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Abstract

We propose the Kuramoto Graph Neu-
ral Network (KuramotoGNN), a novel class
of continuous-depth graph neural networks
(GNNs) that employs the Kuramoto model
to mitigate the over-smoothing phenomenon,
in which node features in GNNs become in-
distinguishable as the number of layers in-
creases. The Kuramoto model captures the
synchronization behavior of non-linear cou-
pled oscillators. Under the view of cou-
pled oscillators, we first show the connec-
tion between Kuramoto model and basic
GNN and then over-smoothing phenomenon
in GNNs can be interpreted as phase syn-
chronization in Kuramoto model. The Ku-
ramotoGNN replaces this phase synchroniza-
tion with frequency synchronization to pre-
vent the node features from converging into
each other while allowing the system to reach
a stable synchronized state. We experimen-
tally verify the advantages of the Kuramo-
toGNN over the baseline GNNs and existing
methods in reducing over-smoothing on var-
ious graph deep learning benchmark tasks.

1 INTRODUCTION

Graph neural networks (GNNs) have been widely
adopted in applications such as computational chem-
istry, social networks, and drug discovery due to their
ability to capture complex relationships between nodes
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and edges in a graph (Gilmer et al., 2017; Fan et al.,
2019; Xiong et al., 2019). GNNs use multiple graph
propagation layers to iteratively update each node’s
representation by aggregating the representations of
its neighbors and the node itself. However, a sig-
nificant limitation of GNNs is the over-smoothing
problem, which occurs when the GNN repeatedly ag-
gregates information from neighboring nodes. This
can cause the representations of nodes from different
classes to become indistinguishable, leading to reduced
model performance (Oono and Suzuki, 2019; Nt and
Maehara, 2019).

To address the over-smoothing problem and improve
our theoretical understanding of GNNs, recent re-
search has considered GNNs as a discretization scheme
of dynamical systems. In this framework, each prop-
agation layer in GNNs is a discrete step of a differen-
tial equation (Chamberlain et al., 2021; Thorpe et al.,
2021; Rusch et al., 2022; Xhonneux et al., 2020; Oono
and Suzuki, 2019). This class of models is often re-
ferred to as continuous-depth models, and they are
more memory-efficient and can effectively capture the
dynamics of hidden layers (Chen et al., 2018).

In this paper, we propose a new physically-inspired
framework for understanding GNNs and solving the
over-smoothing by using the Kuramoto model (Ku-
ramoto, 1975). The Kuramoto model describes the
dynamical behavior of nonlinear coupled oscillators
and provides a useful proxy for explaining the over-
smoothing problem in GNNs. Specifically, we demon-
strate that the over-smoothing problem in GNNs is
analogous to phase synchronization in coupled oscilla-
tors, where all oscillators in the network rotate spon-
taneously with a common frequency and phase. Build-
ing on this insight, we propose a new training scheme,
called KuramotoGNN, that encourages the model to
learn representations that balance between the need
to aggregate information from neighboring nodes and
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the risk of over-smoothing. Our experiments on stan-
dard benchmark datasets demonstrate that Kuramo-
toGNN outperforms several baseline models, including
popular GNN variants, on node classification tasks.
Overall, our work provides a promising direction for
addressing the over-smoothing problem in GNNs and
opens up new avenues for exploring the connection be-
tween GNNs and dynamical systems.

The rest of the paper is organized as follows. Sec-
tion 2 provides an overview of related work on GNNs.
Section 3 provides the background of the continuous-
depth GNNs model and Kuramoto model. Section 4
presents our proposed framework KuramotoGNN, to-
gether with the similarities to other continuous-depth
GNN models and the over-smoothing phenomenon.
Section 5 presents our experimental results, and we
conclude the paper in Section 6 with a discussion of
the implications of our framework and directions for
future research.

2 RELATED WORKS

Neural ODEs. Neural ODEs (NODE) are a class of
continuous-depth models for neural networks based on
Ordinary Differential Equations. The idea of NODE
was first proposed in Chen et al. (2018), and builds
on previous studies exploring the relationship between
deep learning and differential equations (Haber and
Ruthotto, 2017). Mathematically, NODE is repre-
sented as the following first-order ODE:

dz(t)

dt
= f(z(t), t, θ) (1)

where f(z(t), t, θ) is specified by a neural network and
θ is its weights. Using numerical methods, such as the
Euler discretization with a step size of 1, (1) can be
discretized into a vanilla residual network (He et al.,
2016). The NODE architecture has several advantages
in the training process, including the use of the adjoint
method Pontryagin et al. (2018) for back-propagation,
which is more memory-efficient than saving all states
of intermediate layers.

Since the proposal of NODE, numerous works have
explored the use of ODEs in deep learning for im-
age classification and time-series prediction, such as
Neural CDE (Kidger et al., 2020), Neural SDE (Liu
et al., 2019), and augmented NODE (Dupont et al.,
2019). Despite the advantages of NODEs, there are
also some limitations and challenges associated with
their use. For example, it can be difficult to deter-
mine the appropriate discretization method for a given
problem. Nonetheless, NODEs have demonstrated sig-
nificant promise as a class of continuous-depth models
for neural networks.

GNNs. Graph Neural Networks (GNNs) (Kipf and
Welling, 2016; Velickovic et al., 2017; Hamilton et al.,
2017) are a class of models that can effectively learn
graph representations. Generally, GNNs have multiple
propagation layers, where in each layer, the represen-
tation of each node is updated according to represen-
tation features of neighboring nodes, called messages.
Each type of model has a different type of message ag-
gregation function. However, it has been shown that
GNNs are prone to over-smoothing (Oono and Suzuki,
2019; Nt and Maehara, 2019), which occurs when node
representations converge to the same values. In partic-
ular, it has been shown analytically that deeper GNNs
exponentially lose expressive power as the number of
layers goes to infinity, and nodes of equal degree in the
same connected component will have the same repre-
sentation Oono and Suzuki (2019).

Several approaches have been proposed to address this
over-smoothing problem. An early solution is concate-
nation, which is effective, but does not easily scale
to very deep networks, due to the size of latent fea-
tures increasing with the number of layers. Another
approach is residual mapping, as used in GCNII (Chen
et al., 2020), which maintains good performance up to
64 layers of GNNs. However, in GCNII, a new pa-
rameter, called the scale parameter, is introduced to
control the level of smoothing, increasing the complex-
ity of the model and making it more difficult to train
and optimize.

Recently, inspired by the Neural ODEs (Chen et al.,
2018), works have turned conventional GNNs into
continuous-depth models to solve the over-smoothing
problem. For example, Thorpe et al. (2021); Xhon-
neux et al. (2020) added source terms to the linear
ODE to change the convergence point of the equa-
tion, Chamberlain et al. (2021) used heat diffusion-
type Partial Differential Equations (PDEs) to design
GNNs and, to some extent, slowed the over-smoothing
process, and Rusch et al. (2022) modeled GNNs as
second-order oscillator PDEs with damping terms to
analyze the dynamic behavior of the model to avoid
over-smoothing.

The work presented in Rusch et al. (2022) (Graph-
CON) is closest to ours. Both KuramotoGNN and
GraphCON share a common objective: addressing the
oversmoothing problem inherent in GNNs, while draw-
ing inspiration from coupled oscillators. On the one
hand, our work, KuramotoGNN, contributes by es-
tablishing a formal connection between oversmoothing
and phase synchronization through theoretical analy-
sis. On the other hand, GraphCON’s theoretical foun-
dations predominantly revolve around second-order
dynamics of coupled oscillators. This framework effec-
tively addresses the oversmoothing by preventing its
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occurrence under suitable parameter settings. How-
ever, GraphCON does not explicitly explore the the-
oretical linkage between oversmoothing and synchro-
nization, and the model’s behavior beyond the over-
smoothing context needs further investigation. For in-
stance, whether GraphCON is stable or not in the Lya-
punov sense remains a question that requires deeper
exploration. Note that although the Kuramoto model
is first-order, it can also be extended to second-order
ODE equations. In that case, KuramotoGNN and
GraphCON are quite similar in the form of equations.

Synchronization. Synchronization is a phenomenon
observed in complex networks across many fields, in-
cluding biology, chemistry, physics, and social systems.
One classic example is the synchronous flashing of fire-
flies, where initially the fireflies flash randomly, but
after a short period of time, the entire swarm starts
flashing in unison. Coupled oscillator networks are
commonly used to study the dynamics of synchroniza-
tion in networks, where a population of oscillators is
connected by a graph that describes the interactions
between the oscillators. The oscillator is a simple yet
powerful concept that captures a rich dynamic behav-
ior (Dörfler and Bullo, 2014).

