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Abstract We present and review an algorithmic and theoretical framework
for improving neural network architecture design via momentum. As case stud-
ies, we consider how momentum can improve the architecture design for recur-
rent neural networks (RNNs), neural ordinary differential equations (ODEs),
and transformers. We show that integrating momentum into neural network
architectures has several remarkable theoretical and empirical benefits, includ-
ing 1) integrating momentum into RNNs and neural ODEs can overcome the
vanishing gradient issues in training RNNs and neural ODEs, resulting in ef-
fective learning long-term dependencies. 2) momentum in neural ODEs can
reduce the stiffness of the ODE dynamics, which significantly enhances the
computational efficiency in training and testing. 3) momentum can improve
the efficiency and accuracy of transformers.

1 Introduction

Deep learning has radically advanced artificial intelligence [48], which has
achieved state-of-the-art performance in various applications, including com-
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puter vision [22,96], natural language processing [21,8], and control [85]. Nev-
ertheless, deep neural networks (DNNs) designs are mostly heuristic and the
resulting architectures have many well-known issues: 1) convolutional neural
networks (CNNs) are not robust to unperceptible adversarial attacks [89]; 2)
recurrent neural networks (RNNs) cannot learn long-term dependencies ef-
fectively due to vanishing gradients [67]; 3) training neural ordinary differen-
tial equations (ODEs) can take an excessive number of function evaluations
(NFEs) [13]; and 4) training transformers suffers from quadratic computa-
tional time and memory costs [98]. See Sections 2, 3, and 4, respectively, for
the details of these problems 2)-4).

Addressing the above grand challenges is at the forefront of deep learn-
ing research. 1) Adversarial defense [55] has been proposed to train robust
neural networks against adversarial attacks; a survey of adversarial defense al-
gorithms is available, see, e.g., [11]. Training ResNets has also been interpreted
as solving a control problem of the transport equation [102,106], resulting in
PDE-motivated adversarial defenses [106,101,104]. 2) Learning long-term de-
pendencies with improved RNNs has been an active research area for several
decades; celebrated works include long short-term memory [36] and gated re-
current unit [17]. 3) Several algorithms and techniques have been proposed to
reduce NFEs in training neural ODEs, including input augmentation [24], reg-
ularizing solvers and learning dynamics [26,40,28,64], high-order ODE [63],
data control [56], and depth-variance [56]. 4) Transformers are the current
state-of-the-art machine learning (ML) models for sequential learning [98],
which processes the input sequence concurrently and can learn long-term de-
pendencies effectively. However, transformers suffer from quadratic computa-
tional time and memory costs with respect to the input sequence length; see
Section 4 for details. In response, efficient attention has been proposed lever-
aging sparse and low-rank approximation of the attention matrix [53,66,4,1,
112,107,39,16], locality-sensitive hashing [44], clustered attention [100], and
decomposed near-field and far-field attention [61].

1.1 Background: Momentum acceleration for gradient descent

Let us recall heavy-ball momentum, a.k.a. classical momentum [69], for accel-
erating gradient descent in solving minx∈Rd F (x). Starting from x0 and x1,
the heavy-ball method iterates as follows

xk+1 = xk − s∇F (xk) + β(xk − xk−1), (1)

where s > 0 is the step size and 0 ≤ β < 1 is the momentum parameter. By
introducing the momentum state m, we can rewrite the HB method as

mk+1 = βmk +∇F (xk); xk+1 = xk − smk+1. (2)

In contrast, gradient descent updates at each step as follows

xk+1 = xk − s∇F (xk). (3)
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1.2 Contribution

This paper aims to present and review an algorithmic and theoretical frame-
work for improving neural network architecture design via momentum, a well-
established first-order optimization tool [69,59]. In particular, we focus on
leveraging momentum to design new RNNs and neural ODEs to accelerate
their training and testing and improve learning long-term dependencies with
theoretical guarantees. Moreover, we present a new efficient attention mech-
anism with momentum augmentation, which significantly improves computa-
tional efficiency over transformers [98] and accuracy over linear transformers
[39]. Finally, we present some perspectives of how momentum can further im-
prove neural networks design and solve existing grand challenges.

1.3 Notations

We denote scalars by lower- or upper-case letters. We also denote vectors and
matrices by lower- and upper-case boldface letters, respectively. For a vector
x = (x1, · · · , xd)> ∈ Rd, where (x1, · · · , xd)> denotes the transpose of the

vector (x1, · · · , xd), we use ‖x‖ = (
∑d
i=1 |xi|2)1/2 to denote its `2 norm. We

denote the vector whose entries are all 0s as 0. For a matrix A, we use A>,
A−1, and ‖A‖ to denote its transpose, inverse, and spectral norm, respectively.
We use I to denote the identity matrix, whose dimension can be determined
in its context. For a function f(x) : Rd → R, we denote its gradient as ∇f(x).
Given two sequences {an} and {bn}, we write an = O(bn) if there exists a
positive constant 0 < C < +∞ such that an ≤ Cbn.

1.4 Organization

We organize this paper as follows: In Section 2, we present RNN models and
their difficulties in learning long-term dependencies. We also show how to inte-
grate momentum into RNNs to accelerate training RNNs and enhance RNNs’
capability in learning long-term dependencies. In Section 3, we show how the
ODE limit of momentum can improve neural ODEs in terms of training and
test efficiency and learning long-term dependencies. In Section 4, we show how
momentum can be integrated into efficient transformers and improve their ac-
curacy. We conclude and present potential new directions in Section 5.

2 Recurrent Neural Networks

In this section, we present how to leverage momentum to improve RNN archi-
tecture design. The main results have been presented at NeurIPS 2020 [60].
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µ
<latexit sha1_base64="d48NQyQgbcRNYHnBoQ+y/ehK68Y=">AAACBHicbVC7TsMwFHXKq4RXgLGLRYXEVCU8BGMFC2OR6ENqo8pxHWrVTiL7BlFFHVj4FRYGEGLlI9j4G9w0A7QcydLROfflEySCa3Ddb6u0tLyyulZetzc2t7Z3nN29lo5TRVmTxiJWnYBoJnjEmsBBsE6iGJGBYO1gdDX12/dMaR5HtzBOmC/JXcRDTgkYqe9UesAeIJ+TGYtFQCY9mdrYoO9U3ZqbAy8SryBVVKDRd756g5im0kyhgmjd9dwE/Iwo4FSwid1LNUsIHZk9XUMjIpn2s3z5BB8aZYDDWJkXAc7V3x0ZkVqPZWAqJYGhnvem4n9eN4Xwws94lKTAIjpbFKYCQ4ynieABV4yCGBtCqOLmVkyHRBEKJjfbhODNf3mRtI5r3knt7Oa0Wr8s4iijCjpAR8hD56iOrlEDNRFFj+gZvaI368l6sd6tj1lpySp69tEfWJ8/8sqXnQ==</latexit>

ht�1
<latexit sha1_base64="8aOEj4mL3Y2IJlKRFf5aZkfFFTI=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSK4sSQ+0GXRjcsK9gFtCJPppB06mYSZiVJiPsWNC0Xc+iXu/BunbRbaeuDC4Zx7ufeeIOFMacf5tpaWV1bX1ksb5c2t7Z1du7LXUnEqCW2SmMeyE2BFORO0qZnmtJNIiqOA03Ywupn47QcqFYvFvR4n1IvwQLCQEayN5NuVrBeEaJj7mT5xc2Tg21Wn5kyBFolbkCoUaPj2V68fkzSiQhOOleq6TqK9DEvNCKd5uZcqmmAywgPaNVTgiCovm56eoyOj9FEYS1NCo6n6eyLDkVLjKDCdEdZDNe9NxP+8bqrDKy9jIkk1FWS2KEw50jGa5ID6TFKi+dgQTCQztyIyxBITbdIqmxDc+ZcXSeu05p7VLu7Oq/XrIo4SHMAhHIMLl1CHW2hAEwg8wjO8wpv1ZL1Y79bHrHXJKmb24Q+szx80o5Kp</latexit>

U
<latexit sha1_base64="z9zg2iqwi9344t+IKexFb0YxuX4=">AAAB83icbVDLSsNAFL2prxpfVZduBovgqiQ+0GXRjcsKxhaaUCbTSTt0MgnzEErob7hxoYhbf8adf+O0zUJbD1w4nHMv994T55wp7XnfTmVldW19o7rpbm3v7O7V9g8eVWYkoQHJeCY7MVaUM0EDzTSnnVxSnMactuPR7dRvP1GpWCYe9DinUYoHgiWMYG2lsAjjBAUTF1n0anWv4c2AlolfkjqUaPVqX2E/IyalQhOOler6Xq6jAkvNCKcTNzSK5piM8IB2LRU4pSoqZjdP0IlV+ijJpC2h0Uz9PVHgVKlxGtvOFOuhWvSm4n9e1+jkOiqYyI2mgswXJYYjnaFpAKjPJCWajy3BRDJ7KyJDLDHRNibXhuAvvrxMHs8a/nnj8v6i3rwp46jCERzDKfhwBU24gxYEQCCHZ3iFN8c4L8678zFvrTjlzCH8gfP5A5PXkBQ=</latexit>

W<latexit sha1_base64="cuHldFFiF77mAfOmFfAVYyONB6M=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0n8QI9FLx4rWFtoQtlsJ+3SzSbsboQS+je8eFDEq3/Gm//GbZuDtj4YeLw3w8y8MBVcG9f9dkorq2vrG+XNytb2zu5edf/gUSeZYthiiUhUJ6QaBZfYMtwI7KQKaRwKbIej26nffkKleSIfzDjFIKYDySPOqLGSn/thRNqTCrHoVWtu3Z2BLBOvIDUo0OxVv/x+wrIYpWGCat313NQEOVWGM4GTip9pTCkb0QF2LZU0Rh3ks5sn5MQqfRIlypY0ZKb+nshprPU4Dm1nTM1QL3pT8T+vm5noOsi5TDODks0XRZkgJiHTAEifK2RGjC2hTHF7K2FDqigzNqaKDcFbfHmZPJ7VvfP65f1FrXFTxFGGIziGU/DgChpwB01oAYMUnuEV3pzMeXHenY95a8kpZg7hD5zPH5brkBY=</latexit>

vt�1
<latexit sha1_base64="CsSEx616C84TP/6Q6msR3NAcIqg=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSK4sSQ+0GXRjcsK9gFtCJPppB06mYSZSbGE/IobF4q49Ufc+TdO2yy09cCFwzn3cu89QcKZ0o7zba2srq1vbJa2yts7u3v79kGlpeJUEtokMY9lJ8CKciZoUzPNaSeRFEcBp+1gdDf122MqFYvFo54k1IvwQLCQEayN5NuVrBeEaJz7mT5z8zIy8O2qU3NmQMvELUgVCjR8+6vXj0kaUaEJx0p1XSfRXoalZoTTvNxLFU0wGeEB7RoqcESVl81uz9GJUfoojKUpodFM/T2R4UipSRSYzgjroVr0puJ/XjfV4Y2XMZGkmgoyXxSmHOkYTYNAfSYp0XxiCCaSmVsRGWKJiTZxlU0I7uLLy6R1XnMvalcPl9X6bRFHCY7gGE7BhWuowz00oAkEnuAZXuHNyq0X6936mLeuWMXMIfyB9fkDg8OSyw==</latexit>

vt
<latexit sha1_base64="GbCgpO4qkltg8Mo5UNSpfA0CizA=">AAAB+XicbVDLSsNAFJ3UV42vqEs3g0VwVRIf6LLoxmUF+4A2hMl00g6dTMLMTaGE/IkbF4q49U/c+TdO2yy09cCFwzn3cu89YSq4Btf9tipr6xubW9Vte2d3b//AOTxq6yRTlLVoIhLVDYlmgkvWAg6CdVPFSBwK1gnH9zO/M2FK80Q+wTRlfkyGkkecEjBS4Dh5P4zwpAhyKGxsEDg1t+7OgVeJV5IaKtEMnK/+IKFZzCRQQbTueW4Kfk4UcCpYYfczzVJCx2TIeoZKEjPt5/PLC3xmlAGOEmVKAp6rvydyEms9jUPTGRMY6WVvJv7n9TKIbv2cyzQDJuliUZQJDAmexYAHXDEKYmoIoYqbWzEdEUUomLBsE4K3/PIqaV/Uvcv69eNVrXFXxlFFJ+gUnSMP3aAGekBN1EIUTdAzekVvVm69WO/Wx6K1YpUzx+gPrM8foJeSWQ==</latexit>

xt
<latexit sha1_base64="zupcbLZHIMt/f+BOTq0HPMg47IE=">AAAB+XicbVDLSsNAFL3xWeMr6tLNYBFclcQHuiy6cVnBPqANYTKdtEMnkzAzKZaQP3HjQhG3/ok7/8Zpm4W2HrhwOOde7r0nTDlT2nW/rZXVtfWNzcqWvb2zu7fvHBy2VJJJQpsk4YnshFhRzgRtaqY57aSS4jjktB2O7qZ+e0ylYol41JOU+jEeCBYxgrWRAsfJe2GEnoog14WNDAKn6tbcGdAy8UpShRKNwPnq9ROSxVRowrFSXc9NtZ9jqRnhtLB7maIpJiM8oF1DBY6p8vPZ5QU6NUofRYk0JTSaqb8nchwrNYlD0xljPVSL3lT8z+tmOrrxcybSTFNB5ouijCOdoGkMqM8kJZpPDMFEMnMrIkMsMdEmLNuE4C2+vExa5zXvonb1cFmt35ZxVOAYTuAMPLiGOtxDA5pAYAzP8ApvVm69WO/Wx7x1xSpnjuAPrM8fo7OSWw==</latexit>

