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Abstract—Graph neural networks (GNNs) have achieved re-
markable success in numerous domains. Nevertheless, many pop-
ular GNNs are known to suffer from over-smoothing. This phe-
nomenon causes node features to become indistinguishable and
hurts the classification accuracy as layer depth increases, which
limits their effectiveness at capturing complex and long range
graph interactions. We propose the Deep Graph Neural Diffusion
(DeepGRAND), a continuous-depth graph neural network that
is based on the diffusion process on graphs that theoretically
alleviates the over-smoothing issue. DeepGRAND pertubes the
learnable graph diffusivity and re-scales the underlying diffusion
equation by a data-dependent term. We empirically show that
DeepGRAND mitigates the accuracy drop-off caused by over-
smoothing and surpasses the best accuracy achieved by popular
GNNs on various graph deep learning benchmarks. We further
demonstrate the advantage of DeepGRAND over many existing
graph neural networks in the low label rate regimes.

Index Terms—deep learning, graph neural networks, diffusion

I. INTRODUCTION

Graph neural networks (GNNs) and machine learning on
graphs [1] have been successfully applied in a wide range
of applications including physical modeling [2], recommender
systems [3], and social networks [4]. Recently, advanced
GNNs have been developed to further improve the perfor-
mance of the models and extend their application, which
include graph convolutional networks (GCNs) [5], Graph-
SAGE [6], message passing neural networks (MPNNs) [2], and
graph attention networks (GATs) [7]. A well-known problem
of GNNs is that the performance of the model decreases
significantly with increasing depth. This phenomenon is a
common plight of most GNN architectures, and it is referred
to as the over-smoothing issue of GNNs [8], [9].

Partial differential equations (PDEs) have been extensively
studied and used in a variety of applications, including image
processing [10] and computer graphics [11]. Interpreting
GNNs as discretization schemes of the underlying diffusion
PDE, [12] proposes Graph Neural Diffusion (GRAND),
a novel class of continuous-depth GNNs. This framework
allows the vast literature on PDEs to be used to improve
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GNN performance. Despite its strengths, GRAND does not
escape the plight of over-smoothing.

Main contributions. In this paper, we propose the Deep Graph
Neural Diffusion (DeepGRAND), a novel continuous-depth
graph neural network that improves on various aspects of the
baseline GRAND [12]. At its core, DeepGRAND introduces a
data-dependent scaling term and a perturbation to the diffusion
dynamics to alter the spectral and convergent characteristics
of the process. With this design, DeepGRAND attains the
following advantages:

1) DeepGRAND inherits the diffusive characteristic of
GRAND while significantly mitigating the over-
smoothing issue.

2) DeepGRAND achieves remarkably better performance
than popular GNNs and GRAND variants when fewer
nodes are labeled as training data, meriting its use in
low-labeling rates situations.

3) Feature representation under the dynamics of Deep-
GRAND is guaranteed to remain bounded, ensuring
numerical stability.

II. BACKGROUND

A. Graph neural networks and the over-smoothing issue
The majority of the literature on GNNs can be derived from

a common message passing scheme, forming a large class of
MPNNs that differ from each other by how information is
propagated and aggregated in each model [13]. An update rule
for all MPNNs can be written in the form

Hu = ξ

(
Xu,

⊕
v∈Nu

µ(Xu,Xv)

)
,

where µ is a learnable message function,
⊕

is a permutation-
invariant aggregate function, and ξ is the update function.
Three popular MPNNs are GCN [5], GraphSAGE [6], and
GAT [7]. In these specific GNN designs, the update rule can
be further simplified to

Hu = σ

 ∑
v∈Nu∪{u}

auvµ(Xv)

 , (1)



where a is either given by the normalized augmented ad-
jacency matrix (GCN), a random sampling scheme (Graph-
SAGE), or the attention mechanism (GAT), µ is a linear
transformation, and σ is an activation function.