The Kuramoto model has been applied across a wide
range of disciplines, including biology, neuroscience,
engineering, and even in data processing. For exam-
ple, the Kuramoto model has been used to study brain
networks (Varela et al., 2001), laser arrays (Kozyreff
et al., 2000), power grids (Motter et al., 2013), wireless
sensor networks (Tanaka et al., 2009), consensus prob-
lems (Olfati-Saber et al., 2007), and data clustering as
a method of unsupervised machine learning (Miyano
and Tsutsui, 2007, 2008). For further references, we re-
fer to Strogatz (2000) which provides a comprehensive
introduction to synchronization phenomena and their
applications, while the review by Dörfler and Bullo
(2014); Acebrón et al. (2005) focus on the dynamics of
complex networks and synchronization.

Interestingly, there is a connection between syn-
chronization and the over-smoothing phenomenon in
GNNs. Both involve a collective behavior of the nodes
in the network, where nodes become more similar to
each other over time. By leveraging the insights from
the study of synchronization, we can potentially gain a
deeper understanding of the over-smoothing problem
in GNNs and develop new solutions to address this
issue.

3 BACKGROUND

3.1 Graph Neural Diffusion (GRAND)

Graph Neural Diffusion (GRAND) is an architecture
for graphs that uses the diffusion process (Chamber-
lain et al., 2021). A graph is defined as G = (V,E),
where V ∈ Rn×f represents the n vertices, each with
f features, and E := Eij is an n×n matrix that repre-
sents the edge weights between the nodes. The model
is governed by the following Cauchy problem (we pro-
vide detail explanation for equation (2) in SM).

dX(t)

dt
= div(G(X(t), t) ⊙∇X(t)) (2)

X(0) = ψ(V) (3)

where d is the size of encoded input features, ψ :
Rn×f → Rn×d is an affine map that represents the
encoder function to the input node features, X(t) =

[
(
x1(t)

)⊤
, . . . ,

(
xn(t)

)⊤
]⊤ ∈ Rn×d is the node function

matrix, ⊙ is the point-wise multiplication, and div is
the divergence operator.

In the simplest case, when G is only dependent on the
initial value, X(0), then the equation becomes:

dX(t)

dt
= (Â− I)X(t) (4)

where Â is an n× n matrix, and it is right-stochastic
(i.e., each row of Â ⊙ E summing to 1) which is
related to attention weight. In the GRAND model
(Chamberlain et al., 2021), to formulate the matrix

Â, they used the multi-head self-attention mechanism
(Vaswani et al., 2017). The scaled-dot product atten-
tion is given by

Al(Xi(0),Xj(0)) = softmax

(
(WKXi(0))⊤WQXj(0)

dk

)
(5)

where dk is a hyper-parameter, and WK , WQ ∈
Rdk×d are the learnable parameters. Then,
Âij = 1

h

∑h
l=1 A

l(Xi(0),Xj(0)) with h is the hyper-
parameter for the number of heads.

Models derived from (4) have been shown to ex-
tend to a depth larger than conventional GNNs while
still maintaining acceptable performance (Chamber-
lain et al., 2021). However, in Section 4, we argue that
even with this type of model, over-smoothing cannot
be completely eliminated.

3.2 The Kuramoto model

In the study of interacting limit-cycle oscillators,
weakly coupled systems have been found to exhibit
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dynamical behavior that depends only on the phases
of the oscillators, as demonstrated by Winfree (1967).
Such models are called phase-reduced models. One of
the most well-known phase-reduced models is the Ku-
ramoto model, which describes the dynamics of a net-
work of N phase oscillators θi, with natural frequencies
ωi and coupling strength κij , using the following phase
equation:

θ̇i = ωi +
∑
j

κij sin(θj − θi) (6)

Each oscillator, i, is characterized by intrinsic and ex-
trinsic factors (Acebrón et al., 2005). The internal
influence is the natural frequency of the oscillator, ωi,
while the external influences are the interactions with
other oscillators in the network through the weight (or
coupling) matrix, κ ∈ Rn×n. From (6), the synchro-
nization behavior has been further analyzed using the
mean field coupling, that is, κij = K/N , where K is
a constant and N is the number of nodes in the graph
(Kuramoto, 1975). Hence, (6) becomes:

θ̇i = ωi +
K

N

∑
j

sin(θj − θi) (7)

Equation (7) is the well-known Kuramoto model. The
Kuramoto model has two types of states: a nonsyn-
chronized state, in which each oscillator rotates inde-
pendently with its own frequency, and a partially syn-
chronized state, in which some of the oscillators rotate
with the same effective frequency. It has been found
that strengthening the couplings provides a synchro-
nization transition from the nonsynchronized state to
the partially synchronized state and that the continu-
ity of the transition is determined by the natural fre-
quency distribution (Kuramoto, 1975). Specifically, if
the distribution of natural frequencies ωi is unimodal
and symmetric, then synchronization occurs in equa-
tion (7) if the coupling parameter K exceeds a certain
threshold Kcritical determined by the distribution of
ωi.

To investigate synchronization behavior or measure
synchronization rate, the author in Kuramoto (1975)
introduced a complex-valued term called the order pa-
rameter :

reiϕ =
1

N

∑
j

eiθj (8)

where ϕ is defined as the average phase. r(t) is a real
value in the range of 0 ≤ r(t) ≤ 1, where r(t) ≈ 1
indicates that the phases are close together or that the

synchronization rate is high, while a value of r(t) ≈ 0
indicates that the phases are spread out over the circle.

4 KURAMOTO GRAPH NEURAL
NETWORK

4.1 Model Formulation

In this work, we consider the generalized form of the
Kuramoto model:

θ̇i = ωi +
K∑
j aij

∑
j

aij sin(θj − θi) (9)

By adapting the setting of initial value and the right-
stochastic matrix Â = [aij ] which has been stated in
3.1, we now can present the KuramotoGNN, a class
of continuous-depth GNNs based on the Kuramoto
model (9):

ẋi = ωi +K
∑
j

aij sin(xj − xi) (10)

X(0) = Ω = ψ(V) (11)

with natural frequencies ωi ∈ Rd, Ω = [ω⊤
1 , . . . , ω

⊤
n ]⊤,

ith node vector representations xi(t) ∈ Rd, and sin
function operates in a component-wise manner. Unlike
many previous works related to the Kuramoto model,
in which they try to find the threshold Kcritical to
control the dynamics of the system, we approach the
problem in a data-driven way. We fix K as a hyper-
parameter and optimize Ω, X(0), and Â through the
training process. We adopt the setting of GRAND,
where aij serves as learnable parameters but depends
solely on the initial value X(0), as shown in equation
(5).

Proposition 4.1. Graph Neural Diffusion (4) is the
linearized dynamics of the Kuramoto model.

Proof. Assuming that ωi are identical, in which ω1 =
... = ωN , we obtain the following equation by using
the rotating frame of reference:

ẋi = K
∑
j

aij sin(xj − xi) (12)

Next, we assume that K = 1 and roughly approximate
the nonlinear sin function by using the first order of
the Taylor expansion, then we can obtain the following
equation which is identical to Graph Neural Diffusion
(GRAND) (4):

ẋi =
∑
j

aij(xj − xi) (13)
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Hence, GRAND (4) is the linearized dynamics of the
Kuramoto model.

Remark 4.2. In GRAND, if Â in equation (4) de-
pends only on the initial value (xi(0),xj(0)), then we
have a linear version of GRAND named GRAND-
l. Meanwhile, if Â is time dependent and depends on
(xi(t),xj(t)), we obtain the non-linear GRAND called
GRAND-nl. On the contrary, the KuramotoGNN
model, in general, is nonlinear even in the case that
we consider aij to depend solely on initial value or to
depend on time-dependent values.

On the exploding and vanishing gradients. In
the case of highly deep GNN architectures, it is crucial
to explore potential approaches to alleviate the issues
of exploding and vanishing gradients. For simplicity
and without any loss of generality, we consider the case
of the fully-connected graph and scalar node features
by setting d = 1, or xti = xi,1(t), and explicitly reduce
the KuramotoGNN to the Euler discretization form
with a step-size ∆t≪ 1,

xti = xt−1
i + ∆t

(
x0i +

1

n

∑
sin(xt−1

j − xt−1
i )

)
(14)

X(0) = [x01, . . . , x
0
n]⊤ = ψ(V) = VW (15)

Where W is the learnable parameters, M is the num-
ber of ODE integrations or number of model’s layers,
t = 1, . . . ,M . Furthermore, let us consider a scenario
where the objective of the GNN is to approximate the
ground truth vector X̂ ∈ Rn with the following loss
function.

J(W ) =
1

2n

N∑
i=1

∥xni − x̂i∥2 (16)

At every step of gradient descent, we need to com-
pute the gradient ∂J

∂W which measures the contribu-
tion made by parameters W. Using the chain rule, we
obtain the following.