�
<latexit sha1_base64="cNUg6UhGCC7rWHB/yN0CSQAAHw0=">AAAB7XicbVDJSgNBEK2JW4xb1KOXxiB4CjMu6DHoxWMEs0AyhJ5OT9Kml6G7RwhD/sGLB0W8+j/e/Bs7yRw08UHB470qqupFCWfG+v63V1hZXVvfKG6WtrZ3dvfK+wdNo1JNaIMornQ7woZyJmnDMstpO9EUi4jTVjS6nfqtJ6oNU/LBjhMaCjyQLGYEWyc1u4YNBO6VK37VnwEtkyAnFchR75W/un1FUkGlJRwb0wn8xIYZ1pYRTielbmpogskID2jHUYkFNWE2u3aCTpzSR7HSrqRFM/X3RIaFMWMRuU6B7dAselPxP6+T2vg6zJhMUkslmS+KU46sQtPXUZ9pSiwfO4KJZu5WRIZYY2JdQCUXQrD48jJpnlWD8+rl/UWldpPHUYQjOIZTCOAKanAHdWgAgUd4hld485T34r17H/PWgpfPHMIfeJ8/nqOPKg==</latexit>

⊕
s

<latexit sha1_base64="++3MBJJ8O3l/ncxcGEcOZbaSSfo=">AAAB/3icbVDLSsNAFJ34rPEVFdy4GSyCq5L4QJdFNy4r2Ae0oUymk3boZBJmbsQQu/BX3LhQxK2/4c6/cdpmoa0HLhzOuXfu3BMkgmtw3W9rYXFpeWW1tGavb2xubTs7uw0dp4qyOo1FrFoB0UxwyerAQbBWohiJAsGawfB67DfvmdI8lneQJcyPSF/ykFMCRuo6+x1gDzB5J6cZkSNtY4OuU3Yr7gR4nngFKaMCta7z1enFNI2YBCqI1m3PTcDPiQJOBRvZnVSzhNAh6bO2oZJETPv5ZO8IHxmlh8NYmZKAJ+rviZxEWmdRYDojAgM9643F/7x2CuGln3OZpMAknS4KU4EhxuMwcI8rRkFkhhCquPkrpgOiCAUTmW1C8GZPnieNk4p3Wjm/PStXr4o4SugAHaJj5KELVEU3qIbqiKJH9Ixe0Zv1ZL1Y79bHtHXBKmb20B9Ynz8DTZVu</latexit>

⊕ ht
<latexit sha1_base64="67GWtoV0Vvo6zoV8o9y9MCBbkfg=">AAAB+HicbVDJSgNBEK1xjXHJqEcvjUHwFGZc0GPQi8cIZoFkGHo6PUmTnoXuGiEO8yVePCji1U/x5t/YWQ6a+KDg8V4VVfWCVAqNjvNtrayurW9slrbK2zu7exV7/6Clk0wx3mSJTFQnoJpLEfMmCpS8kypOo0DydjC6nfjtR660SOIHHKfci+ggFqFgFI3k25W8F4RkWPg5FsTAt6tOzZmCLBN3TqowR8O3v3r9hGURj5FJqnXXdVL0cqpQMMmLci/TPKVsRAe8a2hMI669fHp4QU6M0idhokzFSKbq74mcRlqPo8B0RhSHetGbiP953QzDay8XcZohj9lsUZhJggmZpED6QnGGcmwIZUqYWwkbUkUZmqzKJgR38eVl0jqruee1y/uLav1mHkcJjuAYTsGFK6jDHTSgCQwyeIZXeLOerBfr3fqYta5Y85lD+APr8wdR9ZI3</latexit>

NAG Cell: set µ =
k � 1

k + 2
<latexit sha1_base64="MAuIQG7R09gh0XomVZ/OTMXHKd4=">AAACBnicdVDLSsNAFJ34rPUVdSnCYBEEMSRtQ81CKLpxWcE+oAllMp20QycPZiZCCV258VfcuFDErd/gzr9x2kZQ0QOXezjnXmbu8RNGhTTND21hcWl5ZbWwVlzf2Nza1nd2WyJOOSZNHLOYd3wkCKMRaUoqGekknKDQZ6Ttjy6nfvuWcEHj6EaOE+KFaBDRgGIkldTTD9wwhefQDTjC2QieQmui2gksT6BCTy+ZRs1xHLsCTcOcQZGqZZdtB1q5UgI5Gj393e3HOA1JJDFDQnQtM5FehrikmJFJ0U0FSRAeoQHpKhqhkAgvm50xgUdK6cMg5qoiCWfq940MhUKMQ19NhkgOxW9vKv7ldVMZnHkZjZJUkgjPHwpSBmUMp5nAPuUESzZWBGFO1V8hHiKViFTJFVUIX5fC/0mrbFgVw76uluoXeRwFsA8OwTGwQA3UwRVogCbA4A48gCfwrN1rj9qL9jofXdDynT3wA9rbJwrnlkw=</latexit>

Recurrent Cell

gradient

ht = �(U ⇥ ht�1 + W ⇥ xt)
<latexit sha1_base64="PRY18znvvC1znHrX3vemrJYWRMk="></latexit>

ht�1
<latexit sha1_base64="8aOEj4mL3Y2IJlKRFf5aZkfFFTI=">AAAB+nicbVDLSsNAFL3xWesr1aWbwSK4sSQ+0GXRjcsK9gFtCJPppB06mYSZiVJiPsWNC0Xc+iXu/BunbRbaeuDC4Zx7ufeeIOFMacf5tpaWV1bX1ksb5c2t7Z1du7LXUnEqCW2SmMeyE2BFORO0qZnmtJNIiqOA03Ywupn47QcqFYvFvR4n1IvwQLCQEayN5NuVrBeEaJj7mT5xc2Tg21Wn5kyBFolbkCoUaPj2V68fkzSiQhOOleq6TqK9DEvNCKd5uZcqmmAywgPaNVTgiCovm56eoyOj9FEYS1NCo6n6eyLDkVLjKDCdEdZDNe9NxP+8bqrDKy9jIkk1FWS2KEw50jGa5ID6TFKi+dgQTCQztyIyxBITbdIqmxDc+ZcXSeu05p7VLu7Oq/XrIo4SHMAhHIMLl1CHW2hAEwg8wjO8wpv1ZL1Y79bHrHXJKmb24Q+szx80o5Kp</latexit>

U
<latexit sha1_base64="z9zg2iqwi9344t+IKexFb0YxuX4=">AAAB83icbVDLSsNAFL2prxpfVZduBovgqiQ+0GXRjcsKxhaaUCbTSTt0MgnzEErob7hxoYhbf8adf+O0zUJbD1w4nHMv994T55wp7XnfTmVldW19o7rpbm3v7O7V9g8eVWYkoQHJeCY7MVaUM0EDzTSnnVxSnMactuPR7dRvP1GpWCYe9DinUYoHgiWMYG2lsAjjBAUTF1n0anWv4c2AlolfkjqUaPVqX2E/IyalQhOOler6Xq6jAkvNCKcTNzSK5piM8IB2LRU4pSoqZjdP0IlV+ijJpC2h0Uz9PVHgVKlxGtvOFOuhWvSm4n9e1+jkOiqYyI2mgswXJYYjnaFpAKjPJCWajy3BRDJ7KyJDLDHRNibXhuAvvrxMHs8a/nnj8v6i3rwp46jCERzDKfhwBU24gxYEQCCHZ3iFN8c4L8678zFvrTjlzCH8gfP5A5PXkBQ=</latexit>

W<latexit sha1_base64="cuHldFFiF77mAfOmFfAVYyONB6M=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0n8QI9FLx4rWFtoQtlsJ+3SzSbsboQS+je8eFDEq3/Gm//GbZuDtj4YeLw3w8y8MBVcG9f9dkorq2vrG+XNytb2zu5edf/gUSeZYthiiUhUJ6QaBZfYMtwI7KQKaRwKbIej26nffkKleSIfzDjFIKYDySPOqLGSn/thRNqTCrHoVWtu3Z2BLBOvIDUo0OxVv/x+wrIYpWGCat313NQEOVWGM4GTip9pTCkb0QF2LZU0Rh3ks5sn5MQqfRIlypY0ZKb+nshprPU4Dm1nTM1QL3pT8T+vm5noOsi5TDODks0XRZkgJiHTAEifK2RGjC2hTHF7K2FDqigzNqaKDcFbfHmZPJ7VvfP65f1FrXFTxFGGIziGU/DgChpwB01oAYMUnuEV3pzMeXHenY95a8kpZg7hD5zPH5brkBY=</latexit>xt
<latexit sha1_base64="zupcbLZHIMt/f+BOTq0HPMg47IE=">AAAB+XicbVDLSsNAFL3xWeMr6tLNYBFclcQHuiy6cVnBPqANYTKdtEMnkzAzKZaQP3HjQhG3/ok7/8Zpm4W2HrhwOOde7r0nTDlT2nW/rZXVtfWNzcqWvb2zu7fvHBy2VJJJQpsk4YnshFhRzgRtaqY57aSS4jjktB2O7qZ+e0ylYol41JOU+jEeCBYxgrWRAsfJe2GEnoog14WNDAKn6tbcGdAy8UpShRKNwPnq9ROSxVRowrFSXc9NtZ9jqRnhtLB7maIpJiM8oF1DBY6p8vPZ5QU6NUofRYk0JTSaqb8nchwrNYlD0xljPVSL3lT8z+tmOrrxcybSTFNB5ouijCOdoGkMqM8kJZpPDMFEMnMrIkMsMdEmLNuE4C2+vExa5zXvonb1cFmt35ZxVOAYTuAMPLiGOtxDA5pAYAzP8ApvVm69WO/Wx7x1xSpnjuAPrM8fo7OSWw==</latexit>

�
<latexit sha1_base64="cNUg6UhGCC7rWHB/yN0CSQAAHw0=">AAAB7XicbVDJSgNBEK2JW4xb1KOXxiB4CjMu6DHoxWMEs0AyhJ5OT9Kml6G7RwhD/sGLB0W8+j/e/Bs7yRw08UHB470qqupFCWfG+v63V1hZXVvfKG6WtrZ3dvfK+wdNo1JNaIMornQ7woZyJmnDMstpO9EUi4jTVjS6nfqtJ6oNU/LBjhMaCjyQLGYEWyc1u4YNBO6VK37VnwEtkyAnFchR75W/un1FUkGlJRwb0wn8xIYZ1pYRTielbmpogskID2jHUYkFNWE2u3aCTpzSR7HSrqRFM/X3RIaFMWMRuU6B7dAselPxP6+T2vg6zJhMUkslmS+KU46sQtPXUZ9pSiwfO4KJZu5WRIZYY2JdQCUXQrD48jJpnlWD8+rl/UWldpPHUYQjOIZTCOAKanAHdWgAgUd4hld485T34r17H/PWgpfPHMIfeJ8/nqOPKg==</latexit>⊕ ht