It is noted that a GNN with more message passing layers
suffers from over-smoothing [8], which makes learned features
become indistinguishable and hurts the classification accuracy.
This phenomenon goes against the common understanding
that the deeper the model, the better its learning capacity
is [14]. Due to over-smoothing, GNNs are constrained to
having small depths and encounter difficulty in capturing long-
range dependencies.

Over the past few years, a flurry of research into under-
standing and alleviating the over-smoothing issue has been
conducted [9], [15]–[17].

B. Graph Neural Diffusion

GRAND is a continuous-depth architecture for deep learn-
ing on graphs proposed by [12]. It draws inspiration from the
heat diffusion process in mathematical physics and follows the
same vein as other PDE-inspired neural networks [15], [18],
[19]. Central to the formulation of GRAND is the diffusion
equation on graphs

∂X(t)

∂t
= div[G(X(t), t)∇X(t)], (2)

where G = diag (a(Xi(t),Xj(t), t)) is a diagonal matrix giv-
ing the diffusivity between connected vertices, which describes
the thermal conductance property of the graph.

Let X ∈ Rn×d be the matrix representing the initial d
features of all n nodes in the graph. The architecture utilises
the encoder-decoder design given by Y = ψ(X(T )), where
for all T , X(T ) ∈ Rn×d is given by

X(T ) = X(0) +

∫ T

0

∂X

∂t
(t)dt, with X(0) = ϕ(X). (3)

In the simplest case when G is only dependent on the initial
node features, the differential in (3) simplifies to

∂X

∂t
(t) = (A(X)− I)X(t), (4)

where A(X) = [(a(Xi(t),Xj(t), t))] is an n × n matrix
with the same structure as the adjacency matrix of the graph.
From now on, we omit the term X when writing A(X). The
entries of A are exactly those in G, and thus determine the
diffusivity. Furthermore, A can be informally thought of as the
attention weight between vertices. Building upon this heuristic,
GRAND models the attention matrix A in (4) by the multi-
head self-attention mechanism, where

A =
1

h

h∑
l=1

Al(X) (5)

with h being the number of heads and the attention matrix
Al(X) = (al(Xi,Xj)), for l = 1, . . . , h. This specific imple-
mentation is called GRAND-l since it becomes a linear matrix
differential equation once A is calculated from the initial node

features. The authors of [12] also proposed GRAND-nl, an
implementation of GRAND where G is dependent on the
current node features at each step.

As has been pointed out by [12], [20], many GNN archi-
tectures, including GAT and GCN, can be formalized as a
discretization scheme of (2) if no non-linearity is used between
the layers. The intuition behind the connection can readily be
seen from (1), where each subsequent node data is computed
similarly or equal to a weighted average of the neighboring
node features. This gives rise to the diffusive nature of these
architectures.

III. DOES GRAND SUFFER FROM OVER-SMOOTHING?

Various works [9], [15] have attributed the occurrence of
the over-smoothing issue to the exponential convergence of
node representations. We formally define this phenomenon for
continuous depth graph neural networks.

Definition 1. Let X(t) ∈ Rn×d denote the feature represen-
tation at time t ≥ 0. X is said to experience over-smoothing
if there exists a vector v ∈ Rd and constants C1, C2 > 0 such
that for V = (v,v, . . . ,v)⊤

∥X(t)− V ∥∞ ≤ C1e
−C2t. (6)

This definition is similar in spirit to the one given by [15].

Proposition 1. The GRAND-l dynamics given by equations
(3), (4), and (5) cause X to experience over-smoothing.

Sketch of proof. A is a right-stochastic matrix with positive
entries, hence its Perron-Frobenius eigenvalue is α1 = 1.
Moreover, α1 is a simple eigenvalue and its one-dimensional
eigenspace has the basis u = (1, 1, . . . , 1). Suppose
{α1, α2, . . . , αk} is the complex spectrum of A. That is, they
are all complex eigenvalues of A. The matrix A − I has
eigenvalues βi = αi − 1 for all i = 1, k, so β1 = 0 and
Reβi < 0 for all i = 2, k. A Jordan canonical form J
of A − I consists of a single entry 0 on the top left most
corner, followed by several Jordan blocks Ji corresponding to
eigenvalues βi on the diagonal of the matrix. Let P be the
change of basis matrix such that J = P−1(A− I)P and the
first column of P is u and let Z(t) = P−1X(t). We can
rewrite (4) as

∂Z

∂t
(t) = JZ(t).