∂J

∂W
=

∂J

∂ZL

∂ZL

∂Z1

∂Z1

∂Z0

∂Z0

∂W
(17)

∂ZL

∂Z1
=

L∏
i=1

∂Zi

∂Zi−1
(18)

Here, ZL = [xL1 , . . . , x
L
n ] and L is represented as the

number of layers. Assuming an approximate relation-

ship ∂Zi

∂Zi−1 ≈ λ, the repeated multiplication in equa-

tion (18) implies that ∂ZL

∂Z1 ≈ λL. When λ > 1, the
total gradient (17) can grow exponentially with the
number of layers, leading to the problem of exploding
gradients. In contrast, when λ < 1, the total gradi-
ent (17) can decay exponentially with the number of
layers, resulting in the problem of vanishing gradients.
These scenarios can hinder successful training as the

gradient either becomes excessively large or remains
stagnant, impeding effective parameter updates.

Proposition 4.3. We assume that ∆t ≪ 1 is cho-
sen to be sufficiently small. Then, the gradient of the
loss function (16) with respect to any learnable weight
parameter W is bounded as:

∥ ∂J
∂W

∥∞ ≤ 1

n

[
α(max |x0i | + 1) + max |x̂i|

]
(β + α)β∥V∥∞

(19)

α = M∆t, β = 1 +
∆t

n
(20)

Where ∥x∥∞ := maxi |xi| is the infinity norm.The up-
per bound presented in equation (19) demonstrates
that the total gradient remains globally bounded, re-
gardless of the number of layers M , effectively address-
ing the issue of exploding gradients. However, it is
important to note that this upper bound does not au-
tomatically eliminate the possibility of vanishing gra-
dients. To further investigate this matter, we follow
Rusch et al. (2022) to derive the following proposition
for the gradients (proof provided in the SM).

Proposition 4.4. We assume that ∆t≪ 1 is chosen
to be sufficiently small. Then, the gradient of the loss
function (16) can be represented as:

∂J

∂W
=

∂J

∂ZM

[
∆t(E′ +

M∑
i

Ei−1) + I + O(∆t2)

]
W

(21)
with ∂J

∂ZM = 1
n [xM1 − x̂1, . . . , x

M
n − x̂n] and the order

notation, E, E′, and ∂J
∂ZM are defined in SM.

Thus, although the gradient (21) can be small, it will
not vanish exponentially by increasing the number of
layers M , mitigating the vanishing gradient problem.

On the stability. In the Kuramoto model, the stabil-
ity of the synchronized state if the relative frequency
differences converge as t→ ∞, and hence if ẋi in (10)
satisfy the following condition, we can say that the
model is stable.

lim
t→∞

∥ẋi − ẋj∥ = 0, ∀i, j ∈ V (22)

In numerical simulations, it has been observed that
the frequency synchronization of Kuramoto oscilla-
tors tend to zero, regardless of initial configuration
of xi(0). One notable advantage of utilizing the Ku-
ramoto model in our study is the extensive availability
of previous research papers, which contribute to a rich
repository of results, theorems, and analyses. The fol-
lowing theorem help us to understand the stability of
(10) concretely.

Theorem 4.5. (Ha et al., 2016) Suppose that the ini-
tial configuration X(0) and natural frequencies Ω sat-



KuramotoGNN: Reducing Over-smoothing via a Kuramoto Model-based Approach

isfy

r0 > 0, xi(0) ̸= xj(0) ∀i, j ∈ V, max ∥Ω∥ <∞ (23)

Then there exists a large coupling strength K∞ > 0
such that if K > K∞ then there exists the stable state
(22) which is the solution of (10) with initial data
X(0).

Remark 4.6. In this stability section, we also con-
sider the case of the scalar node feature for simplicity.

Remark 4.7. r0 is the order parameter (8) of the ini-
tial configuration X0, r0 = |r| = 1

N

∑
j e

ixj(0). The-
orem 4.5 covers all initial configurations, except that
with r0 = 0 or when all the initial oscillators are dis-
tributed uniformly around the circle.

4.2 Over-smoothing as synchronization

Definition 4.8. The over-smoothing phenomenon oc-
curs when the following condition converges exponen-
tially to zero:

lim
t→T

∥xi(t) − xj(t)∥ = 0,∀i ̸= j. (24)

With T is the terminal time of the ODE. In conven-
tional GNN architectures, over-smoothing has been
a widely observed and analyzed phenomenon (Oono
and Suzuki, 2019; Nt and Maehara, 2019). The pre-
vious reference showed that over-smoothing is a phe-
nomenon in which the node representations converge
to a fixed state exponentially and, in that fixed state,
the node representations are indistinguishable. We no-
tice a strong resemblance between over-smoothing and
phase synchronization in coupled oscillator dynamics.

In general, oscillator synchronization occurs when they
reach the frequency synchronization state. In other
words, when the frequencies of the coupled oscilla-
tors converge to some common frequency, ∥ẋi− ẋj∥ =
0,∀i, j = 1, . . . , N , despite differences in the natu-
ral frequencies of the individual oscillators. If, in
addition to frequency synchronization, the oscillator
representations xi(t) converge to a common value,
∥xi(t) − xj(t)∥ = 0, it is called phase synchronization.

Remark 4.9. The definition of the frequency synchro-
nization state aligns precisely with equation (22).

Proposition 4.10. Over-smoothing is the phase syn-
chronization state of the node features. Under the
analysis of synchronization, conventional Graph Neu-
ral Diffusion is easily drawn into the over-smoothing
phenomenon.

Proof. We first show that the phase synchronization
state is an exponentially stable solution of identical
Kuramoto oscillators (12), then with the Definition

4.8 we can indicate that the over-smoothing state is
exactly the same as the phase synchronization state.
For simplicity, here we consider the scalar node fea-
ture, d = 1, and denote xi = xi,1.

Let us say that if a solution of (12) achieves phase
synchronization, then it does so with a value equal
to xsync(t), that is, x1(t) = x2(t) = · · · = xN (t) =
xsync(t). By transformation into a rotating frame
with frequency xsync, we can obtain x1(t) = x2(t) =
· · · = xN (t) = 0 or X = 0 if we consider X =
[x⊤1 (t), . . . , x⊤N (t)].

We consider the following energy function U :

U(X) =
∑
i,j∈E

aij(1 − cos(xi − xj)) (25)

Because ∂U
∂xi

=
∑

j aij sin(xi − xj), we can represent

∇U(X) = [ ∂U
∂x1

, ..., ∂U
∂xn

] as follows:

∇U(X) = −Ẋ⊤

K
(26)

Which leads to the time derivative of U :

U̇ = ∇U(X)Ẋ = − 1

K
Ẋ⊤Ẋ ≤ 0 (27)

Using the LaSalle Invariance Principle (Khalil, 2002,
Theorem 4.4), which is akin to the Lyapunov method,
we can analyze the behavior of all solutions of an au-
tonomous ODE as t → ∞. The principle gives condi-
tions that describe the behavior of the system rather
than focusing on the stability of a particular equilib-
rium solution as in the Lyapunov method. Specifically,
if a positive and non-increasing scalar-valued function
U : Rn → R (also known as a Lyapunov or energy
function) satisfies U̇(x) ≤ 0 for all x, then every solu-
tion converges exponentially to a set of critical points
{x|U̇(x) = 0}.

Therefore, following LaSalle Invariance Principle, ev-
ery solution of (12) converges exponentially to a set of
critical points that are the root of the right-hand side
of (12). Looking at (12), it is easily confirmed that
the phase synchronization state, xi = xj ,∀i ̸= j, is
a solution of the equation. Furthermore, it has been
shown that the phase synchronization state is the only
global attractor, and the synchronization time scales
with the inverse of the smallest non-zero eigenvalue of
the Laplacian matrix (Arenas et al., 2008). Therefore,
the phase synchronization state is the only exponen-
tially stable state of equation (12). And now, together
with the Definition 4.8, we can clearly see that over-
smoothing is the phase synchronization state of the
node features.

We have demonstrated the equivalence between over-
smoothing and phase synchronization. We have also
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shown that in the scenario of a single channel of node
representations and identical oscillators (as in equation
(12)), phase synchronization occurs exponentially. For
multichannel or when d > 1, the same conclusion can
be derived in a similar way for each channel. And
thus, along with Proposition 4.1 we can say that under
the analysis of synchronization, conventional Graph
Neural Diffusion (13) is likely encountered with the
over-smoothing phenomena.

We next present a theorem that offers an easy way
to reduce the over-smoothing phenomenon by intro-
ducing non-identical natural frequencies ωi into the
equation.

Theorem 4.11. Let xi(.), i = 1, . . . , N be a solution
of (10). If there exists i, j ∈ 1, . . . , N such that ωi ̸=
ωj, then (24) does not happen.