<latexit sha1_base64="67GWtoV0Vvo6zoV8o9y9MCBbkfg=">AAAB+HicbVDJSgNBEK1xjXHJqEcvjUHwFGZc0GPQi8cIZoFkGHo6PUmTnoXuGiEO8yVePCji1U/x5t/YWQ6a+KDg8V4VVfWCVAqNjvNtrayurW9slrbK2zu7exV7/6Clk0wx3mSJTFQnoJpLEfMmCpS8kypOo0DydjC6nfjtR660SOIHHKfci+ggFqFgFI3k25W8F4RkWPg5FsTAt6tOzZmCLBN3TqowR8O3v3r9hGURj5FJqnXXdVL0cqpQMMmLci/TPKVsRAe8a2hMI669fHp4QU6M0idhokzFSKbq74mcRlqPo8B0RhSHetGbiP953QzDay8XcZohj9lsUZhJggmZpED6QnGGcmwIZUqYWwkbUkUZmqzKJgR38eVl0jqruee1y/uLav1mHkcJjuAYTsGFK6jDHTSgCQwyeIZXeLOerBfr3fqYta5Y85lD+APr8wdR9ZI3</latexit>

RMSProp Cell: set µ = 0
<latexit sha1_base64="0NIbrgRpy8XijiVCnFovQyXg9M0=">AAAB8XicdVBNS8NAEN3Ur1q/qh69LBbBU0jahpqDUPTisYJtxTaUzXbTLt3dhN2NUEL/hRcPinj133jz37htI6jog4HHezPMzAsTRpV2nA+rsLK6tr5R3Cxtbe/s7pX3DzoqTiUmbRyzWN6GSBFGBWlrqhm5TSRBPGSkG04u5373nkhFY3GjpwkJOBoJGlGMtJHu+jyF59CBEA7KFcdu+L7v1aBjOwsYUne9qudDN1cqIEdrUH7vD2OcciI0ZkipnuskOsiQ1BQzMiv1U0UShCdoRHqGCsSJCrLFxTN4YpQhjGJpSmi4UL9PZIgrNeWh6eRIj9Vvby7+5fVSHZ0FGRVJqonAy0VRyqCO4fx9OKSSYM2mhiAsqbkV4jGSCGsTUsmE8PUp/J90qrZbs73reqV5kcdRBEfgGJwCFzRAE1yBFmgDDAR4AE/g2VLWo/VivS5bC1Y+cwh+wHr7BGkRj3Q=</latexit>

Fig. 1 Illustration of the recurrent cell (left), Momentum/NAG cell (middle), and
Adam/RMSProp cell (right). We draw a connection between the dynamics of hidden states
in the recurrent cell and GD. We then introduce momentum to recurrent cell as an analogy
of the momentum accelerated GD.

2.1 Recap on RNNs and LSTM

Recurrent cells are the building blocks of RNNs. A recurrent cell employs a
cyclic connection to update the current hidden state (ht) using the past hidden
state (ht−1) and the current input data (xt) [25]; the dependence of ht on ht−1
and xt in a recurrent cell can be written as

ht = σ(Uht−1+Wxt+b), xt ∈ Rd, and ht−1,ht ∈ Rh, t = 1, 2, · · · , T, (4)

where U ∈ Rh×h,W ∈ Rh×d, and b ∈ Rh are trainable parameters; σ(·) is a
nonlinear activation function, e.g., sigmoid or hyperbolic tangent; see Fig. 1
(left) for an illustration of the RNN cell. Error backpropagation through time
is used to train RNN, but it tends to result in exploding or vanishing gradients
[5]. Thus RNNs may fail to learn long term dependencies.

LSTM cells augment the recurrent cell with “gates” [36] and results in

it = σ(Uihht−1 +Wixxt + bi), (it : input gate)

c̃t = tanh (Uc̃hht−1 +Wc̃xxt + bc̃), (c̃t : cell input)

ct = ct−1 + it � c̃t, (ct : cell state)

ot = σ(Uohht−1 +Woxxt + bo), (ot : output gate)

ht = ot � tanh ct, (ht : hidden state)

(5)

where U∗ ∈ Rh×h, W∗ ∈ Rh×d, and b∗ ∈ Rh are learnable parameters, and �
denotes the Hadamard product. The input gate decides what new information
to be stored in the cell state, and the output gate decides what information
to output based on the cell state value. The gating mechanism in LSTMs can
lead to the issue of saturation [97,12].
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2.2 Gradient descent analogy for RNN and MomentumRNN

Now, we are going to establish a connection between RNN and gradient de-

scent, and further leverage momentum to improve RNNs. Let W̃ = [W , b]

and x̃t = [xt, 1]> in (4), then we have ht = σ(Uht−1 + W̃ x̃t). For the ease

of notation, without ambiguity we denote W := W̃ and xt := x̃t. Then the
recurrent cell can be reformulated as

ht = σ(Uht−1 +Wxt). (6)

Moreover, let φ(·) := σ(U(·)) and ut := U−1Wxt, we can rewrite (6) as

ht = φ(ht−1 + ut). (7)

If we regard −ut as the “gradient” at the t-th iteration, then we can consider
(7) as the dynamical system which updates the hidden state by the gradient
and then transforms the updated hidden state by the nonlinear activation func-
tion φ. We propose the following accelerated dynamical system to accelerate
the dynamics of (7), which is principled by the accelerated gradient descent
theory (see subsection 1.1):

pt = µpt−1 − sut; ht = φ(ht−1 − pt), (8)

where µ ≥ 0, s > 0 are two hyperparameters, which are the analogies of
the momentum coefficient and step size in the momentum-accelerated GD,
respectively. Let vt := −Upt, we arrive at the following dynamical system:

vt = µvt−1 + sWxt; ht = σ(Uht−1 + vt). (9)

The architecture of the momentum cell that corresponds to the dynamical
system (9) is plotted in Fig. 1 (middle). Compared with the recurrent cell, the
momentum cell introduces an auxiliary momentum state in each update and
scales the dynamical system with two positive hyperparameters µ and s.

Remark 1 Different parameterizations of (8) can result in different momentum
cell architectures. For instance, if we let vt = −pt, we end up with the following
dynamical system:

vt = µvt−1 + sŴxt; ht = σ(Uht−1 +Uvt), (10)

where Ŵ := U−1W is the trainable weight matrix. Even though (9) and
(10) are mathematically equivalent, the training procedure might cause the
MomentumRNNs that are derived from different parameterizations to have
different performances.

Remark 2 We put the nonlinear activation in the second equation of (8) to
ensure that the value of ht is in the same range as the original recurrent cell.

Remark 3 The derivation above also applies to the dynamical systems in the
LSTM cells, and we can design the MomentumLSTM in the same way as
designing the MomentumRNN.
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RNN MomentumRNN
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ep
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Fig. 2 `2 norm of the gradients of the loss L w.r.t. the state vector ht at each time step t
for RNN (left) and MomentumRNN (right). MomentumRNN does not suffer from vanishing
gradients.

2.3 Analysis of the vanishing gradient: Momentum cell vs. Recurrent cell

Let hT and ht be the state vectors at the time step T and t, respectively, and
we suppose T � t. Furthermore, assume that L is the objective to minimize,
then

∂L
∂ht

=
∂L
∂hT

· ∂hT
∂ht

=
∂L
∂hT

·
T−1∏

k=t

∂hk+1

∂hk
=

∂L
∂hT

·
T−1∏

k=t

(DkU
>), (11)

where U> is the transpose of U and Dk = diag(σ′(Uhk +Wxk+1)) is a diagonal
matrix with σ′(Uhk + Wxk+1) being its diagonal entries. ‖

∏T−1
k=t (DkU

>)‖2
tends to either vanish or explode [5]. We can use regularization or gradient
clipping to mitigate the exploding gradient, leaving vanishing gradient as the
major obstacle to training RNN to learn long-term dependency [67]. We can
rewrite (9) as

ht = σ
(
U(ht−1 − µht−2) + µσ−1(ht−1) + sWxt

)
, (12)

where σ−1(·) is the inverse function of σ(·). We compute ∂L/∂ht as follows

∂L
∂ht

=
∂L
∂hT

· ∂hT
∂ht

=
∂L
∂hT

·
T−1∏

k=t

∂hk+1

∂hk
=

∂L
∂hT

·
T−1∏

k=t

D̂k[U> + µΣk], (13)

where D̂k = diag(σ′(U(hk−µhk−1)+µσ−1(hk)+sWxk+1)) and Σ = diag((σ−1)′(hk)).
For mostly used σ, e.g., sigmoid and tanh, (σ−1(·))′ > 1 and µΣk dominates
U>.1 Therefore, with an appropriate choice of µ, the momentum cell can
alleviate vanishing gradient and accelerate training.

We empirically corroborate that momentum cells can alleviate vanishing
gradients by training a MomentumRNN and its corresponding RNN on the
PMNIST classification task and plot ‖∂L/∂ht‖2 for each time step t. Figure 2
confirms that unlike in RNN, the gradients in MomentumRNN do not vanish.

1 In the vanishing gradient scenario, ‖U‖2 is small; also it can be controlled by regularizing
the loss function.
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2.4 Beyond MomentumRNN: NAG and Adam principled RNNs

There are several other advanced formalisms of momentum existing in opti-
mization, which can be leveraged for RNN architecture design. In this subsec-
tion, we present two additional variants of MomentumRNN that are derived
from the Nesterov accelerated gradient (NAG)-style momentum with restart
[59,103] and Adam [43].

NAG Principled RNNs. The momentum-accelerated GD can be further
accelerated by replacing the constant momentum coefficient µ in (9) with the
NAG-style momentum, i.e. setting µ to (t−1)/(t+2) at the t-th iteration. Fur-
thermore, we can accelerate NAG by resetting the momentum to 0 after every
F iterations, i.e. µ = (t mod F )/((t mod F ) + 3), which is the NAG-style
momentum with a scheduled restart of the appropriately selected frequency F
[103]. For convex optimization, NAG has a convergence rate O(1/t2), which is
significantly faster than GD or GD with constant momentum whose conver-
gence rate is O(1/t). Scheduled restart not only accelerates NAG to a linear
convergence rate O(α−t)(0 < α < 1) under mild extra assumptions but also
stabilizes the NAG iteration [103]. We call the MomentumRNN with the NAG-
style momentum and scheduled restart momentum the NAG-based RNN and
the scheduled restart RNN (SRRNN), respectively.

Adam Principled RNNs. Adam [43] leverages the moving average of
historical gradients and entry-wise squared gradients to accelerate the stochas-
tic gradient dynamics. We use Adam to accelerate (7) and end up with the
following iteration

pt = µpt−1 + (1− µ)ut

mt = βmt−1 + (1− β)ut � ut
ht = φ(ht−1 − s

pt√
rt + ε

),

(14)

where µ, s, β > 0 are hyperparameters, ε is a small constant and chosen to
be 10−8 by default, and �/

√· denotes the entrywise product/square root2.
Again, let vt = −Upt, we rewrite (14) as follows

vt = µvt−1 + (1− µ)Wxt

mt = βmt−1 + (1− β)ut � ut
ht = σ(Uht−1 + s

vt√
mt + ε

).

As before, here ut := U−1Wxt. Computing U−1 is expensive. Our experi-
ments suggest that replacing ut � ut by Wxt �Wxt is sufficient and more
efficient to compute. In our implementation, we also relax vt = µvt−1 + (1 −
µ)Wxt to vt = µvt−1 +sWxt that follows the momentum in the Momentum-
RNN (9) for better performance. Therefore, we propose the AdamRNN that

2 In contrast to Adam, we do not normalize pt and mt since they can be absorbed in the
weight matrices.
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is given by

vt = µvt−1 + sWxt

mt = βmt−1 + (1− β)(Wxt �Wxt)

ht = σ(Uht−1 +
vt√
mt + ε

).

(15)

In AdamRNN, if µ is set to 0, we achieve another new RNN, which obeys the
RMSProp gradient update rule [94]; which we call RMSPropRNN.

Remark 4 Both AdamRNN and RMSPropRNN can also be derived by letting

vt = −pt and Ŵ := U−1W as in Remark 1. This parameterization yields the
following formulation for AdamRNN

vt = µvt−1 + sŴxt

mt = βmt−1 + (1− β)(Ŵxt � Ŵxt)

ht = σ(Uht−1 +
Uvt√
mt + ε

).

Here, we simply need to learn Ŵ and U without any relaxation. In contrast,
we relaxed U−1 to an identity matrix in (15). Our experiments suggest that
both parameterizations yield similar results.