The solution to this matrix differential equation is

Z(t) = exp(tJ)Z(0).

Since Reβi < 0 for all i = 2, k, we readily obtain

lim
t→∞

Z(t) = lim
t→∞

exp(tJ)Z(0) = (Z(0)1,1, · · · ,Z(0)1,d)
⊤

where the convergence is exponential in ∞-norm with regard
to t. Recall that the first column of P = u, we have

lim
t→∞

X(t) = P lim
t→∞

Z(t) = V



for

V =


Z(0)1,1 Z(0)1,2 . . . Z(0)1,d
Z(0)1,1 Z(0)1,2 . . . Z(0)1,d

...
...

. . .
...

Z(0)1,1 Z(0)1,2 . . . Z(0)1,d

 .

We deduce that ∥X(t)− V ∥∞ exponentially converges to 0,
and we can choose C1, C2 suitably so that the inequality (6)
is satisfied.

Proposition 1 conclusively shows that GRAND-l still suffers
from over-smoothing. Of course, if we consider more general
variants of GRAND, the above arguments no longer hold.
Although we can not rigorously assert that over-smoothing
affect all implementations of GRAND, it can be argued that
the occurrence of this phenomenon in GRAND intuitively
makes sense since diffusion have the tendency to ”even out”
distribution over time. Hence, a purely diffusion based model
like GRAND is inherently ill-suited for deep networks.

IV. DEEPGRAND: DEEPER GRAPH NEURAL DIFFUSION

A. Model formulation

We propose a new model of continuous Graph Neural
Network based on GRAND capable of learning at much
higher depth (DeepGRAND). It leverages a perturbation to the
diffusivity matrix and a scaling factor to make the model both
more stable and more resilient to the over-smoothing issue.

Denote the i-th column of X by Xi. With the usual 2-norm,
we define the column-wise norm matrix ⟨X(t)⟩α ∈ Rn×d as

⟨X(t)⟩α =


∥X1∥α ∥X2∥α . . . ∥Xd∥α
∥X1∥α ∥X2∥α . . . ∥Xd∥α

...
...

. . .
...

∥X1∥α ∥X2∥α . . . ∥Xd∥α

 , (7)

for some constant α > 0. The dynamics of DeepGRAND is
given by (3), with ∂X

∂t given by

∂X

∂t
(t) = (A− (1 + ϵ)I)X(t)⊙ ⟨X(t)⟩α, (8)

where ⊙ is the Hadamard product. Hence, our proposed
dynamics differs from GRAND’s dynamics by the perturbation
ϵ and the data-dependent scaling term ⟨X(t)⟩α.

B. How DeepGRAND overcomes the over-smoothing issue

To explain the motivation behind DeepGRAND, we first
note that the convergence property of all nodes to a pre-
determined feature vector is not necessarily an undesirable
trait. It guarantees that our model will remain bounded and
not ”explode”, which helps to ensure numerical stability. Our
perturbation by ϵ serves to strengthen this behavior. Its purpose
is to reduce the real part of all eigenvalues to negative values,
making all node representations converge to 0 in the long run.

We observe that the rate of convergence is the chief factor
in determining the range of effective depth. If the model
converges very slowly, it is clear that we can train it at high
depth without ever having to worry about over-smoothing. As

TABLE I
PERFORMANCE OF DEEPGRAND VS. GRAND AT DIFFERENT DEPTHS.

THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Dataset Depth GRAND-l GRAND-nl DeepGRAND

Cora

4
16
32
64

128

83.5 ± 0.4
83.5 ± 0.5
81.8 ± 0.5
76.5 ± 0.6
68.6 ± 0.4

83.3 ± 0.3
82.5 ± 0.4
81.7 ± 0.3
78.7 ± 1.1
74.6 ± 0.5

84.7 ± 0.2
84.5 ± 0.3
84.3 ± 0.4
82.1 ± 0.7
76.4 ± 0.9

Citeseer

4
16
32
64

128

68.5 ± 1.7
60.4 ± 2.0
60.1 ± 3.7
55.1 ± 2.6
50.5 ± 2.6

69.0 ± 1.5
60.7 ± 1.8
58.8 ± 1.6
55.7 ± 2.3
52.9 ± 1.8

75.4 ± 0.6
75.0 ± 0.6
74.4 ± 1.1
71.0 ± 1.1
67.9 ± 0.8

Pubmed

4
16
32
64

128

77.8 ± 0.1
77.9 ± 0.4
76.7 ± 0.3
74.7 ± 0.5

NA

77.5 ± 0.3
77.8 ± 0.2
78.4 ± 0.4
73.3 ± 1.2

NA

79.6 ± 1.0
79.5 ± 0.6
79.3 ± 0.4
79.1 ± 0.6
78.7 ± 0.5

Computers

1
2
4
8

16
32

85.3 ± 0.6
85.6 ± 2.9
85.4 ± 0.5
55.9 ± 0.3
40.4 ± 1.0
4.2 ± 4.1

85.7 ± 0.1
85.0 ± 0.7
84.2 ± 0.5
52.1 ± 0.4
42.1 ± 3.0
8.2 ± 5.1

85.9 ± 0.3
85.8 ± 0.3
85.5 ± 0.5
85.1 ± 0.3
78.7 ± 2.2
48.9 ± 0.3

Photo

1
2
4
8

16
32

93.6 ± 0.2
93.7 ± 0.2
93.5 ± 0.3
926 ± 0.5
83.6 ± 1.7
25.5 ± 5.6

93.4 ± 0.3
93.3 ± 0.3
92.3 ± 0.4
92.5 ± 0.6
93.3 ± 0.4
45.2 ± 7.3

93.9 ± 0.3
93.8 ± 0.3
93.8 ± 0.2
93.5 ± 0.4
93.3 ± 0.4
91.1 ± 1.0

CoauthorCS

1
2
4
8

16
32

90.3 ± 1.1
90.3 ± 0.9
90.4 ± 0.7
85.1 ± 1.8

65.2 ± 14.5
48.0 ± 8.9

91.1 ± 0.4
90.8 ± 0.1
89.9 ± 0.8
87.2 ± 1.0
77.7 ± 3.7

49.7 ± 12.1

91.4 ± 0.2
91.2 ± 0.7
90.9 ± 0.6
90.7 ± 0.7
88.4 ± 1.1
79.7 ± 2.4

such, if we can control the convergence rate, we would be
able to alleviate the over-smoothing issue. The addition of
the term ⟨X(t)⟩α ∈ Rn×d serves this purpose. As the node
representations come close to their limits, this term acts as a
scaling factor to slow down the convergent process.

We present an exact bound for the convergent rate of our
model. We heuristically note that a symmetric matrix will
almost surely have a simple spectrum. This characteristic has
been made precise in some classes of matrices with certain
distributions [21]. We will utilize this assumption in the next
proposition.