We explain how our model can avoid over-smoothing
with the help of Theorem 4.11. Recall that we set
ωi = ψ(Vi) = DVi + b ∈ Rd, where ψ is a learnable
function among linear functions, and Vi is the input
feature vector of the ith node, and there are a total of
N distinct nodes. It is obvious that Vi ̸= Vj ,∀i ̸=
j. And thus, by passing through ψ, ωi = ωj ,∀i ̸=
j or ψ(Vi) = ψ(Vj),∀i ̸= j is equivalent to saying
D(Vi −Vj) = 0,∀i ̸= j, which is impossible because

the number of row rank of D ≤ N ≪ N(N−1)
2 , with

N(N−1)
2 is the number of pair Vi ̸= Vj .

Remark 4.12. Nonidentical frequencies ωi in equa-
tion (10) prevent phase synchronization, but accord-
ing to Theorem 4.5, a stable frequency synchronization
state can still be achieved. Thus, nonidentical frequen-
cies induce a transition from phase synchronization to
frequency synchronization.

Remark 4.13. Oono and Suzuki (2019) highlighted
the occurrence of over-smoothing in conventional GNN
architectures, where node representations converge to
the over-smoothing state exponentially. Interestingly,
this phenomenon is strongly similar to the synchro-
nization manifold in coupled oscillator dynamics. In
synchronization, the oscillators evolve synchronously
on the same solution, limt→∞ x1(t) = · · · = xN (t),
which is defined by the eigenvector with the lowest
eigenvalue, λ1. Similarly, through their work, over-
smoothing happens when the dynamics of node repre-
sentations approach an invariant subspace that corre-
sponds to the lowest frequency of graph spectra. There-
fore, it is apparent that the concept of synchronization
can be used to understand the phenomenon of over-
smoothing in GNNs.

5 EXPERIMENTAL RESULTS

We conduct experiments to compare the perfor-
mance of our proposed method, KuramotoGNN, with
GRAND, GRAND++, GCNII, GraphCON and other
popular GNN architectures on node classification
tasks, including GCN, GAT, and GraphSage. For all
experiments, we run 100 splits for each dataset with
20 random seeds for each split, and we conducted on
a server with one NVIDIA RTX 3090 graphics card.

For most of the settings, we adopt from GRAND
(Chamberlain et al., 2021) for KuramotoGNN includ-
ing adaptive numerical differential equation solvers.
Except for 2 factors: the coupling hyper-parameter,
which belongs solely to the KuramotoGNN, and the
integration time, which measures the implicit depth
of continuous-model, were slightly changed. Follow-
ing Chamberlain et al. (2021), we study seven graph
node classification datasets, namely CORA (McCal-
lum et al., 2000), CiteSeer (Sen et al., 2008), PubMed
(Namata et al., 2012), CoauthorCS (Shchur et al.,
2018), the Amazon co-purchasing graphs Computer
and Photo (McAuley et al., 2015). The descriptions
of experimental settings in the SM.

5.1 KuramotoGNN is resilient to deep layers

To demonstrate that the model does not suffer from
over-smoothing, we conducted experiments in various
of depth (by changing the integration limit, T ) and
measure the performance in accuracy. One notable
point is that the proposed equation in the GRAND
paper (4) was modified in its implementation, as de-
scribed below:

dX(t)

dt
= α(Â− I)X(t) + βX(0) (28)

with learnable α and β parameters. In fact, (28) bears
a striking resemblance to our proposed (10), if we make
a rough approximation of the function sin as previously
mentioned.

In this experiment, we conduct both versions of lin-
ear GRAND, with and without adding X(0). For all
models, we used the random split method with 10 ini-
tialization, along with the Euler step-fixed solver with
step size 0.1 step size for a fair comparison in the com-
putational process instead of using an adaptive step
size scheme which gives more superior results (Cham-
berlain et al., 2021).

Figure 1 shows the change in accuracy of three
kinds of models: KuramotoGNN, GRAND-l and
GRAND-l w/o X(0) for various depth values T =
{1, 4, 8, 16, 32, 64, 80, 100}. We can see that without
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Figure 1: Change in performance at different depth (T ) on Cora and Citeseer dataset.

Table 1: Mean and std of classification accuracy of KuramotoGNN and other GNNs on six benchmark graph
node classification tasks. The highest accuracy is highlighted in bold for each number of labeled data per class.
(Unit: %)

Model CORA Citeseer Pubmed Computers CoauthorCS Photo
KuramotoGNN 85.18±1.3 76.01±1.4 80.15±0.3 84.6±0.59 92.35±0.2 93.99±0.17

GraphCON 84.2±1.3 74.2±1.7 79.4±1.3 84.1±0.9 90.5±1.0 93.16±0.5
GRAND++ 82.95±1.37 73.53±3.31 79.16±1.37 82.99±0.81 90.80±0.34 93.55±0.38
GRAND-l 82.46±1.64 73.4±5.05 78.8±1.63 84.27±0.6 91.24±0.4 93.6±0.4

GCNII 84.02±0.5 70.26±0.7 78.95±0.9 80.28±2.1 91.11±0.2 92.1±0.4
GCN 82.07±2.03 74.21±2.90 76.89±3.27 82.94±1.54 91.09±0.35 91.95±0.11
GAT 80.04±2.54 72.02±2.82 74.55±3.09 79.98±0.96 91.33±0.36 91.29±0.67

GraphSAGE 82.07±2.03 71.52±4.11 76.49±1.75 73.66±2.87 90.31±0.41 88.61±1.18

adding X(0), the performance of GRAND-l is re-
duced significantly along the depth, while the Ku-
ramotoGNN and GRAND-l w/o X(0) maintain
the performance when increasing depth.

5.2 KuramotoGNN performances on various
benchmarks

We evaluate the effectiveness of our model on six
popular graph benchmarks. Our KuramotoGNN
demonstrates better performance in terms of accu-
racy when compared to other continuous models:
GraphCON(Rusch et al., 2022), GRAND++(Thorpe
et al., 2021), GRAND-l(Chamberlain et al., 2021),
GCNII(Chen et al., 2020), and traditional models:
GCN(Kipf and Welling, 2016)), GAT(Velickovic et al.,
2017), and GraphSAGE(Hamilton et al., 2017).. Table
1 compares the accuracy of fine-tuned Kuramoto with
GRAND-l (following equation (28)) and other GNNs.

6 CONCLUSION

In summary, we introduce the Kuramoto Graph
Neural Network (KuramotoGNN), a novel class of
continuous-depth graph neural networks inspired by
the Kuramoto model. Our theoretical analysis estab-
lishes a connection between the over-smoothing prob-
lem and phase synchronization in coupled oscillator
networks. By incorporating non-identical natural fre-
quency terms, we mitigate the over-smoothing issue,
leveraging insights from synchronization and the Ku-
ramoto model. Empirical experiments demonstrate
the superior performance of KuramotoGNN compared
to other GNN variants, especially with limited la-
beled data. It is worth noting that our work fo-
cuses on the classic Kuramoto model, while future re-
search could explore variations such as time-delayed
Kuramoto, adaptive coupling functions, or second-
order Kuramoto with damping (Dörfler and Bullo,
2014).
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1 FURTHER DISCUSSION

1.1 THE NEED OF ALLEVIATING OVERSMOOTHING

We believe that addressing oversmoothing can bring significant benefits to constructing very deep models and
handling limited labeled training data. When faced with the challenge of limited labeled training data, the
key issue is extracting meaningful features that effectively capture the underlying graph patterns and nuances.
Oversmoothing exacerbates this challenge by leading to information loss, which, in turn, reduces the model’s
ability to accurately differentiate between nodes [Calder et al., 2020]. Our intuition suggests that mitigating
oversmoothing can enable the model to capture and retain relevant features that might otherwise remain obscured.
This enhancement strengthens the model’s capacity to learn distinctive representations, even when working with
a limited amount of labeled data under the realizability assumption, where the true function falls within the
hypothesis set we consider.

The ability to construct deeper graph neural networks provides versatile opportunities across various applications.
While deeper KuramotoGNNs do not inherently guarantee better performance for specific tasks, the flexibility to
create models with varying depths is a significant advantage. This flexibility is particularly valuable because
it opens the door to broader applicability across other neural ODE techniques. Furthermore, our observation
indicates that graph neural networks have been successfully employed for learning complex dynamical systems
[Pfaff et al., 2020]. Consequently, the ability to build continuous-depth graph neural networks suitable for
large-time T holds substantial promise for studying the long-term behavior of complex physical systems.

1.2 FURTHER COMPARISONS TO RELATED MODELS

In this context, we provide additional comparisons involving GRAND (a representative linear ODE model) and
GraphCON (a model closely related to ours).

While the Kuramoto model is inherently a first-order ODE, it can also be extended to second-order ODE equations.
In this case, the equations for KuramotoGNN and GraphCON exhibit a notable similarity in their form.

