon is actually quite difficult.

The first work to call attention to the over-squashing problem (Alon & Yahav, 2021) measures whether breaking the
bottleneck improves the results of long-range problems, instead of measuring the decaying importance itself. A definition
that took inspiration from the vanishing gradient problem was given by Topping et al. (2022), where it was suggested that
∂Xk

u

∂X0
v

can be used to evaluate the decreasing importance of distant vertex v to u. However, this definition only works in the
one dimensional case, and when

⊕
is a mean or similar aggregating operators with a natural decaying effect. Such approach

does not work if
⊕

is the sum or max operator simply because the derivative of such aggregator either equals 1 or does not
exist entirely. Clearly, it is the relative importance of a vertex compared to the contribution of all other vertices that is at the
heart of the matter.

To this end, we have found that the closest notion to our description actually predates the observation of the over-squashing
issue. Xu et al. (2018) introduced the notion of influence distribution to quantify the relative importance of vertices to each
other. It is defined as

Iu(v) =
sum

([
∂Xk

u

∂X0
v

])
∑
p∈V sum

([
∂Xk

u

∂X0
p

])
where the sum is taken over all entries of each Jacobian matrix. Unfortunately, this definition is quite unwieldy to use in any
sort of analysis. We would like to remark that the theoretical proofs in (Xu et al., 2018) are only partially correct. They have
made the mistake by claiming

E
(

X1∑n
i=1Xi

)
=

E(X1)∑n
i=1 E(Xi)

for i.i.d. random Bernoulli variables Xi.

C. Proofs
In this Appendix, we provide proofs for key results in the paper. We state without proof the following lemma, which can be
found in the work of Bourne et al. (2017).
Lemma C.1. Let µ1, µ2 be probability measures on a space V . Then there exists an optimal transport plan π transporting
µ1 to µ2 with the following property: For all x ∈ V with µ1(x) ≤ µ2(x), we have π(x, x) = µ1(x).

C.1. Proof of Lemma 3.1

Proof. Without loss of generality, assume n ≥ m. Let π be an optimal transport plan between mu and mv satisfying the
condition in Lemma C.1. That is, π(p, p) = 1

n for all p ∈ N (u) ∩N (v). We have

W1(mu,mv) =
∑
p∈Nu

∑
q∈Nv

π(p, q)d(p, q)

=
∑

(p,q)∈Nu×Nv

p ̸=q

π(p, q)d(p, q) +
∑

p∈N (u)∩N (v)

π(p, p)d(p, p).

It is obvious that d(p, p) = 0 for any vertex p and d(p, q) ≥ 1 for any vertices p ̸= q. We have

W1(mu,mv) ≥
∑

(p,q)∈Nu×Nv

p ̸=q

π(p, q) + 0

= 1−
∑

p∈Nu∩Nv

π(p, p)

= 1− |Nu ∩Nv|
n

.
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Hence, we have
|Nu ∩Nv|
max(m,n)

≥ 1−W1(mu,mv) = κ(u, v).

C.2. Proof of Theorem 3.2

As ϕk is L-Lipschitz, we have

∣∣Xk+1
u −Xk+1

v

∣∣ =
∣∣∣∣∣∣ϕk

⊕
p∈Ñu

ψk(X
k
p )

− ϕk

⊕
q∈Ñv

ψk(X
k
q )

∣∣∣∣∣∣
≤ L

∣∣∣∣∣∣
⊕
p∈Ñu

ψk(X
k
p )−

⊕
q∈Ñv

ψk(X
k
q )

∣∣∣∣∣∣ . (14)

Theorem 3.1 tells us that

|Ñv\Ñu| ≤ |Ñu\Ñv| = n+ 1− |Nu ∩Nv| − 2 ≤ n− nκ(u, v).

Hence, there are at most ⌊(1− κ(u, v))n⌋ vertices in the extended neighborhood of u that is not present in the extended
neighborhood of v and vice versa. The symmetric difference Ñu △ Ñv = (Ñu\Ñv) ∪ (Ñv\Ñu) satisfies |Ñu △ Ñv| ≤
2(1− κ(u, v))n.