2.5 Experimental results

In this subsection, we evaluate the effectiveness of our momentum approach in
designing RNNs in terms of convergence speed and accuracy. We compare the
performance of the MomentumLSTM with the baseline LSTM [36] in the fol-
lowing tasks: 1) the object classification task on pixel-permuted MNIST [46],
2) the speech prediction task on the TIMIT dataset [3,33,109,57,34], 3) the
celebrated copying and adding tasks [36,3], and 4) the language modeling task
on the Penn TreeBank (PTB) dataset [58]. These four tasks are among stan-
dard benchmarks to measure the performance of RNNs and their ability to
handle long-term dependencies. Also, these tasks cover different data modali-
ties – image, speech, and text data – as well as a variety of model sizes, ranging
from thousands to millions of parameters with one (MNIST and TIMIT tasks)
or multiple (PTB task) recurrent cells in concatenation. Our experimental re-
sults confirm that MomentumLSTM converges faster and yields better test
accuracy than the baseline LSTM across tasks and settings. We also discuss
the AdamLSTM, RMSPropLSTM, and scheduled restart LSTM (SRLSTM)
and show their advantage over MomentumLSTM in specific tasks. All of our
results are averaged over 5 runs with different seeds. For MNIST and TIMIT
experiments, we use the baseline codebase provided by [9]. For PTB experi-
ments, we use the baseline codebase provided by [79].
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Table 1 Best test accuracy at the MNIST and PMNIST tasks (%). We use the baseline
results reported in [33], [109], [99]. Our proposed models outperform the baseline LSTM.
Among the models using N = 256 hidden units, RMSPropLSTM yields the best results.

Model n # params MNIST PMNIST

LSTM 128 ≈ 68K 98.70[33],97.30 [99] 92.00 [33],92.62 [99]
LSTM 256 ≈ 270K 98.90 [33], 98.50 [109] 92.29 [33], 92.10 [109]

MomentumLSTM 128 ≈ 68K 99.04± 0.04 93.40± 0.25
MomentumLSTM 256 ≈ 270K 99.08± 0.05 94.72± 0.16

AdamLSTM 256 ≈ 270K 99.09± 0.03 95.05± 0.37
RMSPropLSTM 256 ≈ 270K 99.15± 0.06 95.38± 0.19
SRLSTM 256 ≈ 270K 99.01± 0.07 93.82± 1.85

2.5.1 Pixel-by-Pixel MNIST

In this task, we classify image samples of hand-written digits from the MNIST
dataset [49] into one of the ten classes. Following the implementation of [46],
we flatten the image of original size 28 × 28 pixels and feed it into the model
as a sequence of length 784. In the unpermuted task (MNIST), the sequence
of pixels is processed row-by-row. In the permuted task (PMNIST), a fixed
permutation is selected at the beginning of the experiments and then applied
to both training and test sequences. We summarize the results in Table 1.
Our experiments show that MomentumLSTM achieves better test accuracy
than the baseline LSTM in both MNIST and PMNIST digit classification tasks
using different numbers of hidden units (i.e. N = 128, 256). Especially, the
improvement is significant on the PMNIST task, which is designed to test
the performance of RNNs in the context of long-term memory. Furthermore,
we notice that MomentumLSTM converges faster than LSTM in all settings.
Figure 3 corroborates this observation when using N = 256 hidden units.

2.5.2 TIMIT speech dataset

We study how MomentumLSTM performs on audio data with speech predic-
tion experiments on the TIMIT speech dataset [27], which is a collection of
real-world speech recordings. As first proposed by [109], the recordings are
downsampled to 8kHz and then transformed into log-magnitudes via a short-
time Fourier transform (STFT). The task accounts for predicting the next log-
magnitude given the previous ones. We use the standard train/validation/test
separation in [109,51,10], thereby having 3640 utterances for the training set
with a validation set of size 192 and a test set of size 400.

The results for this TIMIT speech prediction are shown in Table 2. Results
are reported on the test set using the model parameters that yield the best
validation loss. Again, we see the advantage of MomentumLSTM over the
baseline LSTM. In particular, MomentumLSTM yields much better prediction
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Fig. 3 Train and test loss of MomentumLSTM, AdamLSTM, RMSPropLSTM, SRLSTM,
and LSTM for MNIST (left two panels) and TIMIT (right two panels) tasks. MomentumL-
STM converges faster than LSTM in both tasks. For MNIST, AdamLSTM and RMSPro-
pLSTM converge fastest. For TIMIT, MomentumLSTM and SRLSTM converge fastest.

Table 2 Test and validation MSEs at the end of the epoch with the lowest validation MSE
for the TIMIT task. All of our proposed models outperform the baseline LSTM. Among
models using N = 158 hidden units, SRLSTM performs the best.

Model n # params Val. MSE Test MSE

LSTM 84 ≈ 83K 14.87± 0.15 14.94± 0.15
LSTM 120 ≈ 135K 11.77± 0.14 11.83± 0.12
LSTM 158 ≈ 200K 9.33± 0.14 9.37± 0.14

MomentumLSTM 84 ≈ 83K 10.90± 0.19 10.98± 0.18
MomentumLSTM 120 ≈ 135K 8.00± 0.30 8.04± 0.30
MomentumLSTM 158 ≈ 200K 5.86± 0.14 5.87± 0.15

AdamLSTM 158 ≈ 200K 8.66± 0.15 8.69± 0.14
RMSPropLSTM 158 ≈ 200K 9.13± 0.33 9.17± 0.33
SRLSTM 158 ≈ 200K 5.81± 0.10 5.83± 0.10

accuracy and faster convergence speed compared to LSTM. Figure 3 shows the
convergence of MomentumLSTM vs. LSTM when using N = 158 hidden units.

2.5.3 Copying and adding tasks

Two other important tasks for measuring the ability of a model to learn long-
term dependency are the copying and adding tasks [36,3]. In both copying
and adding tasks, avoiding vanishing/exploding gradients becomes more rele-
vant when the input sequence length increases. We compare the performance
of MomentumLSTM over LSTM on these tasks. We also examine the perfor-
mance of AdamLSTM, RMSPropLSTM, and SRLSTM on the same tasks. We
summarize our results in Figure 4. In copying task for sequences of length 2K,
MomentumLSTM obtains slightly better final training loss than the baseline
LSTM (0.009 vs. 0.01). In adding task for sequence of length 750, both models
achieve similar training loss of 0.162. However, AdamLSTM and RMSPro-
pLSTM significantly outperform the baseline LSTM.

2.5.4 Word-level Penn TreeBank

To study the advantage of MomentumLSTM over LSTM on text data, we
perform language modeling on a preprocessed version of the PTB dataset [58],
which has been a standard benchmark for evaluating language models. Unlike
the baselines used in
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Fig. 4 Train loss vs. iteration for (left) copying task with sequence length 2K and (right)
adding task with sequence length 750. AdamLSTM and RMSPropLSTM converge faster
and to better final losses than other models.

Table 3 Model test perplexity at the end of the epoch with the lowest validation perplexity
for the Penn Treebank language modeling task (word level).

Model # params Val. PPL Test PPL

lstm ≈ 24M 61.96± 0.83 59.71± 0.99

MomentumLSTM ≈ 24M 60.71± 0.24 58.62± 0.22

SRLSTM ≈ 24M 61.12± 0.68 58.83± 0.62

MomentumLSTM vs. LSTM: Training Loss on 
Penn TreeBank Word and Character Level
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Fig. 5 Train (left) and test loss (right) of Mo-
mentumLSTM (blue), SRLSTM (cyan), and
LSTM (red) for the Penn Treebank language
modeling tasks at word level.

the (P)MNIST and TIMIT exper-
iments which contain one LSTM
cell, in this PTB experiment, we
use a three-layer LSTM model,
which contains three concatenated
LSTM cells, as the baseline. The
size of this model in terms of the
number of parameters is also much
larger than those in the (P)MNIST
and TIMIT experiments. Table 3
shows the test and validation per-
plexity (PPL) using the model parameters that yield the best validation loss.
Again, MomentumLSTM achieves better perplexities and converges faster
than the baseline LSTM (see Figure 5).

2.5.5 NAG and Adam principled RNNs

Finally, we evaluate AdamLSTM, RMSPropLSTM and SRLSTM on all tasks.
For (P)MNIST and TIMIT tasks, we summarize the test accuracy of the
trained models in Tables 1 and 2 and provide the plots of train and test losses
in Figure 3. We observe that though AdamLSTM and RMSPropLSTM work
better than the MomentumLSTM at (P)MNIST task, they yield worse results
at the TIMIT task. Interestingly, SRLSTM shows an opposite behavior - bet-
ter than MomentunLSTM at TIMIT task but worse at (P)MNIST task. For
the copying and adding tasks, Figure 4 shows that AdamLSTM and RMSPro-
pLSTM converge faster and to better final training loss than other models
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in both tasks. Finally, for the PTB task, both MomentumLSTM and SRL-
STM outperform the baseline LSTM (see Figure 5 and Table 3). However, in
this task, AdamLSTM and RMSPropLSTM yields slightly worse performance
than the baseline LSTM. In particular, test PPL for AdamLSTM and RM-
SPropLSTM are 61.11± 0.31, and 64.53± 0.20, respectively, which are higher
than the test PPL for LSTM (59.71±0.99). We observe that there is no model
that win in all tasks. This is somewhat expected, given the connection between
our model and its analogy to optimization algorithm. An optimizer needs to
be chosen for each particular task, and so is for our MomentumRNN. All of
our models outperform the baseline LSTM.

3 Neural ODEs

In this section, we derive the continuous limit of heavy-ball momentum and
then present a new class of neural ODEs, named heavy-ball neural ODEs
(HBNODEs), which have two properties that imply practical advantages over
NODEs: 1) The adjoint state of an HBNODE also satisfies an HBNODE, accel-
erating both forward and backward ODE solvers, thus significantly reducing
the NFEs and improving the utility of trained models. 2) The spectrum of
HBNODEs is well structured, enabling effective learning of long-term depen-
dencies from complex sequential data. We verify the advantages of HBNODEs
over NODEs on benchmark tasks, including image classification, learning com-
plex dynamics, and sequential modeling. Our method requires remarkably
fewer forward and backward NFEs, is more accurate, and learns long-term de-
pendencies more effectively than the other ODE-based neural network models.
Part of the results in this section has been accepted for publication at NeurIPS
2021 [110].

3.1 Recap on neural ODEs

Neural ODEs (NODEs) are a family of continuous-depth machine learning
models whose forward and backward propagations rely on solving an ODE and
its adjoint equation [13]. NODEs model the dynamics of hidden features h(t) ∈
RN using an ODE, which is parametrized by a neural network f(h(t), t, θ) ∈
RN with learnable parameters θ, i.e.,

dh(t)

dt
= f(h(t), t, θ). (16)

Starting from the input h(t0), NODEs obtain the output h(T ) by solving
(16) for t0 ≤ t ≤ T with the initial value h(t0), using a black-box numerical
ODE solver. The NFEs that the black-box ODE solver requires in a single
forward pass is an analogue for the continuous-depth models [13] to the depth
of networks in ResNets [31]. The loss between h(T ) and the ground truth is
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Fig. 6 Contrasting NODE, ANODE, SONODE, HBNODE, and GHBNODE for CIFAR10
classification in NFEs, training time, and test accuracy. (Tolerance: 10−5, see subsec-
tion 3.4.2 for experimental details.)

denoted by L(h(T )); we update parameters θ using the following gradient [70]

dL(h(T ))

dθ
=

∫ T

t0

a(t)
∂f(h(t), t, θ)

∂θ
dt, (17)

where a(t) := ∂L/∂h(t) satisfies the following adjoint equation

da(t)

dt
= −a(t)

∂f(h(t), t, θ)

∂h
. (18)

NODEs are flexible in learning from irregularly-sampled sequential data and
particularly suitable for learning complex dynamical systems [13,78,113,63,23,
41], which can be trained by efficient algorithms [72,19,114]. The drawback of
NODEs is also prominent. In many ML tasks, NODEs require very high NFEs
in both training and inference, especially in high accuracy settings where a
lower tolerance is needed. The NFEs increase rapidly with training; high NFEs
reduce computational speed and accuracy of NODEs and can lead to blow-ups
in the worst-case scenario [29,24,56,63]. As an illustration, we train NODEs for
CIFAR10 classification using the same model and experimental settings as in
[24], except using a tolerance of 10−5; Fig. 6 shows both forward and backward
NFEs and the training time of different ODE-based models; we see that NFEs
and computational times increase very rapidly for NODE, ANODE [24], and
SONODE [63]. More results on the large NFE and degrading utility issues for
different benchmark experiments are available in Section 3.4. Another issue is
that NODEs often fail to effectively learn long-term dependencies in sequential
data [47], discussed in subsection 3.3.