For the 2nd order KuramotoGNN, the equations are as follows:

ẋi = yi

ẏi =
∑

j∈N(i)

aij sin(xj − xi)− ωi − αyi

On the other hand, GraphCON’s equations are expressed as:

ẋi = yi

ẏi = σ(
∑

j∈N(i)

aijxj)− xi − αyi

One can notice that the differences are the coupling function and ω,Xi terms. In GraphCON, they consider the
σ function as the ReLU function.

Another notable distinction between GRAND and the Kuramoto model pertains to their mathematical nature.
GRAND is a linear ODE model, whereas the Kuramoto model is inherently nonlinear. This nonlinearity imparts
KuramotoGNN with a richer and more expressive dynamic behavior compared to GRAND. For instance, while
GRAND may have just one equilibrium point, the Kuramoto model can exhibit multiple stable solutions that
extend beyond the confines of an equilibrium point. Instead, the Kuramoto model can manifest stable limit
cycles—periodic orbits characterized by complex patterns that the system trajectories converge to. Furthermore,
in the case of linear GRAND, its flow map remains linear, effectively a composite of linear maps. In contrast,
KuramotoGNN introduces a nonlinear flow map that significantly enhances its expressive capabilities.

It’s worth noting that our utilization of the standard form of the Kuramoto model represents just one facet of
its potential. Different formulations of the Kuramoto equations can give rise to various dynamics, offering the



opportunity for exploration beyond the standard model. For example, incorporating individual coupling strengths
can introduce attraction-repulsion dynamics, potentially leading to cluster synchronization phenomena.

In summary, our work primarily provides a perspective on the oversmoothing phenomenon and its connection to
synchronization, with the aim of enhancing our understanding of the behavior of graph neural networks. We hope
this clarification sheds light on the motivation behind our approach and its valuable contributions to the field.

2 DATASET

The statistics of the datasets are summarized in Table 1.

Cora [McCallum et al., 2000]. A scientific paper citation network dataset consists of 2708 publications which are
classified into one of seven classes. The citation network consists of 5429 links; each publication is represented by
a vector of 0/1-valued indicating the absence/presence of the 1433 words in a corpus.

Citeseer [Sen et al., 2008]. Similar to Cora, Citeseer is another scientific publications network consists of 3312
publications and each publication is classified into one of 6 classes. The publication is represented by a vector
of 0/1 valued that also indicates the absence or presence of the corresponding word from a dictionary of 3703
unique words.

Pubmed [Namata et al., 2012]. The Pubmed dataset consists of 19717 scientific publications related to diabetes,
and all publications in the dataset are taken from the Pubmed database. Each publication is classified into one of
3 classes. The network has 44338 links and each publication is represented by TF/IDF weighted word vector
from a dictionary consists of 500 unique words.

CoauthorCS [Shchur et al., 2018]. The CoauthorCS is a co-authorship graph of authors with publications
related to the field of computer science. The dataset is based on the Microsoft Academic Graph from the KDD
Cup 2016 challenge. In this dataset, nodes represent the authors and an edge is established if they are co-authored
in a paper. Each node is classified into one of 15 classes, and each node is represented by a vector of size 6805
indicating the paper keywords for each author’s papers. The network consists of 18333 nodes and 163788 edges.

Computers [McAuley et al., 2015]. Computers dataset is a segment of the Amazon co-purchase graph. In this
graph, each node is classified into one of 10 classes and each node is represented as a product. If two products are
often bought together, an edge will be established. Each product is represented by a bag-of-words features vector
of size 767. The data set consists of a total of 13752 products and 491722 relations between two products.

Photo [McAuley et al., 2015]. Similar to Computers, Photo is another segment of Amazon co-purchase graph,
the properties of nodes and edges are exactly the same with Computers. In this dataset, the network consists of
238163 edges and 7650 nodes, each node is classified into one of eight classes and each node is represented by a
vector size of 745.

Table 1: Statitics of 6 datasets
Dataset Classes Features #Nodes #Edges
CORA 7 1433 2485 5069
Citeseer 6 3703 2120 3679
Pubmed 3 500 19717 44324

CoauthorCS 15 6805 18333 81894
Computer 10 767 13381 245778

Photo 8 745 7487 119043

3 DETAIL ON GRAPH NEURAL DIFFUSION

We recall that the Graph Neural Diffusion (GRAND) is governed by the following Cauchy problem.
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dX(t)

dt
= div(G(X(t), t)⊙∇X(t)) (1)

X(0) = ψ(V) (2)

Where d is the size of encoded input features, ψ : Rn×f → Rn×d is an affine map that represents the encoder
function to the input node features, X(t) = [

(
x1(t)

)⊤
, . . . ,

(
xn(t)

)⊤
]⊤ ∈ Rn×d is the node function matrix, ⊙ is

the point-wise multiplication, and div is the divergence operator.

The gradient of a node-function matrix X is an edge-function ∇X ∈ Rn×n×d with [∇X]ij = xj − xi ∈ Rd. And
G = (X(t), t) ∈ Rn×n is a matrix function which takes X(t) as input of the function. Furthermore, G always
satisfies the condition that each row of G ⊙E summing to 1. Finally, div or the divergence of an edge function
∇X, div(∇X) = ([div(∇X)]⊤1 , . . . , [div(∇X)]⊤n ) ∈ Rn×d is defined as:

[div(∇X)]i =

n∑
i=1

Eij [∇X]ij (3)

4 TRAINING OBJECTIVE

The full training optimizes the cross-entropy loss:

L(Y,T) = H(Y,T) =

n∑
i=1

ti
⊤ logyi (4)

where ti is the one-hot truth vector of the ith node and yi = ϕ(xi(T )) is the prediction of the KuramotoGNN
with ϕ : Rd → Rnum_class is a linear decoder function:

yi = Dxi(T ) + b (5)

= D

(
xi(0) +

∫ T

0

dxi(t)

dt
dt

)
+ b (6)

= D

(
ψ(Vi) +

∫ T

0

dxi(t)

dt
dt

)
+ b (7)

= D

(
MVi + bψ +

∫ T

0

dxi(t)

dt
dt

)
+ b (8)

Moreover, T is the terminated time of the ODE and dxi(t)
dt is the KuramotoGNN equation which is the below

equation. Note that Vi is the input feature vector of the ith node and M,D, dxi(t)
dt contains learnable parameters.

dxi(t)

dt
= ωi +K

∑
j∈N (xi)

aij sin(xj − xi) (9)

In here, ωi = xi(0) = MVi, and aij = softmax
(

WKX(0)(WQX(0))⊤√
dk

)
with dk is a constant, WK ,WQ are

learnable parameters, and K is the coupling strength constant.

5 EXPERIMENTAL DETAILS AND MORE RESULTS

For solving the ODEs, we use torchdiffeq library ODE Solver [Chen et al., 2018]. For the encoder ψ, we employ a
simple fully connected layer with dropout. Also for the decoder, after obtaining results from solving the ODEs,
X(T ), we pass it through a simple fully connected layer to get final labels.

For all six graph node classification datasets, including CORA, CiteSeer, PubMed, coauthor graph CoauthorCS,
and Amazon co-purchasing graphs Computer and Photo, we consider the largest connected component. Table 3
lists the fine-tuned T , and Table 6 lists the fine-tuned coupling strength K for the results in the main paper.
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Figure 1: Comparisions between KuramotoGNN and GNNs architectures that specifically tackle over-smoothing
in different depth.

Although our T values are smaller, please note that we use a non-linear interaction function sin instead of a linear
interaction function f(x) = x. That indicates our model requires more iterations for the ode solver to solve it,
and each iteration is equivalent to a layer of neural network. Therefore, in terms of "real depth", our model is
still deeper than GRAND-l. Table 2 shows the iterations in one epoch (we used the adaptive solver dopri5) of our
model compared to GRAND-l.

Table 2: Comparing solver iterations for KuramotoGNN and GRAND’s ODE equation.
Model CORA Citeseer Pubmed CoauthorCS Computer Photo

KuramotoGNN 1900 1200 120 100 115 85
GRAND-l 200 300 50 50 100 70

Table 3: Fine-tuned T for KuramotoGNN and GRAND-l.
Model CORA Citeseer Pubmed CoauthorCS Computer Photo

KuramotoGNN 12 5 8 0.8 1 1.5
GRAND-l 18.2948 7.8741 12.9423 3.2490 3.5824 3.6760

To further test the resilience to depth, we compare KuramotoGNN with other GNNs architectures that specifically
tackle over-smoothing in Table 1 with different T = 1, 4, 8, 16, 32, 64, 80, 100. Again, we used fixed-step solver
Euler with step size 0.1 for fair comparison in computational process for all continuous model, except for GCNII
[Chen et al., 2020] which is already a discretized model.