• If
⊕

is realized as the sum operation, we obtain from equation (14)

∣∣Xk+1
u −Xk+1

v

∣∣ ≤ L

∣∣∣∣∣∣
∑

p∈Nu∪{u}

ψk(X
k
p )−

∑
q∈Nv∪{v}

ψk(X
k
q )

∣∣∣∣∣∣
= L

∣∣∣∣∣∣
∑

p∈Ñu\Ñv

ψk(X
k
p )−

∑
q∈Ñv\Ñu

ψk(X
k
q )

∣∣∣∣∣∣
≤ L

∑
p∈Ñu△Ñv

∣∣ψk(Xk
p )
∣∣

≤ (1− κ(u, v))2LCMn.

We can now set h ≡ 2LCMn.

• If
⊕

is realized as the mean operation, we obtain from equation (14)

∣∣Xk+1
u −Xk+1

v

∣∣ ≤ L

∣∣∣∣∣∣
∑
p∈Ñu

1

n+ 1
ψk(X

k
p )−

∑
q∈Ñv

1

m+ 1
ψk(X

k
q )

∣∣∣∣∣∣
≤ L

∑
p∈(Ñu∩Ñv)

(
1

m+ 1
− 1

n+ 1

) ∣∣ψk(Xk
p )
∣∣

+ L

∣∣∣∣∣∣
∑

p∈Ñu\Ñv

1

n+ 1
ψk(X

k
p )−

∑
q∈Ñv\Ñu

1

m+ 1
ψk(X

k
q )

∣∣∣∣∣∣ . (15)

We have n ≥ m = |Nv| ≥ |Nu ∩Nv| ≥ κ(u, v)n, and

1

m+ 1
− 1

n+ 1
≤ 1

m
− 1

n
≤ 1

κ(u, v)n
− 1

n
=

1− κ(u, v)

κ(u, v)n
.
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Therefore, equation (15) gives

∣∣Xk+1
u −Xk+1

v

∣∣ ≤ L
∑

p∈Ñu∩Ñv

1− κ(u, v)

κ(u, v)n

∣∣ψk(Xk
p )
∣∣+ L

∑
p∈Ñu△Ñv

1

κ(u, v)n+ 1

∣∣ψk(Xk
p )
∣∣

≤ L(n+ 1)
1− κ(u, v)

κ(u, v)n
CM + 2(1− κ(u, v))nL

1

κ(u, v)n+ 1
CM

≤ (1− κ(u, v))LCM

(
n+ 1

κ(u, v)n
+ 2

n

κ(u, v)n+ 1

)
.

We can now set h(x) = LCM(n+1
xn + 2 n

nx+1 ).

Clearly, the functions h as defined satisfy the conditions given in Theorem 3.2.

C.3. Proof of Proposition 3.3

We will use proof by induction. For all edges u ∼ v, repeating the argument in Theorem 3.2, we get |Ñu △ Ñv| ≤ 2(1−δ)n.
Then, the base case k = 1 follows since

|X1
u −X1

v | =

∣∣∣∣∣∣ϕ1
 1

n+ 1

∑
p∈Ñu

ψ(Xp)

− ϕ1

 1

n+ 1

∑
q∈Ñv

ψ(Xq)

∣∣∣∣∣∣
≤ L

∣∣∣∣∣∣ 1

n+ 1

∑
p∈Ñu

ψ(Xp)−
1

n+ 1

∑
q∈Ñv

ψ(Xq)

∣∣∣∣∣∣
=

L

n+ 1

∣∣∣∣∣∣
∑

p∈Ñu\Ñv

ψ(Xp)−
∑

q∈Ñv\Ñu

ψ(Xq)

∣∣∣∣∣∣
≤ L

n+ 1

∑
p∈Ñu△Ñv

|ψ(Xp)|

≤ 2⌊(1− δ)n⌋
n+ 1

LCM.