3.2 Heavy-ball neural ODEs

3.2.1 Heavy-ball ODE

We derive the HBODE from the heavy-ball momentum method. For any fixed
step size s, let mk := (xk+1 − xk)/

√
s, and let β := 1− γ√s, where γ ≥ 0 is

another hyperparameter. Then we can rewrite (1) as

mk+1 = (1− γ√s)mk −√s∇F (xk); xk+1 = xk +
√
smk+1. (19)
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Let s→ 0 in (19); we obtain the following system of first-order ODEs,

dx(t)

dt
= m(t);

dm(t)

dt
= −γm(t)−∇F (x(t)). (20)

This can be further rewritten as a second-order heavy-ball ODE (HBODE),
which also models a damped oscillator,

d2x(t)

dt2
+ γ

dx(t)

dt
= −∇F (x(t)). (21)

3.2.2 Heavy-ball neural ODEs

Similar to NODE, we parameterize −∇F in (21) using a neural network
f(h(t), t, θ), resulting in the following HBNODE with initial position h(t0)
and momentum m(t0) := dh/dt(t0),

d2h(t)

dt2
+ γ

dh(t)

dt
= f(h(t), t, θ), (22)

where γ ≥ 0 is the damping parameter, which can be set as a tunable or a
learnable hyperparmater with positivity constraint. In the trainable case, we
use γ = ε · sigmoid(ω) for a trainable ω ∈ R and a fixed tunable upper bound
ε (we set ε = 1 below). According to (20), HBNODE (22) is equivalent to

dh(t)

dt
= m(t);

dm(t)

dt
= −γm(t) + f(h(t), t, θ). (23)

Equation (22) (or equivalently, the system (23)) defines the forward ODE for
the HBNODE, and we can use either the first-order (Prop. 2) or the second-
order (Prop. 1) adjoint sensitivity method to update the parameter θ [63].

Proposition 1 (Adjoint equation for HBNODE) The adjoint state a(t) :=
∂L/∂h(t) for the HBNODE (22) satisfies the following HBODE with the same
damping parameter γ as that in (22),

d2a(t)

dt2
− γ da(t)

dt
= a(t)

∂f

∂h
(h(t), t, θ). (24)

Proof Consider the following coupled first-order ODE system

∂

∂t

[
h
v

]
=

[
v

f(h(t),v(t), t, θ)

]
,

[
h
v

]
(t0) =

[
ht0
vt0

]
. (25)

Denote z =

[
h
v

]
and final state as

[
h(T )
v(T )

]
=

[
hT
vT

]
= zT . (26)
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Then the adjoint equation is given by

∂A(t)

∂t
= −A(t)

[
0 I
∂f
∂h

∂f
∂v

]
, A(T ) = −I, a(t) = − dL

dzT
A(t). (27)

By rewriting A =
[
Ah Av

]
, we have the following differential equations

∂Ah(t)

∂t
= −Av(t)

∂f

∂h
,

∂Av(t)

∂t
= −Ah(t)−Av(t)

∂f

∂v
, (28)

with initial conditions

Ah(T ) = −
[
I
0

]
, Av(T ) = −

[
0
I

]
, (29)

and adjoint states

ah(t) =
dL
dzT

Ah(t), av(t) =
dL
dzT

Av(t). (30)

The gradient equations becomes

dL
dθ

=

∫ T

t0

a

[
0
∂f
∂θ

]
dt =

∫ T

t0

av
∂f

∂θ
dt,

dL
dht0

= ah(t0),
dL
dvt0

= av(t0). (31)

Note ht0 is fixed, and thus ah disappears in gradient computation. Therefore,
we are only interested in av. Thus the adjointAv satisfies the following second-
order ODE

∂2Av(t)

∂t2
= Av(t)

∂f

∂h
− ∂(Av(t)∂f∂v )

∂t
, (32)

and thus
∂2av(t)

∂t2
= av(t)

∂f

∂h
− ∂(av(t)∂f∂v )

∂t
, (33)

with initial conditions

av(T ) = −dL
dz
Av(T ) =

dL
dvT

,
∂av(T )

∂t
= − dL

dhT
− av(T )

∂f

∂v
(T ). (34)

As HBNODE takes the form

d2h(t)

dt2
+ γ

dh(t)

dt
= f(h(t), t, θ), (35)

which can also be viewed as a SONODE. By applying the adjoint equation
(33), we arrive at

∂2a(t)

∂t2
= a(t)

∂f

∂h
+ γ

∂a(t)

∂t
. (36)

As HBNODE only carries its state h to the loss L, we have dL
dvT

= 0, and thus
the initial conditions in equation (34) becomes

a(T ) = 0,
∂a(T )

∂t
= − dL

dhT
, (37)

which concludes the proof of Proposition 1.
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Remark 5 Note that we solve the adjoint equation (24) from time t = T to
t = t0 in the backward propagation. By letting τ = T − t and b(τ) = a(T −τ),
we can rewrite (24) as follows,

d2b(τ)

dτ2
+ γ

db(τ)

dτ
= b(τ)

∂f

∂h
(h(T − τ), T − τ, θ). (38)

Therefore, the adjoint of the HBNODE is also a HBNODE and they have the
same damping parameter.

Proposition 2 (Adjoint equations for the first-order HBNODE sys-
tem) The adjoint states ah(t) := ∂L/∂h(t) and am(t) := ∂L/∂m(t) for the
first-order HBNODE system (23) satisfy

dah(t)

dt
= −am(t)

∂f

∂h
(h(t), t, θ);

dam(t)

dt
= −ah(t) + γam(t). (39)

Proof The coupled form of HBNODE is a coupled first-order ODE system of
the form

∂

∂t

[
h
m

]
=

[
m

−γm+ f(h(t), t, θ)

]
,

[
h
m

]
(t0) =

[
ht0
mt0

]
. (40)

Denote the final state as
[
h(T )
m(T )

]
=

[
hT
mT

]
= z. (41)

Using the conclusions from the proof of Proposition 1, we have the adjoint
equation

∂A(t)

∂t
= −A(t)

[
0 I
∂f
∂h −γI

]
, A(T ) = −I, a(t) = −dL

dz
A(t). (42)

Let
[
ah am

]
= a, by linearity we have

∂
[
ah am

]

∂t
= −

[
ah am

] [ 0 I
∂f
∂h −γI

]
,
[
ah(T ) am(T )

]
=
[
dL
dhT

dL
dmT

]
, (43)

which gives us the initial conditions at t = T , and the simplified first-order
ODE system

∂ah

∂t
= −am

∂f

∂h
,

∂am

∂t
= −ah + γam, (44)

concluding the proof of Proposition 2.

Remark 6 Let ãm(t) = dam(t)/dt, then am(t) and ãm(t) satisfies the follow-
ing first-order heavy-ball ODE system

dam(t)

dt
= ãm(t);

dãm(t)

dt
= am(t)

∂f

∂h
(h(t), t, θ) + γãm(t). (45)

Note that we solve this system backward in time in back-propagation. More-
over, we have ah(t) = γam(t)− ãm(t).
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Similar to [63], we use the coupled first-order HBNODE system (23) and its
adjoint first-order HBNODE system (39) for practical implementation, since
the entangled representation permits faster computation [63] of the gradients
of the coupled ODE systems.

3.2.3 Generalized heavy-ball neural ODEs

0 10 20 30 40 50 60
t

100
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106
109

1012
1015
1018

||h
(t)

|| 2

NODE
ANODE
SONODE
HBNODE
GHBNODE
Exact

Fig. 7 Contrasting h(t) for differ-
ent models. h(t) in ANODE, SON-
ODE, and HBNODE grows much
faster than that in NODE. GHBN-
ODE controls the growth of h(t) ef-
fectively when t is large.

In this part, we propose a generalized ver-
sion of HBNODE (GHBNODE), see (46),
to mitigate the potential blow-up issue
in training ODE-based models. We ob-
serve that h(t) of ANODEs [24], SON-
ODEs [63], and HBNODEs (23) usually
grows much faster than that of NODEs.
The fast growth of h(t) can lead to finite-
time blow up. As an illustration, we com-
pare the performance of NODE, ANODE,
SONODE, HBNODE, and GHBNODE on
the Silverbox task as in [63]. The goal of
the task is to learn the voltage of an electronic circuit that resembles a Duffing
oscillator, where the input voltage V1(t) is used to predict the output V2(t).
Similar to the setting in [63], we first augment ANODE by 1 dimension with
0-augmentation and augment SONODE, HBNODE, and GHBNODE with a
dense network. We use a simple dense layer to parameterize f for all five mod-
els, with an extra input term for V1(t)3. For both HBNODE and GHBNODE,
we set the damping parameter γ to be sigmoid(−3). For GHBNODE (46) be-
low, we set σ(·) to be the hardtanh function with bound [−5, 5] and ξ = ln(2).
As shown in Fig. 7, compared to the vanilla NODE, the `2 norm of h(t) grows
much faster when a higher order NODE is used, which leads to blow-up during
training. Similar issues arise in the time series experiments (see Section 3.4.4),
where SONODE blows up during long term integration in time, and HBNODE
suffers from the same issue with some initialization.

To alleviate the problem above, we propose the following GHBNODE

dh(t)

dt
= σ(m(t)),

dm(t)

dt
= −γm(t) + f(h(t), t, θ)− ξh(t),

(46)

where σ(·) is a nonlinear activation, which is set as tanh in our experiments.
The positive hyperparameters γ, ξ > 0 are tunable or learnable. In the train-
able case, we let γ = ε · sigmoid(ω) as in HBNODE, and ξ = softplus(χ) to
ensure that γ, ξ ≥ 0. Here, we integrate two main ideas into the design of
GHBNODE: (i) We incorporate the gating mechanism used in LSTM [36] and

3 Here, we exclude an h3 term that appeared in the original Duffing oscillator model
because including it would result in finite-time explosion.
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GRU [15], which can suppress the aggregation of m(t); (ii) Following the idea
of skip connection [32], we add the term ξh(t) into the governing equation of
m(t), which benefits training and generalization of GHBNODEs. Fig. 7 shows
that GHBNODE can indeed control the growth of h(t) effectively.

Proposition 3 (Adjoint equations for GHBNODEs) The adjoint states
ah(t) := ∂L/∂h(t), am(t) := ∂L/∂m(t) for the GHBNODE (46) satisfy the
following first-order ODE system

∂ah(t)

∂t
= −am(t)

(∂f
∂h

(h(t), t, θ)− ξI
)

∂am(t)

∂t
= −ah(t)σ′(m(t)) + γam(t).

(47)

Proof GHBNODE can be written as the following first-order ODE system

∂

∂t

[
h
m

]
=

[
σ(m)

−γm+ f(h(t), t, θ)− ξh(t)

]
,

[
h
m

]
(t0) =

[
ht0
mt0

]
. (48)

Denote the final state as zT := [hTmT ]. We have the adjoint equation

∂A(t)

∂t
= −A(t)

[
0 σ′(m)

∂f
∂h − ξI −γI

]
, A(T ) = −I, a(t) = − dL

dzT
A(t). (49)

Let
[
ah am

]
= a, by linearity we have

∂
[
ah am

]

∂t
= −

[
ah am

] [ 0 σ′(m)
∂f
∂h − ξI −γI

]
,

[
ah(T ) am(T )

]
=
[
dL
dhT

dL
dmT

]
,

(50)

which gives us the initial conditions at t = T , and the simplified first-order
ODE system

∂ah

∂t
= −am

(∂f
∂h
− ξI

)
,

∂am

∂t
= −ahσ

′(m) + γam, (51)

concluding the proof of Proposition 3.

Though the adjoint state of the GHBNODE (47) does not satisfy the exact
heavy-ball ODE, based on our empirical study, it also significantly reduces the
backward NFEs.

3.3 Learning long-term dependencies – Vanishing gradient

As mentioned in Section 2, the vanishing gradient is the main bottleneck for
training RNNs with long-term dependencies. As the continuous analogue of
RNN, NODEs as well as their hybrid ODE-RNN models, may also suffer from
vanishing in the adjoint state a(t) := ∂L/∂h(t) [47]. When the vanishing
gradient issue happens, a(t) goes to 0 quickly as T − t increases, then dL/dθ
in (17) will be independent of these a(t). We have the following expressions
for the adjoint states of the NODE and HBNODE:
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– For NODE, we have

∂L
∂ht

=
∂L
∂hT

∂hT
∂ht

=
∂L
∂hT

exp
{
−
∫ t

T

∂f

∂h
(h(s), s, θ)ds

}
. (52)

– For GHBNODE4, from (39) we can derive

[
∂L
∂ht

∂L
∂mt

]
=
[
∂L
∂hT

∂L
∂mT

] [ ∂hT
∂ht

∂hT
∂mt

∂mT
∂ht

∂mT
∂mt

]
=
[
∂L
∂hT

∂L
∂mT

]
exp

{
−
∫ t

T

[
0 ∂σ

∂m( ∂f
∂h
− ξI

)
−γI

]
ds︸ ︷︷ ︸

:=M

}
.