We also further explore the effects of the depth and coupling strength for KuramotoGNN by conducting further
experiements based on various depths and coupling strengths. Table 5 shows the performances in accuracy of
KuramotoGNN on three datasets: CORA, Citeseer, and Pubmed. Overall, the coupling strength is more sensitive
in case of small depths, but in larger depths, the chances in performances are not significant between choices of
coupling strengths.

5.1 EVALUATIONS ON LIMITED TRAINING DATA

Besides helping to avoid over-smoothing and being able to train in deep layers, KuramotoGNN also can boost the
performance of different tasks with low-labeling rates. Table 4 compares the accuracy of KuramotoGNN with
other GNNs. We notice that with few labeled data, in most tasks, KuramotoGNN is significantly more accurate
than the other GNNs including GRAND-l. Only for CoauthorCS and Photo datasets, the GCN outperforms both
KuramotoGNN and GRAND-l on extreme limited label cases.
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Table 4: Mean and std of classification accuracy of KuramotoGNN and other GNNs with different number of
labeled data per class (#per class) on six benchmark graph node classification tasks. The highest accuracy is
highlighted in bold for each number of labeled data per class. (Unit: %)

Model #per class CORA Citeseer Pubmed Computers CoauthorCS Photo
1 63.48±7.2 62.06±4.55 65.93±3.65 62.26±7.73 60.48±2.7 80.18±1.8
2 71.17±5.0 66.85±6.72 72.62±3.15 76.24±2.72 75.89±0.73 82.67±0.8

KuramotoGNN 5 79.11±0.91 72.42±2.0 76.43±1.73 81.43±0.78 87.22±0.99 89.35±0.29
10 83.53±1.36 74.27±1.5 76.86±2.17 83.84±0.54 90.49±0.28 91.35±0.1
20 85.18±1.3 76.01±1.4 80.15±0.3 84.6±0.59 92.35±0.2 93.99±0.17
1 54.94±16.0 58.95±9.59 65.94±4.87 67.65±0.37 60.30±1.5 83.12±0.78
2 66.92±10.04 64.98±8.31 69.31±4.87 76.47±1.48 76.53±1.85 87.31±0.9

GRAND++ 5 77.80±4.46 70.03±3.63 71.99±1.91 82.64±0.56 84.83±0.84 88.33±1.21
10 80.86±2.99 72.34±2.42 75.13±3.88 82.99±0.81 86.94±0.46 90.65±1.19
20 82.95±1.37 73.53±3.31 79.16±1.37 82.99±0.81 90.80±0.34 93.55±0.38
1 54.14±11.0 50.58±17.3 55.47±12.5 47.96±1.3 58.1±4.6 76.89±2.25
2 68.56±9.1 57.65±13.2 69.71±7.01 75.47±1.7 75.2±4.2 80.54±2.3

GRAND-l 5 77.52±3.1 67.48±4.2 70.17±4.52 81.23±0.6 85.27±2.1 88.58±1.7
with X(0) 10 81.9±2.4 71.7±7.3 77.37±2.31 82.71±1.5 87.6±1.8 90.95±0.6

20 82.46±1.64 73.4±5.05 78.8±1.63 84.27±0.6 91.24±0.4 93.6±0.4
1 58.64±9.2 56.44±8.4 58.18±7.5 48.46±10.3 70.49±6.35 42.02±1.9
2 64.5±6.4 53.61±8.7 65.05±4.09 71.29±3.4 83.13±1.6 61.66±6.4

GCNII 5 76.22±0.88 69.2±0.9 70.24±0.63 73.60±2.1 89.02±0.8 83.31±2.1
10 75.35±1.1 66.29±1.2 76.63±1.2 77.83±3.9 89.31±0.25 90.2±0.8
20 84.02±0.5 70.26±0.7 78.95±0.9 80.28±2.1 91.11±0.2 92.1±0.4
1 47.72±15.33 48.94±10.24 58.61±12.83 49.46±1.65 65.22±2.25 82.94±2.17
2 60.85±14.01 58.06±9.76 60.45±16.20 76.90±1.49 83.61±1.49 83.61±0.71

GCN 5 73.86±7.97 67.24±4.19 68.69±7.93 82.47±0.97 86.66±0.43 88.86±1.56
10 78.82±5.38 72.18±3.48 72.59±3.19 82.53±0.74 88.60±0.50 90.41±0.35
20 82.07±2.03 74.21±2.90 76.89±3.27 82.94±1.54 91.09±0.35 91.95±0.11
1 47.86±15.38 50.31±14.27 58.84±12.81 37.14±7.87 51.13±5.24 73.58±8.15
2 58.30±13.55 55.55±9.19 60.24±14.44 65.07±8.86 63.12±6.09 76.89±4.89

GAT 5 71.04±5.74 67.37±5.08 68.54±5.75 71.43±7.34 71.65±4.56 83.01±3.64
10 76.31±4.87 71.35±4.92 72.44±3.50 76.04±0.35 74.71±3.35 87.42±2.38
20 80.04±2.54 72.02±2.82 74.55±3.09 79.98±0.96 91.33±0.36 91.29±0.67
1 43.04±14.01 48.81±11.45 55.53±12.71 27.65±2.39 61.35±1.35 45.36±7.13
2 53.96±12.18 54.39±11.37 58.97±12.65 42.63±4.29 76.51±1.31 51.93±4.21

GraphSAGE 5 68.14±6.95 64.79±5.16 66.07±6.16 64.83±1.62 89.06±0.69 78.26±1.93
10 75.04±5.03 68.90±5.08 70.74±3.11 74.66±1.29 89.68±0.39 84.38±1.75
20 82.07±2.03 71.52±4.11 76.49±1.75 73.66±2.87 90.31±0.41 88.61±1.18

5.2 EVALUATIONS ON HETEROPHILIC DATASET

To further demonstrate the effectiveness of KuramotoGNN, we include more experiments on the node classification
task using heterophilic graph datasets: Cornell, Texas and Wisconsin from the CMU WebKB1 project. The
edges in these graphs represent the hyperlinks between webpages nodes. The labels are manually selected into
five classes, student, project, course, staff, and faculty. The features on node are the bag-of-words of the web
pages.The 10 generated splits of data are provided by [Pei et al., 2020].

Table 8 shows the performances of KuramotoGNN when compare with other differential equations based models:
GRAND-l, GraphCON and discretized model: GCNII [Chen et al., 2020] . All the baselines are proceduced/re-
proceduced from public code. Note that for some reasons, GraphCON [Rusch et al., 2022] re-proceduced results,
which is created from their public code2, are different from reported ones in their paper. Especially for Cornell
dataset, the reported result was 84.3± 4.8 while our reproduced one is only 74.3± 4.6. Note that we have been
trying to further tuning the model. In Table 8, we put the reported result in the original paper of GraphCON.

We also conducted experiments on two recent challenging heterophilic datasets: roman-empire and amazon-

1http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/.
2https://github.com/tk-rusch/GraphCON/

http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/
https://github.com/tk-rusch/GraphCON/


Table 5: Mean and std of classification accuracy of KuramotoGNN in different depths and coupling strengths on
three CORA, Citeseer, and Pubmed graph node classification tasks. (Unit: %)

Depth T Coupling Strength K CORA Citeseer Pubmed
0.7 75.13±1.35 70.24±3.41 76.81±1.69

2 0.8 76.27±2.89 71.85±2.16 78.07±1.77
0.9 79.8±0.77 73.87±1.63 79.85±1.19
1 78.15±0.98 70.89±1.81 77.61±2.22

0.7 75.89±1.77 72.42±2.26 76.88±2.58
3 0.8 78.43±1.08 76.33±2.48 79.34±1.48

0.9 79.67±0.77 72.58±2.91 78.77±0.99
1 79.54±2.14 74.8±1.19 79.13±0.99

0.7 82.03±1.79 72.54±1.31 77.98±2.95
5 0.8 79.37±0.49 72.58±2.77 79.46±0.48

0.9 81.98±1.96 74.88±1.22 78.91±2.47
1 82.92±0.88 73.99±0.84 80.46±1.82

0.7 81.37±1.13 74.56±1.65 80.17±0.80
8 0.8 82.49±0.74 75.24±2.39 79.75±1.28

0.9 82.77±1.29 75.4±2.43 80.07±0.57
1 83.22±1.57 75.04±0.7 78.49±3.03

0.7 82.26±1.05 74.4±3.4 79.49±1.16
10 0.8 82.49±0.98 75.93±1.18 79.27±0.52

0.9 81.6±0.98 74.56±0.77 78.17±1.86
1 83.43±1.3 75.12±1.02 79.08±1.93

0.7 83.53±0.72 74.88±1.87 78.84±1.69
12 0.8 83.83±0.59 75.93±1.44 79.9±0.95

0.9 81.75±1.61 74.35±1.99 79.93±0.52
1 85.18±1.35 73.63±1.72 79.35±0.8

0.7 84.06±2.46 73.55±0.96 77.49±1.41
16 0.8 82.06±2.05 74.68±1.17 78.67±1.36

0.9 83.35±0.48 76.01±1.45 75.77±0.12
1 82.82±1.13 75.16±1.19 75.51±2.18

0.7 84.37±0.68 75.16±0.94 78.46±2.46
18 0.8 82.97±0.75 75.28±1.21 76.60±2.15

0.9 82.99±0.44 73.83±1.95 75.67±1.63
1 82.79±0.38 75.4±1.49 74.2±1.71

ratings. The experimental results have been included in Table 7 for GRAND-l, GraphCON, and KuramotoGNN.