Suppose the statement is true for k and consider the case k + 1. We have for all u ∼ v:

∣∣Xk+1
u −Xk+1

v

∣∣ ≤ L
1

n+ 1

∣∣∣∣∣∣
∑
p∈Ñu

ψk(X
k
p )−

∑
q∈Ñv

ψk(X
k
q )

∣∣∣∣∣∣
= L

1

n+ 1

∣∣∣∣∣∣
∑

p∈Ñu\Ñv

ψk(X
k
p )−

∑
q∈Ñv\Ñu

ψk(X
k
q )

∣∣∣∣∣∣
≤ LM

1

n+ 1

∣∣∣∣∣∣
∑

p∈Ñu\Ñv

Xk
p −

∑
q∈Ñv\Ñu

Xk
q

∣∣∣∣∣∣ . (16)

For each p ∈ Ñu\Ñv , match it with one and only one q ∈ Ñu\Ñv . For any node pair (p, q), they are connected by the path

p ∼ u ∼ v ∼ q, where the difference in norm of features at layer k of each 1-hop connection is at most 2
3C
(

3M⌊(1−δ)n⌋
n+1

)k
.

Hence, we have

|Xk
p −Xk

q | ≤ 2C

(
3LM⌊(1− δ)n⌋

n+ 1

)k
.
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Substituting this into equation (16), and by noting that there are at most ⌊(1− δ)n⌋ pairs, we get

|Xk+1
u −Xk+1

v | ≤ LM
1

n+ 1

∑
(p,q)

∣∣Xk
p −Xk

q

∣∣
≤ LM

1

n+ 1
⌊(1− δ)n⌋2C

(
3LM⌊(1− δ)n⌋

n+ 1

)k
=

2

3
C

(
3LM⌊(1− δ)n⌋

n+ 1

)k+1

.

By induction, we have shown inequality (8) holds for all k ≥ 1 and u ∼ v.

It is known that if the curvatures of all edges in a graph are positive and bounded away from zero by δ > 0 then the diameter
of the graph does not exceed ⌊2/δ⌋ (Paeng, 2012). Hence, for any two nodes u, v ∈ V , the shortest path between them is
of length at most ⌊2/δ⌋. Apply the inequality (8) for each pair of neighboring nodes on this shortest path, we obtain the
inequality (9).

C.4. Proof of Proposition 3.4

Note that S consists of elements of the form (p, q) where either p = q or p ̸= q. The first type corresponds to mutual
neighbors of u, v, while the second type corresponds to neighbors of u, v that share an edge. Denote the number of edges
of the first type as n0 and the number of edges of the second type as n1. A transport plan π between mu and mv can be
obtained as followed.

• For every vertex p such that (p, p) ∈ S, the mass ofmu(p) =
1
n remains in place at p with cost π(p, p)×0 = 1

n×0 = 0

• For each edge (p, q) ∈ S with p ̸= q, transport the mass of 1
n from p to q with cost π(p, q) × 1 = 1

n × 1 = 1
n . The

assumption that each vertex w is a vertex of at most n
m edges ensures that the total mass transported to each vertex is

no greater than 1
m .

• The remaining mass is 1− n0
1
n − n1

1
n . Transport this amount arbitrarily to obtain a valid optimal transport plan.

This transport plan has cost∑
p∈Ñu

∑
q∈Ñv

π(p, q)d(p, q) ≤ n00 + n1
1

n
+

(
1− n0

1

n
− n1

1

n

)
3 = 3− 3n0

1

n
− 2n1

1

n
.

We have

κ(u, v) = 1−W1(mu,mv) ≥ 1−
(
3− 3n0

1

n
− 2n1

1

n

)
= −2 +

3n0 + 2n1
n

.

Therefore, we obtain

|S| = n0 + n1 ≤ n

2

3n0 + 2n1
n

≤ n
κ(u, v) + 2

2
.

We can observe from the proof that a stronger result holds: 3n0 + 2n1 ≤ n(κ(u, v) + 2).