(53)

Note that the matrix exponential is directly related to its eigenvalues.
By Schur decomposition, there exists an orthogonal matrix Q and an upper
triangular matrix U , where the diagonal entries of U are eigenvalues of Q
ordered by their real parts, such that

−M = QUQ> =⇒ exp{−M} = Q exp{U}Q>. (54)

Let v> :=
[
∂L
∂hT

∂L
∂mT

]
Q, then (53) can be rewritten as

[
∂L
∂ht

∂L
∂mt

]
=
[
∂L
∂hT

∂L
∂mT

]
exp{−M}

=
[
∂L
∂hT

∂L
∂mT

]
Q exp{U}Q> = v> exp{U}Q>.

(55)

Taking the `2 norm in (55) and dividing both sides by
∥∥[ ∂L

∂hT

∂L
∂mT

]∥∥
2
, we have

∥∥[ ∂L
∂ht

∂L
∂mt

]∥∥
2∥∥[ ∂L

∂hT

∂L
∂mT

]∥∥
2

=

∥∥v> exp{U}Q>
∥∥
2

‖v>Q>‖2
=

∥∥v> exp{U}
∥∥
2

‖v‖2
=
∥∥e> exp{U}

∥∥
2
,

(56)
i.e.,

∥∥[ ∂L
∂ht

∂L
∂mt

]∥∥
2

=
∥∥e> exp{U}

∥∥
2

∥∥[ ∂L
∂hT

∂L
∂mT

]∥∥
2

where e = v/‖v‖2.

Proposition 4 The eigenvalues of −M can be paired so that the sum of each
pair equals (t− T )γ.

Proof Let F = 1
t−T

∫ t
T
∂f
∂h (h(s), s, θ)ds − ξI, J = 1

t−T
∫ t
T

∂σ
∂m (m(s))ds, and

H = 1
t−TM , then we have the following equation

H =
1

t− TM =

[
0 J
F −γI

]
. (57)

As (λ+ γ)I commutes with any matrix F , the characteristics polynomials of
H and JF satisfy the relation

chH(λ) = det(λI −H) = det

[
λI −J
−F (λ+ γ)I

]

= det(λ(λ+ γ)I − JF ) = −chJF (λ(λ+ γ)).

(58)

4 HBNODE can be seen as a special GHBNODE with ξ = 0 and σ be the identity map.
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Since the characteristics polynomial of JF splits in the field C of complex
numbers, i.e. chJF (x) =

∏n
i=1(x− λJF ,i), we have

chH(λ) = −chJF (λ(λ+ γ)) = −
n∏

i=1

(λ(λ+ γ)− λJF ,i). (59)

Therefore, the eigenvalues of H appear in n pairs with each pair satisfying
the quadratic equation

λ(λ+ γ)− λJF ,i = 0. (60)

By Vieta’s formulas, the sum of these pairs are all −γ. Therefore, the eigen-
values of M comes in n pairs and the sum of each pair is −(t − T )γ, which
finishes the proof of Proposition 4.

For a given constant a > 0, we can group the upper triangular matrix
exp{U} as follows

exp{U} :=

[
exp{UL} P

0 exp{UV }

]
, (61)

where the diagonal of UL (UV ) contains eigenvalues of −M that are no less
(greater) than (t−T )a. Then, we have ‖e> exp{U}‖2 ≥ ‖e>L exp{UL}‖2 where
the vector eL denotes the first m columns of e with m be the number of
columns of UL. By choosing 0 ≤ γ ≤ 2a, for every pair of eigenvalues of
−M there is at least one eigenvalue whose real part is no less than (t− T )a.
Therefore, exp{UL} decays at a rate at most (t − T )a, and the dimension of
UL is at least N ×N . We avoid exploding gradients by clipping the `2 norm
of the adjoint states similar to that used for training RNNs.

In contrast, all eigenvalues of the matrix
∫ t
T
∂f/∂hds in (52) for NODE

can be very positive or negative, resulting in exploding or vanishing gradients.
As an illustration, we consider the benchmark Walker2D kinematic simulation
task that requires learning long-term dependencies effectively [47,7]. We train
ODE-RNN [78] and (G)HBNODE-RNN on this benchmark dataset, and the
detailed experimental settings are provided in Section 3.4.4. Figure 8 plots
‖∂L/∂ht‖2 for ODE-RNN and ‖[∂L/∂ht ∂L/∂mt]‖2 for (G)HBNODE-RNN,
showing that the adjoint state of ODE-RNN vanishes quickly, while that of
(G)HBNODE-RNN does not vanish even when the gap between T and t is
very large.

3.4 Experimental Results

In this section, we compare the performance of the proposed HBNODE and
GHBNODE with existing ODE-based models, including NODE [13], ANODE
[24], and SONODE [63] on the benchmark point cloud separation, image clas-
sification, learning dynamical systems, and kinematic simulation. For all the
experiments, we use Adam [43] as the benchmark optimization solver (the
learning rate and batch size for each experiment are listed in Table 4). For
HBNODE and GHBNODE, we set γ = sigmoid(θ), where θ is a trainable
weight initialized as θ = −3.
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Fig. 8 Plot of the the `2-norm of the adjoint states for ODE-RNN and (G)HBNODE-
RNN back-propagated from the last time stamp. The adjoint state of ODE-RNN vanishes
quickly when the gap between the final time T and intermediate time t becomes larger,
while the adjoint states of (G)HBNODE-RNN decays much more slowly. This implies that
(G)HBNODE-RNN is more effective in learning long-term dependency than ODE-RNN.

Table 4 The batch size and learning rate for different datasets.

Dataset Point Cloud MNIST CIFAR10 Plane Vibration Walker2D

Batch Size 50 64 64 64 256
Learning Rate 0.01 0.001 0.001 0.0001 0.003
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Fig. 9 Comparison between NODE, ANODE, SONODE, HBNODE, and GHBNODE for
two-dimensional point cloud separation. HBNODE and GHBNODE converge better and
require less NFEs in both forward and backward propagation than the other benchmark
models.

3.4.1 Point cloud separation

In this subsection, we consider the two-dimensional point cloud separation
benchmark. A total of 120 points are sampled, in which 40 points are drawn
uniformly from the circle ‖r‖ < 0.5, and 80 points are drawn uniformly from
the annulus 0.85 < ‖r‖ < 1.0. This experiment aims to learn effective features
to classify these two point clouds. Following [24], we use a three-layer neural
network to parameterize the right-hand side of each ODE-based model, inte-
grate the ODE-based model from t0 = 0 to T = 1, and pass the integration
results to a dense layer to generate the classification results. We set the size
of hidden layers so that the models have similar sizes, and the number of pa-



22 Bao Wang et al.

0.0 2.5 5.0 7.5
Epoch

20

30

40

50

60
NF

E 
(fo

rw
ar

d)

0.0 2.5 5.0 7.5
Epoch

40

60

80

NF
E 

(b
ac

kw
ar

d)

0 2 4 6 8
Epoch

0

1

2

3

Tr
ai

ni
ng

 ti
m

e 
(x

10
00

s) NODE
ANODE
SONODE
HBNODE
GHBNODE

0.0 2.5 5.0 7.5
Epoch

90

92

94

96

98

Te
st

 a
cc

 (%
)

Fig. 10 Contrasting NODE [13], ANODE [24], SONODE [63], HBNODE, and GHBNODE
for MNIST classification in NFE, training time, and test accuracy. (Tolerance: 10−5).

rameters of NODE, ANODE, SONODE, HBNODE, and GHBNODE are 525,
567, 528, 568, and 568, respectively. To avoid the effects of numerical error
of the black-box ODE solver we set tolerance of ODE solver to be 10−7. Fig-
ure 9 plots a randomly selected evolution of the point cloud separation for each
model; we also compare the forward and backward NFEs and the training loss
of these models (100 independent runs). HBNODE and GHBNODE improve
training as the training loss consistently goes to zero over different runs, while
ANODE and SONODE often get stuck at local minima, and NODE cannot
separate the point cloud since it preserves the topology [24].

3.4.2 Image classification

We compare the performance of HBNODE and GHBNODE with the exist-
ing ODE-based models on MNIST and CIFAR10 classification tasks using the
same setting as in [24]. We parameterize f(h(t), t, θ) using a 3-layer convolu-
tional network for each ODE-based model, and the total number of parameters
for each model is listed in Table 5. For a given input image of the size c×h×w,
we first augment the number of channel from c to c+p with the augmentation
dimension p dependent on each method5. Moreover, for SONODE, HBNODE
and GHBNODE, we further include velocity or momentum with the same
shape as the augmented state.

Table 5 The number of parameters for each models for image classification.

Model NODE ANODE SONODE HBNODE GHBNODE

#Params (MNIST) 85,315 85,462 86,179 85,931 85,235
#Params (CIFAR10) 173,611 172,452 171,635 172,916 172,916

NFEs. As shown in Figs. 6 and 10, the NFEs grow rapidly with training of the
NODE, resulting in an increasingly complex model with reduced performance
and the possibility of blow up. Input augmentation has been verified to effec-
tively reduce the NFEs, as both ANODE and SONODE require fewer forward
NFEs than NODE for the MNIST and CIFAR10 classification. However, input
augmentation is less effective in controlling their backward NFEs. HBNODE

5 We set p = 0, 5, 4, 4, 5/0, 10, 9, 9, 9 on MNIST/CIFAR10 for NODE, ANODE, SONODE,
HBNODE, and GHBNODE, respectively.
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and GHBNODE require much fewer NFEs than the existing benchmarks, es-
pecially for backward NFEs. In practice, reducing NFEs implies reducing both
training and inference time, as shown in Figs. 6 and 10.

Accuracy. We also compare the accuracy of different ODE-based models for
MNIST and CIFAR10 classification. As shown in Figs. 6 and 10, HBNODE and
GHBNODE have slightly better classification accuracy than the other three
models; this resonates with the fact that less NFEs lead to simpler models
which generalize better [24,63].

0 20 40 60 80 100
NFE Forward

0
100
200
300
400
500
600
700

NF
E 

Ba
ck

wa
rd

NODE

0 20 40 60 80 100
NFE Forward

0
100
200
300
400
500
600
700 ANODE

0 20 40 60 80 100
NFE Forward

0
100
200
300
400
500
600
700 SONODE

0 20 40 60 80 100
NFE Forward

0
100
200
300
400
500
600
700 HBNODE

0 20 40 60 80 100
NFE Forward

0
100
200
300
400
500
600
700 GHBNODE

10 5

10 3

10 1

Fig. 11 NFE vs. tolerance (shown in the colorbar) for training ODE-based models for CI-
FAR10 classification. Both forward and backward NFEs of HBNODE and GHBNODE grow
much more slowly than that of NODE, ANODE, and SONODE; especially the backward
NFEs. As the tolerance decreases, the advantage of HBNODE and GHBNODE in reducing
NFEs becomes more significant.

NFEs vs. tolerance. We further study the NFEs for different ODE-based mod-
els under different tolerances of the ODE solver using the same approach as in
[13]. Figure 11 depicts the forward and backward NFEs for different models
under different tolerances. We see that (i) both forward and backward NFEs
grow quickly when tolerance is decreased, and HBNODE and GHBNODE re-
quire much fewer NFEs than other models; (ii) under different tolerances, the
backward NFEs of NODE, ANODE, and SONODE are much larger than the
forward NFEs, and the difference becomes larger when the tolerance decreases.
In contrast, the forward and backward NFEs of HBNODE and GHBNODE
scale almost linearly with each other. This reflects that the advantage in NFEs
of (G)HBNODE over the benchmarks become more significant when a smaller
tolerance is used.

3.4.3 Learning dynamical systems from irregularly-sampled time series

In this subsection, we learn dynamical systems from experimental measure-
ments. In particular, we use the ODE-RNN framework [13,78], with the recog-
nition model being set to different ODE-based models, to study the vibration
of an airplane dataset [62]. The dataset was acquired, from time 0 to 73627,
by attaching a shaker underneath the right wing to provide input signals, and
5 attributes are recorded per time stamp; these attributes include voltage of
input signal, force applied to aircraft, and acceleration at 3 different spots of
the airplane. We randomly take out 10% of the data to make the time se-
ries irregularly-sampled. We use the first 50% of data as our train set, the
next 25% as validation set, and the rest as test set. We divide each set into
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non-overlapping segments of consecutive 65 time stamps of the irregularly-
sampled time series, with each input instance consisting of 64 time stamps of
the irregularly-sampled time series, and we aim to forecast 8 consecutive time
stamps starting from the last time stamp of the segment. The input is fed
through the the hybrid methods in a recurrent fashion; by changing the time
duration of the last step of the ODE integration, we can forecast the output
in the different time stamps. The output of the hybrid method is passed to a
single dense layer to generate the output time series. In our experiments, we
compare different ODE-based models hybrid with RNNs. The ODE of each
model is parametrized by a 3-layer network whereas the RNN is parametrized
by a simple dense network; the total number of parameters for ODE-RNN,
ANODE-RNN, SONODE-RNN, HBNODE-RNN, and GHBNODE-RNN with
16, 22, 14, 15, 15 augmented dimensions are 15,986, 16,730, 16,649, 16,127,
and 16,127, respectively. To avoid potential error due to the ODE solver, we
use a tolerance of 10−7.