Proposition 2. Assuming A is right-stochastic, symmetric and
has a simple spectrum. With the dynamics given in (8), we have
the bound for each column Xi

∥Xi(T )∥ ≥
(
(2 + ϵ)αT + ∥Xi(0)∥−α

)−1
α , (9)

∥Xi(T )∥ ≤
(
ϵαT + ∥Xi(0)∥−α

)−1
α . (10)

Proof. Let Yi(t) = ∥Xi(t)∥4, we have

Y ′
i (t) = 4∥Xi(t)∥2⟨X ′

i(t),Xi(t)⟩
= 4∥Xi(t)∥2⟨(A− (1 + ϵ)I)Xi(t)∥Xi∥α,Xi(t)⟩
= 4∥Xi(t)∥2+α⟨(A− (1 + ϵ)I)Xi(t),Xi(t)⟩
= 4∥Xi(t)∥2+α⟨AXi(t),Xi(t)⟩ − 4(1 + ϵ)∥Xi(t)∥4+α



TABLE II
PERFORMANCE OF GRAND, OTHER POPULAR GNNS, AND DEEPGRAND AT DIFFERENT LABEL RATES. THE BEST RESULTS ARE HIGHLIGHTED IN

BOLD. (NOTE: THE RESULTS FOR GRAND++-L, GCN, GAT, AND GRAPHSAGE ARE IMPORTED FROM [20])