C.5. Proof of Theorem 3.5

Since ϕk and ψk are linear operators for all k, their Jacobians Jϕk
, Jψk

are constant matrices. By inspection of Equation 1,
we see that a vertex w ∈ V can only transmit a message to u if there exists a vertex w′ such that w′ ∈ Ñu ∩ Ñw. Moreover,
the chain rule gives[

∂Xk+2
u

∂Xk
w

]
=

∑
w′∈Ñu∩Ñw

[
∂Xk+2

u

∂Xk+1
w′

][
∂Xk+1

w′

∂Xk
w

]
=

∑
w′∈Ñu∩Ñw

Jϕk+1
Jψk+1

Jϕk
Jψk

.

Therefore,
[
∂Xk+2

u

∂Xk
w

]
is the number of distinct paths (that might contain self-loops) from w to u times Jϕk+1

Jψk+1
Jϕk

Jψk
.
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Table 4. SDRF’s best hyper-parameters settings.

GCN GIN

DATASET # ITERATION C+ # REWIRED # ITERATION C+ # REWIRED

CORA 12 0 24 50 ∞ 50
CITESEER 175 ∞ 175 25 ∞ 25
TEXAS 87 0 174 37 0 74
CORNELL 100 0 200 25 0 50
WISCONSIN 25 0 50 150 ∞ 150
CHAMELEON 50 0 100 87 0 174

ENZYMES 15 0 30 5 0 10
IMDB 10 0 20 10 ∞ 10
MUTAG 20 ∞ 20 10 0 20
PROTEINS 5 0 10 15 0 30

Table 5. FoSR’s best iteration count settings.

DATASET GCN GIN

CORA 150 50
CITESEER 100 200
TEXAS 50 150
CORNELL 125 75
WISCONSIN 175 25
CHAMELEON 50 25

ENZYMES 40 5
IMDB 5 20
MUTAG 10 20
PROTEINS 30 10

The number of distinct paths without self-loops from q ∈ Ñv\{u} to u is not greater than |S| as defined in Proposition 3.4.
With self-loops, this rises to at most |S|+ 2, which corresponds to the case where q ∼ u.

On the other hand,
∑
w∈V

[
∂Xk+2

u

∂Xk
w

]
equals the number of distinct paths with self-loops with one end at u times

Jϕk+1
Jψk+1

Jϕk
Jψk

. Clearly, we have

∑
w∈V

[
∂Xk+2

u

∂Xk
w

]
=

 ∑
w∈Ñu

(deg(w) + 1)

 Jϕk+1
Jψk+1

Jϕk
Jψk

.

Let

α =
|S|+ 2∑

w∈Ñu
(deg(w) + 1)

,

then Proposition 3.4 gives us the required inequality. We can choose β by the same process.

D. Experiment Settings
D.1. Rewiring hyper-parameters

We report the best rewiring settings for every task and baseline GNN architecture. For SDRF, we set the temperature
τ = ∞ and only tuned the Ric upper bound C+ and iteration count. For FoSR, we tuned the iteration count. For BORF, we
tuned the number of batches n, number of edges added per batch h, and number of edges removed per batch k. The exact
hyper-parameters for SDRF, FoSR and BORF are available in Table 4, Table 5, and Table 6, respectively. We also report the
total amount of edges each method rewired, which equals the total number of added and removed connections for SDRF and
BORF. The number of edges rewired by FoSR is the same as the iteration count.
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Table 6. BORF’s best hyper-parameters settings.

GCN GIN

DATASET n h k # REWIRED n h k # REWIRED

CORA 3 20 10 90 3 20 30 150
CITESEER 3 20 10 90 3 10 20 90
TEXAS 3 30 10 120 1 20 10 30
CORNELL 2 20 30 100 3 10 20 90
WISCONSIN 2 30 20 100 2 50 30 160
CHAMELEON 3 20 20 120 3 30 30 180

ENZYMES 1 3 2 5 3 3 1 12
IMDB 1 3 0 3 1 4 2 6
MUTAG 1 20 3 23 1 3 1 4
PROTEINS 3 4 1 15 2 4 3 14

Table 7. Architecture settings for node and graph classification tasks.