In training those hybrid models, we regularize the models by penalizing the
L2 distance between the RNN output and the values of the next time stamp.
Due to the second-order natural of the underlying dynamics [63], ODE-RNN
and ANODE-RNN learn the dynamics very poorly with much larger training
and test losses than the other models even they take smaller NFEs. HBNODE-
RNN and GHBNODE-RNN give better prediction than SONODE-RNN using
less backward NFEs.
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Fig. 12 Contrasting ODE-RNN, ANODE-RNN, SONODE-RNN, HBNODE-RNN, and
GHBNODE-RNN for learning a vibrational dynamical system. Left most: The learned curves
of each model vs. the ground truth (Time: <66 for training, 66-75 for testing).

3.4.4 Walker2D kinematic simulation

We evaluate the performance of HBNODE-RNN and GHBNODE-RNN on the
Walker2D kinematic simulation task, which requires learning long-term de-
pendency effectively [47]. The dataset [7] consists of a dynamical system from
kinematic simulation of a person walking from a pre-trained policy, aiming to
learn the kinematic simulation of the MuJoCo physics engine [95]. The dataset
is irregularly-sampled with 10% of the data removed from the simulation. Each
input consists of 64 time stamps fed though the the hybrid methods in a recur-
rent fashion, and the output is passed to a single dense layer to generate the
output time series. The goal is to provide an auto-regressive forecast so that
the output time series is as close as the input sequence shifted one time stamp
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to the right. We compare ODE-RNN (with 7 augmentation), ANODE-RNN
(with 7 ANODE style augmentation), HBNODE-RNN (with 7 augmentation),
and GHBNODE-RNN (with 7 augmentation) The RNN is parametrized by a
3-layer network whereas the ODE is parametrized by a simple dense network.
The number of parameters of the above four models are 8,729, 8,815, 8,899,
and 8,899, respectively. In Fig. 13, we compare the performance of the above
four models on the Walker2D benchmark; HBNODE-RNN and GHBNODE-
RNN not only require significantly less NFEs in both training (forward and
backward) and in testing than ODE-RNN and ANODE-RNN, but also have
much smaller training and test losses.
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Fig. 13 Contrasting ODE-RNN, ANODE-RNN, SONODE-RNN, HBNODE-RNN, and
GHBNODE-RNN for the Walker-2D kinematic simulation.

4 Transformers

We further show that momentum can be integrated into transformers, which
can significantly reduce the computational and memory costs of the standard
transformer [98] and enhance the performance of linear transformers [39].

The self-attention mechanism is a fundamental building block of trans-
formers [98,42]. Given an input sequence X = [x1,x2, · · · ,xN ]> ∈ RN×Dx

of N feature vectors, the self-attention transformers it into another sequence
V̂ = [v̂1, v̂2, · · · , v̂N ]> ∈ RN×Dv as follows

v̂i =

N∑

j=1

softmax
(q>i kj√

D

)
vj , for i = 1, · · · , N, (62)

where the scalar softmax((q>i kj)/
√
D) can be understood as the attention v̂i

pays to the input feature xj . The vectors qi,kj , and vj are called the query,
key, and value vectors, respectively; these vectors are computed as follows

[q1, q2, · · · , qN ]> := Q = XW>
Q ∈ RN×D,

[k1,k2, · · · ,kN ]> := K = XW>
K ∈ RN×D,

[v1,v2, · · · ,vN ]> := V = XW>
V ∈ RN×Dv ,

(63)

where WQ,WK ∈ RD×Dx , and WV ∈ RDv×Dx are the weight matrices. We
can further write (62) into the following compact form

V̂ = softmax
(QK>√

D

)
V , (64)
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where the softmax function is applied to each row of (QK>)/
√
D. Equation

(64) is also called the “scaled dot-product attention” or “softmax attention”.
Each transformer layer T`(·) is defined via the following residual connection,

T`(X) = f`(V̂ +X), (65)

where f` is a function that transforms each feature vector independently and
usually chosen to be a feedforward network. We call a transformer built with
softmax attention standard transformer or transformer. It is easy to see that
both memory and computational complexity of (64) are O(N2) with N being
the length of the input sequence. We can further introduce causal masking
into (64) for autoregressive applications [98].

Transformers have become the state-of-the-art model for solving many chal-
lenging problems in natural language processing [98,2,18,108,21,8,37,74] and
computer vision [20,86,22,96]. Nevertheless, the quadratic memory and com-
putational cost of computing the softmax attention (64) is a major bottleneck
for applying transformers to large-scale applications that involve very long se-
quences, such as those in [54,38,66]. Thus, much recent research on transform-
ers has been focusing on developing efficient transformers, aiming to reduce the
memory and computational complexities of the model [71,14,35,66,4,1,107,
90,91,44,77,100,112,107,39,16,84,82,6,76,87,68,111]. A thorough survey of
recent advances in efficient transformers is available at [93]. These efficient
transformers have better memory and/or computational efficiency at the cost
of a significant reduction in accuracy.

4.1 Motivation

In [39], the authors have established a connection between transformers and
RNNs through the kernel trick. They proposed the linear transformer, which
can be considered a rank-one approximation of the softmax transformer. Lin-
ear transformers have computational advantages in training, test, and infer-
ence: the RNN formulation (see (69) below) enjoys fast inference, especially
for autoregressive tasks, and the unrolled RNN formulation (see (67) below)
is efficient for fast training. See subsection 4.2 for a detailed review of the lin-
ear transformer and its advantages. [60] proposes integrating momentum into
RNNs to accelerate training RNNs and improve learning long-term dependen-
cies. We notice that MomentumRNN also enjoys a closed unrolling form, which
is quite unique among existing techniques for improving RNNs, enabling fast
training, test, and inference; see section 4.3 for details. As such, in this section
we study how momentum improves linear transformers?

4.2 Linear transformer

Transformers learn long-term dependencies in sequences effectively and con-
currently through the self-attention mechanism. Note we can write (62) as
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v̂i = (
∑N
j=1 k(qi,kj)vj)/(

∑N
j=1 k(qi,kj)), where k(qi,kj) := exp(q>i kj/

√
D).

In linear transformers [107,39,16,84], the feature map k(qi,kj) is linearized
as the product of feature maps φ(·) on the vectors qi and kj , i.e., k(qi,kj) =
φ(qi)

>φ(kj). The associative property of matrix multiplication is then utilized
to derive the following efficient computation of the attention map

v̂i =

∑N
j=1 k(qi,kj)vj
∑N
j=1 k(qi,kj)

=

∑N
j=1 φ(qi)

>φ(kj)vj
∑N
j=1 φ(qi)>φ(kj)

=
φ(qi)

>∑N
j=1 φ(kj)v

>
j

φ(qi)>
∑N
j=1 φ(kj)

. (66)

In the matrix-product form, we can further write (66) as follows

V̂ =
φ(Q)(φ(K)>V )

φ(Q)φ(K)>
. (67)

Replacing (φ(Q)φ(K>))V with φ(Q)(φ(K>)V ) reduces the memory and
computational cost of computing the attention map from O(N2) to O(N),
making linear transformers scalable to very long sequences.

Causal masking can be easily implemented in the linearized attention by
truncating the summation term in the last equation of (66), resulting in

v̂i =
φ(qi)

>∑i
j=1 φ(kj)v

>
j

φ(qi)>
∑i
j=1 φ(kj)

:=
φ(qi)

>si
φ(qi)>zi

, (68)

where si =
∑i
j=1 φ(kj)v

>
j and zi =

∑i
j=1 φ(kj). The states si and zi can be

computed recurrently.

Efficient inference via the RNN formulation. Self-attention processes tokens
of a sequence concurrently, enabling fast training of transformers.However,
during inference, the output for timestep i is the input for timestep i+ 1. As
a result, the inference in standard transformers cannot be parallelized and is
thus inefficient. Linear transformers provide an elegant approach to fixing this
issue by leveraging their RNN formulation. In particular, we can further write
the linear attention with causal masking in (68) into the following RNN form6

si = si−1 + φ(ki)v
>
i ;

zi = zi−1 + φ(ki);

v̂i =
φ(qi)

>si
φ(qi)>zi

,

(69)

where s0 = 0 and z0 = 0. Note that this RNN formulation of linear trans-
formers with causal masking contains two memory states si and zi.

6 We omit the nonlinearity (a two-layer feedforward network) compared to [39].
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4.3 Momentum transformer

In this section, we present the momentum transformer. We start by integrating
the heavy-ball momentum into the RNN formulation of causal linear attention
in (69), resulting in the causal momentum attention. Next, we generalize the
causal momentum attention to momentum attention that can efficiently train
the model. Moreover, we propose the momentum connection to replace residual
connections between the attention V̂ and the input X in (65) to boost the
model’s performance. Finally, we derive the adaptive momentum attention
from the theory of optimal choice of momentum for the heavy-ball method.

4.3.1 Momentum transformer

Integrating momentum into causal linear attention. Now we consider integrat-
ing momentum into causal linear attention. We integrate momentum into the
state si in (69) only since the denominator in causal linear attention is simply
a normalizing scalar. If we regard −φ(ki)v

>
i as the gradient vector in (3), then

we can add momentum into the state si by following the heavy-ball method in
(2), resulting in the following RNN formulation of causal momentum attention,

mi = βmi−1 − φ(ki)v
>
i ;

si = si−1 − γmi;

zi = zi−1 + φ(ki);

v̂i =
φ(qi)

>si
φ(qi)>zi

,

(70)

where m0 = 0, and γ > 0 and 0 ≤ β < 1 are two hyperparameters. The RNN
formulation of causal momentum attention in (70) is efficient for autoregressive
inference. For training, we need to rewrite (70) into a form that is similar to
(68). To this end, we need to eliminate mi, si, and zi from (70). Note that

si = si−1 − γmi︸︷︷︸
:=pi

= s0︸︷︷︸
=0

−
(
pi + pi−1 + · · ·+ p1

)
,

since mi = βmi−1 − φ(ki)v
>
i , we have pi = βpi−1 − γφ(ki)v

>
i . Therefore,

si = −(pi + pi−1 + · · ·+ p1) = γφ(ki)v
>
i −

(
(1 + β)pi−1 + pi−2 + · · ·+ p1

)

= γφ(ki)v
>
i + γ(1 + β)φ(ki)v

>
i −

(
(1 + β)2pi−2 + · · ·+ p1

)

= · · ·

= γ

i∑

j=1

1− βi−j+1

1− β φ(kj)v
>
j for i ≥ 1.

We can then formulate the causal momentum attention as follows

v̂i =
γφ(qi)

>∑i
j=1

(
1−βi−j+1

1−β φ(kj)v
>
j

)

φ(qi)>zi
. (71)
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Note that (71) is mathematically equivalent to (70), but it can be trained
much more efficiently in a concurrent fashion via layerwise parallelism.

Remark 7 Comparing (71) with (68) , we see that momentum plays a role
in reweighting the terms {φ(kj)v

>
j }ij=1. It is interesting to note that this

reweighting is opposite to that used for reweighting the local attention [18]. It
has also been noticed that low-rank attention can complement local attention,
resulting in improved performance [61].

Integrating momentum into linear attention. To obtain momentum attention
without causal masking, we can simply take the sum from 1 to N instead of
summing from 1 to i. Therefore, we obtain the following momentum attention

v̂i =
γφ(qi)

>∑N
j=1

(
1−βN−j+1

1−β φ(kj)v
>
j

)

φ(qi)>
∑N
j=1 φ(kj)

. (72)

Memory and computational complexity. Training momentum transformers have
the same memory and computational complexities of O(N) as the training of
linear transformers. For test and inference, momentum transformers also have
the same memory and computational complexities as linear transformers. How-
ever, in the RNN form, momentum transformers require slightly more memory
than linear transformers to store the extra momentum state mi.