Dataset # labeled GRAND-l GRAND-nl GRAND++-l GCN GAT GraphSage DeepGRAND

Cora

20
10
5
2
1

82.9 ± 1.1
80.7 ± 2.2
77.1 ± 3.1
74.2 ± 5.6
57.9± 8.1

82.7±2.5
80.5 ± 1.1
77.7 ± 2.9
69.4 ± 4.3
55.9 ± 10.0

83.0 ± 1.4
80.9 ± 3.0
77.8 ± 4.5
66.9 ± 10.0
54.9 ± 16.1

82.1 ± 2.0
78.8 ± 5.4
73.9 ± 8.0

60.9 ± 14.0
47.7 ± 15.3

79.9 ± 2.3
76.3 ± 4.9
71.0 ± 5.7
58.3± 13.6
47.9± 15.4

80.0 ± 2.5
75.0 ± 5.0
68.1 ± 7.0
54.0 ± 12.2
43.0 ± 14.0

84.2 ± 0.7
82.9 ± 0.8
80.9 ± 1.1
76.5 ± 2.0
70.2 ± 3.3

Citeseer

20
10
5
2
1

71.7 ± 2.9
66.3 ± 4.2
69.0 ± 3.7
58.4 ± 9.0
49.7 ± 8.7

73.2 ± 3.1
67.8 ± 4.0
66.9 ± 4.6
56.4 ± 5.5
47.3 ± 6.7

73.5 ± 3.3
72.3 ± 2.4
70.0 ± 3.6
65.0 ± 8.3
59.0 ± 9.6

74.2 ± 2.9
72.2 ± 3.5
67.2 ± 4.2
58.1 ± 9.8

48.9 ± 10.2

73.2 ± 2.9
71.4 ± 4.9
67.4 ± 5.1
55.6 ± 9.2
50.3 ± 14.3

72.0 ± 2.8
68.9 ± 5.1
64.8 ± 5.2
54.4 ± 11.4
48.8 ± 11.5

74.7 ± 0.8
73.5 ± 0.8
72.0 ± 1.0
69.7 ± 3.0
58.4 ± 2.5

Pubmed

20
10
5
2
1

78.4 ± 0.5
74.1 ± 2.0
71.1 ± 1.9
71.4 ± 3.9
62.4 ± 7.6

75.2 ± 1.8
74.2 ± 2.0
72.1 ± 2.2
65.5 ± 9.5
63.5 ± 5.5

79.2 ± 1.4
75.1 ± 3.9
72.0 ± 1.9
69.3 ± 4.9
65.9 ± 4.9

76.9 ± 3.3
72.6 ± 3.2
68.7 ± 7.9

60.5 ± 16.2
58.6 ± 12.8

75.6 ± 4.1
72.4 ± 3.5
68.5 ± 5.8
60.2 ± 14.4
58.8 ± 12.8

74.6 ± 3.1
70.7 ± 3.1
66.1 ± 6.2
59.0 ± 12.7
55.5 ± 12.7

79.5 ± 0.6
78.9 ± 1.5
77.1 ± 1.1
72.3 ± 1.8
70.0 ± 1.8

Computers

20
10
5
2
1

84.0 ± 1.0
82.3 ± 2.2
78.7 ± 0.8
66.2 ± 11.3
49.8 ± 15.0

83.3 ± 1.2
81.3 ± 3.0
79.7 ± 2.0
65.1 ± 8.3
47.3 ± 11.2

85.7 ± 0.5
83.0 ± 0.8
82.6 ± 0.6
76.5 ± 1.5
67.7 ± 0.4

82.9 ± 1.5
82.5 ± 0.7
82.5 ± 1.0
76.9 ± 1.5
49.5 ± 1.7

80.1 ± 1.8
76.0 ± 0.4
71.4 ± 7.3
65.1 ± 8.9
37.1 ± 7.8

80.0 ± 1.0
74.7 ± 1.3
64.8 ± 1.6
42.6 ± 42.9
27.7 ± 2.4

87.1 ± 0.5
85.7 ± 1.1
82.4 ± 0.3
76.6 ± 1.4
69.3 ± 2.7

Photo

20
10
5
2
1

93.2 ± 0.4
90.8 ± 1.4
88.1 ± 2.6
82.6 ± 3.0
75.1 ± 5.4

91.8 ± 1.5
89.0 ± 2.5
88.3 ± 1.6
80.6 ± 4.4
76.3 ± 4.8

93.6 ± 0.4
90.7 ± 1.2
88.3 ± 1.2
83.7 ± 0.9
83.1 ± 0.8

92.0 ± 0.1
90.4 ± 0.4
88.9 ± 1.6
83.6 ± 0.7
82.9 ± 2.2

89.4 ± 2.5
87.4 ± 2.4
83.0 ± 3.6
76.9 ± 4.9
73.6 ± 8.2

91.3 ± 0.7
84.4 ± 1.8
78.3 ± 1.9
51.9 ± 4.2
45.4 ± 7.1

93.5 ± 0.7
92.3 ± 0.4
90.5 ± 1.0
85.1 ± 0.3
83.3 ± 1.9

CoauthorCS

20
10
5
2
1

91.0 ± 0.6
89.0 ± 2.1
84.2 ± 3.6
75.2 ± 3.8
56.6 ± 8.4

90.6 ± 1.0
90.0 ± 0.7
87.0 ± 2.0
76.7 ± 6.85

66.44 ± 8.17

90.8 ± 0.3
86.9 ± 0.5
84.8 ± 0.8
76.5 ± 1.9
60.3 ± 1.5

91.1 ± 0.4
88.6 ± 0.5
86.7 ± 0.4
83.6 ± 1.5
65.2 ± 2.3

80.0 ± 2.9
74.7 ± 3.4
71.7 ± 4.5
63.1 ± 6.1
51.1 ± 5.2

91.3 ± 0.4
89.7 ± 0.4
89.1 ± 0.7
76.5 ± 1.3
61.4 ± 1.4

91.7 ± 0.6
89.8 ± 0.7
88.2 ± 0.7
82.1 ± 3.4
71.1 ± 1.7

Since A is a right-stochastic and symmetric matrix, we have

⟨AXi(t),Xi(t)⟩ ≤ ∥A∥∥Xi(t)∥2 = ∥Xi(t)∥2,

and

−⟨AXi(t),Xi(t)⟩ ≤ ∥A∥∥Xi(t)∥2 = ∥Xi(t)∥2,

so that

−∥Xi(t)∥2 ≤ ⟨AXi(t),Xi(t)⟩ ≤ ∥Xi(t)∥2.

Hence, we deduce that

4∥Xi(t)∥4+α(−2− ϵ) ≤ Y ′
i (t) ≤ 4∥Xi(t)∥4+α(−ϵ). (11)

Multiply both sides of (11) with −α
4 ∥Xi(t)∥−4−α =

−α
4Yi(t)

−1−α/4, and by noting that −α
4Y

′
i Y

−1−α/4
i =

(Y
−α/4
i )′, we have

α(2 + ϵ) ≥ (Y
−α/4
i )′ ≥ αϵ.