TASK DROP-OUT PROBABILITY #GNN LAYERS HIDDEN DIMENSIONS FINAL ACTIVATION

NODE 0.5 3 128 RELU
GRAPH 0.5 4 64 RELU

D.2. Architecture and experiment settings

For graph and node classification, we utilized fixed model architectures with fixed numbers of GNN layers across all datasets.
We used 3 GNN layers for node classification and 4 for graph classification tasks. All the intermediate GNN layers (except
for the input and output layer) have the same number of input and output dimensions specified by the hidden dimensions. At
the end of all the GNN layers, we also added a drop-out layer with a fix drop-out probability and a final activation layer. The
specific hidden dimensions, drop-out probabilities and final activation layers for both node and graph classification tasks are
specified in the architecture settings in Table 8.

For each graph and node classification experiment, we randomly split the dataset into train, validation and test sets 100
times corresponding to 100 trials. For each trial, the GNN model is trained on the train set using the Adam optimizer and
validated using the validation set. The test accuracy corresponding to the best accuracy on the validation set is recorded as
the test accuracy of the current trial. After all 100 trials are finished, the mean test accuracy and the 95% confidence interval
across all trials are computed and recorded in Tables 2 and 3. We also implemented a callback that stops the training process
upon no improvement on the validation accuracy for 100 epochs. The train and validation fractions used to split the dataset
is specified in Table 7.

Table 8. Experiment settings for node and graph classification tasks (Note: The train fraction is with respect to the entire dataset while the
validation fraction is with respect to the train set).

TASK LEARNING RATE #TRIALS/RUN STOP PATIENCE TRAIN FRACTION VALIDATION FRACTION

NODE 0.001 100 100 0.6 0.2
GRAPH 0.001 100 100 0.8 0.1

E. Dataset Statistics
We provide a summary of statistics of all datasets used in Table 9 and Table 10. We also report the mean and standard
deviation of the Ollivier Ricci curvature for each dataset. On node classification tasks, this is exactly the statistics of the set
of edge curvature values. On graph classification tasks, this is the statistics of the mean curvature value of all graphs within
the dataset.
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Table 9. Statistics of node classification datasets.

CORNELL TEXAS WISCONSIN CORA CITESEER CHAMELEON

#NODES 140 135 184 2485 2120 832
#EDGES 219 251 362 5069 3679 12355
#FEATURES 1703 1703 1703 1433 3703 2323
#CLASSES 5 5 5 7 6 5
DIRECTED TRUE TRUE TRUE FALSE FALSE TRUE
ORC MEAN -0.39 -0.24 -0.59 -0.19 -0.31 0.64
ORC STD 0.52 0.45 0.71 0.68 0.78 0.58

Table 10. Statistics of graph classification datasets.

ENZYMES IMDB MUTAG PROTEINS

#GRAPHS 600 1000 188 1113
#NODES 2-126 12-136 10 - 28 4-620
#EDGES 2 - 298 52 - 2498 20 - 66 10 - 2098
AVG #NODES 32.63 19.77 17.93 39.06
AVG #EDGES 124.27 193.062 39.58 145.63
#CLASSES 6 2 2 2
DIRECTED FALSE FALSE FALSE FALSE
ORC MEAN 0.13 0.58 -0.27 0.17
ORC STD 0.15 0.19 0.05 0.20

Table 11. Server specifications for conducting all experiments.

SERVER ID COMPONENTS SPECIFICATIONS

1

ARCHITECTURE X86 64
OS UBUNTU 20.04.5 LTS X8664
CPU INTEL I7-10700KF (16) @ 5.100GHZ
GPU NVIDIA GEFORCE RTX 2080 TI REV. A
RAM 12GB

2

ARCHITECTURE X86 64
OS UBUNTU 20.04.5 LTS X8664
CPU AMD EPYC 7742 64-CORE
GPU NVIDIA A100 TENSOR CORE
RAM 40GB

F. Hardware Specifications and Libraries
All experiments were implemented in Python using PyTorch, Numpy, PyG (PyTorch Geometric), POT (Python Optimal
Transport) with figures created using TikZ. PyTorch, PyG and NumPy are made available under the BSD license, POT under
MIT license, and TikZ under the GNU General Public license.

We conducted our experiments on two local servers with the specifications laid out in Table 11.