4.3.2 Momentum connection

Each transformer layer has a residual connection between the self-attention
output and the input as shown in (65). We further integrate momentum
into (65) and derive the momentum connection as follows

T`(X) = f`
(
V̂ +X + β̃(X − T`−1(X))

)
, 0 ≤ β̃ < 1. (73)

Adaptive momentum. Our momentum transformer introduces additional hy-
perparameters γ and β, as well as β̃, compared to the linear transformer.
Often γ can be simply set to 1. However, tuning β and β̃ can introduce extra
computational cost for training transformers. Moreover, using a constant mo-
mentum may not give us optimal performance. In this part, we will introduce
an adaptive momentum formula for computing the momentum hyperparame-
ter in momentum connection and thus eliminating the computational overhead
for tuning β̃. Here, the adaptive momentum does not apply to β since it will
break the closed unrolling form in (71). Adaptive momentum has been used in
optimization, see, e.g., [105], [88]; here, we use the later one for its simplicity.
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Fig. 14 Convergence comparison of adaptive momentum, momentum, reformer, linear, and
softmax transformer on the sequence copy task. Momentum and adaptive momentum trans-
formers converge faster and achieve better training loss than both linear transformer and
reformer. Softmax transformer converges the fastest but suffers from quadratic memory and
computational complexity. Adaptive momentum transformer performs as well as momentum
transformer without intensively searching for momentum values.

4.4 Experimental results

We evaluate the benefits of our momentum transformers in terms of conver-
gence speed, efficiency, and accuracy. We compare the performance of mo-
mentum and adaptive momentum transformers with the baseline standard
softmax transformer and several other efficient transformers in the following
tasks: 1) the synthetic copy task, 2) the MNIST and CIFAR image genera-
tion task, 3) Long-Range Arena [92], and 4) the non-autoregressive machine
translation task. These tasks are among standard benchmarks for measuring
the performance of transformers and their efficiency. The tasks we choose also
cover different data modalities - text and image - and a variety of model sizes.
Our experimental results confirm that momentum and adaptive momentum
transformers outperform many existing efficient transformers, including lin-
ear transformers and reformers, in accuracy and converge faster. Furthermore,
adaptive momentum transformer improves over momentum transformer with-
out the need of searching for momentum hyperparameter.

4.4.1 Copy task

We train momentum transformers and baseline models on a synthetic copy task
to analyze their convergence speed. In this task, the model has to duplicate a
sequence of symbols. Each training and test sample has the form 0w0w where
w is a sequence of symbols collected from the set {1, . . . , N}.

In our experiments, we follow the same experimental setting as that used in
[39]. In particular, we use a sequence of maximum length 128 with 10 different
symbols separated by a separator symbol. The baseline architecture for all
methods is a 4-layer transformer with 8 attention heads and D = 32. The
models are trained with the RAdam optimizer using a batch size of 64 and a
learning rate of 10−3 which is reduced to 10−4 after 3000 iterations. Figure 14
shows the training loss and the test accuracy over epochs and over GPU time.
Both the momentum and the adaptive momentum transformers converge much
faster and achieve better training loss than the linear transformer. Notice
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Fig. 15 Momentum transformers outperform linear transformers on the MNIST image
generation task. Adaptive momentum transformer achieves the best test bits/dim.

Method Bits/dim Images/sec
Standard softmax transformer 0.84 0.45 (1×)
Linear transformer 0.85 142.8 (317×)
Momentum transformer 0.84 139.7 (310×)
Momentum transformer + momentum connection 0.82 135.5 (301×)
Adaptive momentum transformer 0.80 134.9 (300×)

Table 6 Momentum transformers achieve better test bits/dim than both softmax and linear
transformers on MNIST generation.

that while the standard transformer converges the fastest, it has quadratic
complexity. Adaptive momentum transformer has similar performance as the
momentum transformer without the need of tuning for the momentum value.

4.4.2 Image generation

Transformers have shown great promise in autoregressive generation applica-
tions [73,14], such as autoregressive image generation [75]. However, the train-
ing and sampling procedure using transformers are quite slow for these tasks
due to the quadratic computational time complexity and the memory scaling
with respect to the sequence length. In this section, we train our momentum-
based transformers and the baselines with causal masking to predict images
pixel by pixel and compare their performance. In particular, we demonstrate
that, like linear transformers, both momentum and adaptive momentum trans-
formers are able to generate images much faster than the standard softmax
transformer. Furthermore, we show that momentum-based transformers con-
verge much faster than linear transformers while achieving better bits per
dimension (bits/dim). Momentum and adaptive momentum transformers also
generate images with constant memory per image like linear transformers.

MNIST. We first examine our momentum-based transformers on the MNIST
image generation task. For all methods, we train a 8-layer transformer with
8 attention heads and the embedding size of 256, which corresponds to 32
dimensions per head. The feedforward dimensions are 4 times larger than the
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Method Bits/dim Images/sec
Standard softmax transformer 3.20 0.004 (1×)
Linear transformer 3.44 17.85 (4462×)
Momentum transformer 3.43 17.52 (4380×)
Momentum transformer + momentum connection 3.41 17.11 (4277×)
Adaptive momentum transformer 3.38 17.07 (4267×)

Table 7 Momentum-based transformers achieve better test bits/dim than linear trans-
former on CIFAR10 image generation task.

Model ListOps (2K) Text (4K) Retrieval (4K) Image (1K) Pathfinder (1K) Avg
Softmax [98] 37.10 (37.10) 64.17 (65.02) 80.71 (79.35) 39.06 (38.20) 72.48 (74.16) 58.70 (58.77)
Linear [39] 18.30 64.22 81.37 38.29 71.17 54.67

Performer [16] 18.80 63.81 78.62 37.07 69.87 53.63
Reformer [44] 19.05 64.88 78.64 43.29 69.36 55.04

Linformer [107] 37.25 55.91 79.37 37.84 67.60 55.59
Momentum transformer 19.56 64.35 81.95 39.40 73.12 55.68

Adaptive momentum transformer 20.16 64.45 82.07 39.53 74.00 56.04

Table 8 Results on the LRA tasks. We report the test classification accuracy for each task
and average accuracy across all tasks. The momentum-based transformers, in particular, the
adaptive momentum transformer, outperforms all other transformers except on the ListOps.
The numbers in the parenthesis are from the paper [111]. Unit: %.

embedding size. A mixture of 10 logistics is used to model the output as in [80].
For training, we use the RAdam optimizer with a learning rate of 10−4 and
train all models for 250 epochs except for the adaptive momentum transformer.

We report the bits/dim and image generation throughput in Table 6. Com-
pared to the linear transformer, all momentum-based transformers not only
attain better bits/dim but also have comparable image generation through-
put, justifying the linear complexity of our models. In addition, we demon-
strate that the adaptive momentum transformer converges much faster than
the baseline models in Figure 15. Momentum-based transformers even outper-
form softmax transformers in this task.

CIFAR10. Next, we investigate the advantages of our momentum-based trans-
formers when the sequence length and the number of layers in the model in-
crease. We consider the CIFAR-10 image generation task, in which we train
16-layer transformers to generate CIFAR-10 images. The configuration for each
layer is the same as in the MNIST experiment. For the linear transformer and
our momentum-based transformer, we use a batch size of 4 while using a batch
size of 1 for the standard softmax transformer due to the memory limit of the
largest GPU available to us, i.e., NVIDIA V100. This is similar to the set-
ting in [39]. Like in the MNIST image generation task, our momentum-based
transformers outperform the linear transformer in terms of bits/dim while
maintaining comparable image generation throughput. This is a very expen-
sive task, limiting us to perform a thorough hyperparameter search; we believe
better results can be obtained with a more thorough hyperparameter search.
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Method BLEU Score Speed (tokens/s)
Standard softmax transformer 24.34 5104
Linear transformer 21.37 1382
Momentum transformer 22.11 1398
Momentum transformer + momentum connection 22.14 1403
Adaptive momentum transformer 22.20 1410

Table 9 BLEU scores and tokens per second from machine translation models trained on
IWSLT show the advantages of our momentum-based transformers. The number of trainable
parameters is almost the same for all models, up to the small difference introduced by the
momentum mechanism in our models. Momentum-based transformers outperform the linear
transformer in generation quality in terms of BLEU score and obtain comparable generation
efficiency in terms of tokens per second.

4.4.3 Long-Range Arena

In this experiment, we evaluate our model on tasks that involve longer sequence
lengths in the Long Range Arena (LRA) benchmark [92]. We show that the
momentum-based transformer outperforms the baseline linear transformer and
standard softmax transformer [98], justifying the advantage of our momentum-
based transformers in capturing long-term dependency.

Datasets and metrics. We consider all five tasks in the LRA bench-
mark [92], including Listops, byte-level IMDb reviews text classification, byte-
level document retrieval, CIFAR-10 classification on sequences of pixels, and
Pathfinder. These tasks involve long sequences of length 2K, 4K, 4K, 1K, and
1K, respectively. We follow the setup/evaluation protocol in [92] and report
test accuracy for each task and the average result across all tasks.

Models and training. All models have 2 layers, 64 embedding dimension,
128 hidden dimension, 2 attention heads. Mean pooling is applied in all models.
Also, we use the nonlinear activation elu(x)+1 for the linear transformer. Our
implementation uses the public code in [111] as a starting point, and we follow
their training procedures. The training setting and additional baseline model
details are provided in the configuration file used in [111].

Results. We summarize our results in Table 8. Both momentum-based
transformers outperform linear transformers in all tasks and yield better accu-
racy than the standard softmax transformer in most tasks except the Listops.
The adaptive momentum transformer performs the best on every task except
the LipsOps, far behind the softmax transformer and Linformer.

4.4.4 Non-autoregressive machine translation

All of the above experiments are for auto-regressive tasks. In this last experi-
ment, we demonstrate that the benefits of our momentum-based transformers
also hold for a non-autoregressive task. We consider a machine translation task
on the popular IWSLT’ 16 En-De dataset. We follow the setting in [50]. In
particular, we tokenize each sentence using a script from Moses [45] and seg-
ment each word into subword units using BPE [83]. We also use 40K tokens
from both source and target. Our baseline model is the small transformer-
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based network in [50]. This model has 5 layers, and each layer has 2 attention
heads. We replace the softmax attention in this network with the linear and
momentum-based attention to obtain the linear transformer baseline and the
momentum-based transformer models, respectively.

Table 9 reports the results in terms of generation quality, measured by
the BLEU score [65], and generation efficiency, measured by the number of
generated tokens per second. Consistent with other experiments above, our
momentum-based transformers obtain better BLEU scores than the linear
transformer in this non-autoregressive setting. Furthermore, in terms of gen-
eration efficiency, momentum-based models are comparable with the linear
transformer and much more efficient than the standard softmax transformer.

5 Conclusion and Future Work

In this paper, we reviewed how to integrate momentum into neural networks to
enhance their theoretical and practical performances. In particular, we showed
that momentum improves learning long-term dependencies of RNNs and neu-
ral ODEs and significantly reduces their computational costs. Moreover, we
showed that momentum can also be used to improve the efficiency and accu-
racy of transformers. There are numerous directions for future work: 1) Can we
leverage the momentum-augmented neural network component to aid the neu-
ral architecture search? 2) Can we further improve the momentum-integrated
architectures by using the numerical ODE insights [30]? 3) Momentum has
also been used in designing CNNs [52,81]; it is also worth further studying the
benefits of momentum for CNNs.
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III and Aarti Singh, editors, Proceedings of the 37th International Conference on Ma-
chine Learning, volume 119 of Proceedings of Machine Learning Research, pages 3154–
3164. PMLR, 13–18 Jul 2020.

27. John S Garofolo. Timit acoustic phonetic continuous speech corpus. Linguistic Data
Consortium, 1993, 1993.

28. Arnab Ghosh, Harkirat Behl, Emilien Dupont, Philip Torr, and Vinay Namboodiri.
Steer : Simple temporal regularization for neural ode. In H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural Information Pro-
cessing Systems, volume 33, pages 14831–14843. Curran Associates, Inc., 2020.

29. Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, and David Duvenaud. Scalable
reversible generative models with free-form continuous dynamics. In International
Conference on Learning Representations, 2019.

30. Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks. Inverse
Problems, 34(1):014004, 2017.

31. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. arXiv preprint arXiv:1512.03385, 2015.

32. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in
deep residual networks. In European Conference on Computer Vision, pages 630–645.
Springer, 2016.

33. Kyle Helfrich, Devin Willmott, and Qiang Ye. Orthogonal recurrent neural networks
with scaled Cayley transform. In Jennifer Dy and Andreas Krause, editors, Proceedings
of the 35th International Conference on Machine Learning, volume 80 of Proceedings of
Machine Learning Research, pages 1969–1978, Stockholmsmässan, Stockholm Sweden,
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