Notably, the new heterophilic datasets appear to present challenges for all models, and we believe that further
investigation into their dynamics and characteristics is needed. We’d like to highlight that, similar to GRAND-l,
GraphCON employs a task-specific residual trick in its code. This trick’s impact can vary, proving beneficial
for some datasets while potentially negatively affecting others. We have thoroughly explored both versions
of GraphCON, with and without this trick, to provide a comprehensive comparison. In the table, we define
GraphCON-res as the version we used residual trick as standard public code, while GraphCON is the version
we remove the trick. The same notion goes for KuramotoGNN and KuramotoGNN-res.

Additionally, we’ve observed that incorporating a similar trick into our model also yields performance improvements
in certain datasets. This finding emphasizes the importance of considering dataset-specific characteristics when
applying such techniques. In conclusion, the inclusion of these new heterophilic datasets has enabled us to broaden
our insights into the performance of KuramotoGNN, GraphCON, and GRAND-l.
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Figure 2: Change in performance at different depth (T) on Cora and Citeseer dataset.

Table 6: fine-tuned coupling strength K for KuramotoGNN.
Dataset Coupling strength K
CORA 1
Citeseer 2
Pubmed 0.9

CoauthorCS 1.8
Computer 4

Photo 2

Table 7: Performance comparison between KuramotoGNN and GRAND, GraphCON for two new heterophlic
datasets.

Model roman-empire amazon-ratings
GRAND-l 60.1±0.4 40.3±0.4
GraphCON 73.2±0.4 42.3±0.4

GraphCON-res 85.5±0.7 41.2±0.6
KuramotoGNN 83.0±0.5 41.9±0.4

KuramotoGNN-res 86.07±0.6 42.9±0.7

5.3 FURTHER EVALUATING ON LARGER DATASET

Open graph benchmark with paper citation network (ogbn-arxiv) [Hu et al., 2020]. Ogbn-arxiv
consists of 169,343 nodes and 1,166,243 directed edges. Each node is an arxiv paper represented by a 128-
dimensional features and each directed edge indicates the citation direction. This dataset is used for node property
prediction and has been a popular benchmark to test the advantage of deep graph neural networks over shallow
graph neural networks.

We have conducted additional experiments on the OGBN-arXiv node classification task. The results in Table 9
show that our KuramotoGNN improves over GRAND-l. We used the Euler fixed step solver with step size 0.1 for
a fair comparison in the computational process.

5.4 EFFECT OF COUPLING STRENGHT K ON KURAMOTOGNN

To further investigate the effect of hyper-parameter K using empirical results, in the following experiments, we
tried different settings of K = {0.4, 0.6, 0.8, 1, 1.5, 2, 3, } on the Citeseer dataset using standard Planetoid split
and on different depth T = {2, 4, 8}.



Table 8: Classification accuracy on heterophilic graph node classification task.
Model Texas Wisconsin Cornell

KuramotoGNN 85.4±6.2 87.6±3.3 77.49±3.3
GCNII 81.08±4.5 82.31±3.1 79.7±6.7

GraphCON 81.1±3.6 85.2±3.1 84.3±4.8
GRAND-l 78.11±7.4 80.39±5.4 62.97±6.8
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Figure 3: Change in performance of KuramotoGNN at different coupling strength (K) on Citeseer dataset.

Figure 3 shows the change in performances of Kuramoto on the Citeseer dataset on different settings of K. It is
observed that the KuramotoGNN performs well on small values of K, while for too small K, it indicates not
so much change for the coupled function, and for higher K, the performances start decreasing. However, this
phenomenon is quite well matched with the analysis of the Kuramoto model [Kuramoto, 1975, Strogatz, 2000],
in which the higher the coupling strength K, the system tends to synchronize better. Furthermore, we also do
not suggest putting K too high, since it will increase the NFE (Number of Function Evaluations) of the solver to
obtain an accurate solution, and thus, increasing the time of training.

6 PROOF FOR THEOREM 4.11

Let us recall the definition of over-smoothing and the KuramotoGNN equation from the main manuscript:

lim
t→T

∥xi(t)− xj(t)∥ = 0,∀i ̸= j. (10)

ẋi = ωi +K
∑
j

aij sin(xj − xi) (11)

We prove the contrapositive. It means that if condition (10) occurs, then ωi = ωj ,∀i, j = 1, . . . , N .

We prove this in contradiction. We assume that equation (10) happens and ω1 ̸= ω2, then we will try to reach a
contradiction.

Since condition (10) happens, we substitute it into equation (11) to have the following limits:

lim
t→∞

(ẋi(t)− ωi) = 0, i = 1, 2. (12)

Now, for all T ∈ Z+, we apply the mean value theorem to have

x1(T + 1)− x1(T ) = ẋ1(aT ), aT ∈ (T, T + 1),

x2(T + 1)− x2(T ) = ẋ2(bT ), bT ∈ (T, T + 1).
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Table 9: Classification accuracy of the GRAND-l and KuramotoGNN trained with different depth on the OGBN-
arXiv graph node classification task.

Model T = 1 T = 8 T = 32 T = 64
KuramotoGNN 66.00±0.8 69.87±0.2 69.31±0.3 68.32±0.2

GRAND-l 64.43±0.5 69 .02±0.4 67.81±0.4 66.58±1.2

Using (12), we get

x1(T + 1)− x1(T ) → ω1 as T → ∞,

x2(T + 1)− x2(T ) → ω2 as T → ∞.

Hence, with d12(t) = x1(t)− x2(t)

d12(T + 1)− d12(T ) → ω1 − ω2 ̸= 0 as T → ∞,

which is a clear contradiction to the fact that condition (10) happens.

7 PROOF FOR PROPOSITION 4.3 AND 4.4

Our proofs are motivated by [Rusch et al., 2022].

7.1 Proposition 4.3

Let us recall the equations from the main manuscript. We consider the features of the scalar node d = 1 for
simplicity.

xmi = xm−1
i +∆t

(
x0i +

1

m

∑
sin(xm−1

j − xm−1
i )

)
(13)

X0 = [x01, . . . , x
0
n]

⊤ = V ∗W (14)

where V ∈ Rn×f , W ∈ Rf×1, ∆t≪ 1, m = 1, 2, . . . ,M .

Moreover, we are in a setting where the learning task is for the GNN to approximate the ground truth vector
X̂ ∈ Rn. Consequently, we set up the following loss function.

J(W ) =
1

2n

∑
i∈V

∥xMi − x̂i∥2 (15)

We need to compute the gradient ∂WJ . Using the chain rule, we obtain the following.

∂J

∂W
=

∂J

∂ZM
∂ZM

∂Z1

∂Z1

∂Z0

∂Z0

∂W
(16)

∂ZM

∂Z1
=

M∏
i=1

∂Zi

∂Zi−1
(17)

First, we find the bound of ∥∂Z
M

∂Z1 ∥∞, ∥ ∂J
∂ZM ∥∞, ∥∂Z

1

∂Z0 ∥∞, ∥∂Z
0

∂W∥∞, then we can multiply these terms together to
get the final upper bound.



∂ZM

∂ZM−1
= diag(A) + ∆tB (18)

A =

 1−∆t 1n
∑
j cos(x

N−1
j − xN−1

n )
...

1−∆t 1n
∑
j cos(x

N−1
j − xN−1

n )

 (19)

B =

 0 1
n cos(xN−1

2 − xN−1
1 ) · · · 1

n cos(xN−1
n − xN−1

1 )
...

...
. . .