Integrate from 0 to T and rearranging the appropriate terms,
we get

(2 + ϵ)αT + Yi(0)
−α/4 ≥ Yi(T )

−α/4 ≥ ϵαT + Yi(0)
−α/4.

Finally, by noting that Y
−α
4

i = ∥Xi∥−α, we obtain the desired
bounds.

The inequalities (9), (10) ensure that each column Xi is
bounded in norm on both sides by polynomial-like terms.

Hence, it no longer converges at exponential speed. The over-
smoothing problem is thus alleviated.

V. EXPERIMENTAL RESULTS

In this section, we conduct experiments to compare the
performance of our proposed method DeepGRAND and the
baseline GRAND. We show that DeepGRAND is able to
achieve better accuracy when trained with higher depth and
a limited number of labeled nodes per class. We also compare
our results with those of GRAND++ [20] and popular GNNs
architectures such as GCN [3], GAT [7], and GraphSage [6].
GRAND++ is a GRAND variant where a source term is added
into the dynamics to reduce the effect of over-smoothing. In
table II, we reported the results of GRAND++-l, the best-
performing variant of GRAND++.

A. Experiment design
We evaluate our proposed method using the following

experiments:
• Performance with different depths: For all benchmarks,

we trained variants of GRAND and DeepGRAND using
the same integration limits T across a wide range of
values and compare the respective test accuracies.

• Performance with different label rates: For all bench-
marks, we trained GRAND-l, GRAND-nl, other popular
GNNs, and DeepGRAND with different numbers of
labeled nodes per class.



Datasets. We conduct our experiments on a wide range
of popular node classification datasets, including Cora [22],
Citeseer [23], Pubmed [24], Computers [25], Photo [25], and
CoauthorCS [26].

B. DeepGRAND is more adaptable to deep architectures

In table I, we provide empirical evidence for our argument
that the dynamics of DeepGRAND is more resilient to deeper
architectures. Specifically, we compared the change in perfor-
mance of both GRAND and DeepGRAND as the integration
limit T increases. Following [12], for Cora, Citeseer, and
Pubmed, we used the default planetoid split with 10 random
seeds per split. For Computers, Photo, and CoauthorCS, we
split the datasets randomly and used 10 random seeds per
split. For each seed, we used the default label rate of 20
labeled nodes per class. On all benchmarks, our proposed
dynamics performed substantially better across all depths.
Furthermore, the performance degradation as depth increases
is less significant than that of GRAND, indicating that over-
smoothing has been alleviated.

C. DeepGRAND is more resilient under limited labeled train-
ing data

In Table II, we provide empirical results to demonstrate
that DeepGRAND achieves superior accuracies compared to
other GNNs with a limited number of labeled nodes per
class. For all of the benchmarks: Cora, Citeseer, Pubmed,
Computers, Photo, and CoauthorCS, we used grid search to
find the optimal T values and evaluate the performance under
different numbers of labeled nodes per class. For each dataset,
we experimented with 1, 2, 5, 10, and 20 labeled nodes per
class and compared the test accuracies between GRAND,
GRAND++, GCN, GAT, GraphSage, and DeepGRAND. Our
results show that DeepGRAND outperforms both GRAND
variants and common GNN architectures like GCN, GAT, and
GraphSage.

VI. CONCLUSION

We propose DeepGRAND, a novel class of continuous-
depth graph neural networks that leverage a data-dependent
scaling term and a perturbation to the graph diffusivity to
decrease the saturation rate of the underlying diffusion process,
thus alleviating the over-smoothing issue. We also prove that
the proposed method stabilizes the learning of the model by
controlling the norm of the node representation. We theoret-
ically and empirically show the advantage of DeepGRAND
over GRAND and other popular GNNs in terms of resiliency
to over-smoothing and overall performance. It is interest-
ing to leverage advanced methods in improving the Neural
ODEs [27] to further develop DeepGRAND.
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