...
1
n cos(xN−1

1 − xN−1
n ) 1

n cos(xN−1
2 − xN−1

n ) · · · 0

 (20)

Using the triangle inequality, we can obtain the upper bound for
∥∥∥ ∂ZM

∂ZM−1

∥∥∥
∞

:∥∥∥∥ ∂ZM

∂ZM−1

∥∥∥∥
∞

≤ ∥diag(A)∥∞ +∆t∥B∥∞ ≤ (1 + ∆t) +
∆t

n
(21)

Thus,
∥∥∥∥∂ZM∂Z1

∥∥∥∥
∞

≤
[
1 + (1 +

1

n
)∆t

]M
(22)

(23)

With sufficiently small ∆t, we have this inequality:[
1 + (1 +

1

n
)∆t

]M
≤ 1 + 2M(1 +

1

n
)∆t (24)

leads to the following bound, ∥∥∥∥∂ZM∂Z1

∥∥∥∥
∞

≤ 1 + 2M(1 +
1

n
)∆t (25)

A straight-forward differentiation of ∂J
∂ZM yields,

∂J

∂ZM
=

1

n
[xM1 − x̂1, . . . , x

M
n − x̂n] (26)

From (13) we can easily obtain the following inequality:

|xMi | ≤ |xM−1
i |+∆t(|x0i |+ 1) (27)

Thus, |xMi | ≤ N∆t(|x0i |+ 1) (28)

Hence, ∥∥∥∥ ∂J

∂ZM

∥∥∥∥
∞

≤ 1

n
(max |xMi |+max |xi|) ≤

1

n
(M∆tmax |x0i |+M∆t+max |xi|) (29)

Finding the bound for
∥∥∥∂Z1

∂Z0

∥∥∥
∞

is similar to
∥∥∥∂ZN

∂Z1

∥∥∥
∞

,

∂Z1

∂Z0
= diag(C) + ∆tD (30)

C =


1−∆t

(
1 + 1

n

∑
j cos(x

0
j − x0n)

)
...

1−∆t
(
1 + 1

n

∑
j cos(x

0
j − x0n)

)
 (31)

D =

 0 1
n cos(x02 − x01) · · · 1

n cos(x0n − x01)
...

...
. . .

...
1
n cos(x01 − x0n)

1
n cos(x02 − x0n) · · · 0

 (32)

∥∥∥∥∂Z1

∂Z0

∥∥∥∥
∞

≤ ∥diag(C)∥∞ +∆t∥D∥∞ ≤ 1 +
∆t

n
(33)
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Then we can find a bound for (17) by multiplying (29), (25), (33) together with ∂Z0

∂W = V,∥∥∥∥ ∂J∂W
∥∥∥∥
∞

≤ 1

n

[
α(max |x0i |+ 1) + max |xi|

]
(β + α)β∥V∥∞ (34)

α =M∆t, β = 1 +
∆t

n
(35)

7.2 Proposition 4.4

Motivated by [Rusch et al., 2022], we will need the following order notation:

β = O(α), for α, β ∈ R+ if there exists constants C,C that Cα ≤ β ≤ Cα (36)

M = O(α), for M ∈ Rd1×d2 , α ∈ R+ if there exists constants C that ∥M∥ ≤ Cα (37)

We can rewrite ∂ZM

∂ZM−1 as the following

∂ZM

∂ZM−1
= I+∆tEM−1 (38)

EM−1 =

 − 1
n

∑
j cos(x

M−1
j − xM−1

n ) 1
n cos(xM−1

2 − xM−1
1 ) · · · 1

n cos(xM−1
n − xM−1

1 )
...

...
. . .

...
1
n cos(xM−1

1 − xM−1
n ) 1

n cos(xM−1
2 − xM−1

n ) · · · − 1
n

∑
j cos(x

M−1
j − xM−1

n )

 (39)

And then, we can calculate ∂ZM

∂Z1

∂ZM

∂Z1
= I+∆t

M∑
i=1

Ei−1 +O(∆t2) (40)

With the same manner, we can rewrite ∂Z1

∂Z0 as

∂Z1

∂Z0
= I+∆tE′ (41)

E′ =

 1− 1
n

∑
j cos(x

0
j − x0n)

1
n cos(x02 − x01) · · · 1

n cos(x0n − x01)
...

...
. . .

...
1
n cos(x01 − x0n)

1
n cos(x02 − x0n) · · · 1− 1

n

∑
j cos(x

0
j − x0n)

 (42)

Then we can obtain proposition 4.4 by multiplying (26), (40), (41) together with ∂Z0

∂W = V.

8 ON THE GENERALIZATION PERFORMANCE OF KURAMOTOGNN

Given a space Z and a fixed distribution D on Z. Let G be a class of hypothesis functions: h : Z → Rnum_classes.
Given a loss function, say, l(h; z), whose first and second arguments are a hypothesis and input, respectively, we
define L(h) for the predictive loss:

LD[h] = Ez∼D[l(h, z)]

which is the expectation of a loss function with a hypothesis h over a distribution D of datasets. Similarly, given
a set of examples S = (z1, . . . , zm) drawn i.i.d from D, writes LS(g) for the empirical loss:

LS [h] =
1

m

m∑
i=1

[l(h, zi)]

In statistical learning theory, our focus lies in determining the bound between estimated error (empirical loss) and
true error (predictive loss) across all functions in H. Smaller bound is better, since it means that the true error



of a classifier is not much higher than its estimated error, and so selecting a classifier that has a low estimated
error will ensure that the true error is also low.

In order to finding such bound, we will need a complexity measure for the class of hypothesis functions H. To
this end, let σ = (σ1, . . . , σm) be a list of independent random variables, where, P (σi = +1) = P (σi = −1) = 1/2.
Then the empirical Rademacher complexity of l and H with respect to S is defined to be

R(l ◦H ◦ S) = Eσ

[
sup
h∈H

1

m

m∑
i=1

σil(h, zi)

]
(43)

Then for any integer m ≥ 1, the Radamacher complexity of H with respect to samples size m drawn according to
D is

RD,m = ES∼Dm [R(l ◦H ◦ S)] (44)

Remark 8.1. Intuitively, the empirical Rademacher complexity measures how well the class of functions H
correlates with randomly generated labels on the set S. The richer the class of functions H the better the chance
of finding h ∈ H that correlates with a given σ, and hence the larger empirical Rademacher complexity.

Suppose that we are given a dataset {(zi, ŷi)}mi=1 where m is the number of observable nodes in the graph, zi and
ŷi are the node feature vector, and label of ith node, respectively. H is the hypothesis set of KuramotoGNN. The
following Proposition indicates the generalization performance of KuramotoGNN with sufficient training sample
size.

Proposition 8.1. Given H is the hypothesis set of KuramotoGNN. If a sufficiently large sample is drawn from
distribution D, then with high probability LD[h] and LS [h] are not too far apart for all functions h ∈ H:

lim
m→+∞

(LD[h]− LS [h]) = 0 (45)

Proof. The following bound holds with at least probability 1− δ, which is well known as the Rademacher-based
uniform convergence.

LD[h]− LS [h] ≤ 2ES∼Dm [R(l ◦H ◦ S)] + c

√
2 log(2/δ)

m
(46)

where c > 0 is a constant, m is the sample size, h ∈ H. Now, we estimate the first term of the RHS. Following
the training objective in Section 3 of the SM, we used a linear discriminator for classification. Hence, in the case
of binary classification, D ∈ R1×d. Hereafter, we use a notation

H ◦ S ≡ {Dx(T ; z1) + b, . . . ,Dx(T ; zm) + b} ⊂ R

with T being the terminating time of the ODE. It is known that

R(l ◦H ◦ S) ≤ ρR(H ◦ S)

where ρ is the Lipschitz coefficient of l. Thus, it is enough now to estimate R(H ◦ S). Under assumption
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∥D∥ < +∞, this can be done as follows.

mR(H ◦ S) = Eσ

[
sup
ŷ

m∑
i=1

σiŷ

]

= Eσ

[
sup

m∑
i=1

σi(Dx(T ; zi) + b)

]

≤ ∥D∥∞Eσ

[
sup
D

m∑
i=1

|σix(T ; zi)|

]
+Eσ

[
sup
b

m∑
i=1

σib

]

≤ ∥D∥∞

Eσ

∥∥∥∥∥
m∑
i=1

σix(T ; zi)

∥∥∥∥∥
2
 1

2

+ sup
b
b

(
Eσ

[
m∑
i=1

σi

])
(Jensen’s inequality)

≤ ∥D∥∞

(
Eσ

[
m∑
i=1

∥x(T ; zi)∥2
]) 1

2

, (Eσ[σi] = 0)

≤ ∥D∥∞
(
m ∥xM (T ; zi)∥2

) 1
2

xM = argmax xi

Thus, the problem reduces to the estimate of ∥xi(T ; zi)∥2. Recall that the solution to equation (10) in the main
text is:

xi(T ; zi) = (1 + T )xi(0) +K

∫ T

0

n∑
j=1

aij sin(xj(t)− xi(t)) dt

Together with |aij | ≤ 1, we have
∥xi(T ; zi)∥ ≤ (1 + T )xi(0) + nTK

Combining these, we find that the RHS of (46) tends to 0 as m→ +∞, and therefore, with sufficient sample size,
the KuramotoGNN training process is consistent with predictive loss.
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